首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methotrexate has been a clinical agent used in cancer, immunosuppression, rheumatoid arthritis, and other highly proliferative diseases for many years, yet its underlying molecular mechanism of action in these therapeutic areas is still unclear. We have previously reported using a chemical proteomics technique on several other potential pharmacodynamic targets of methotrexate. Here, using a frontal affinity chromatography with mass spectrometry detection, we confirm one of these targets, hypoxanthine-guanine amidophosphoribosyltransferase, as a true binder of methotrexate with a Kd of 4.2 μM. These results complement and confirm our recent study, but more importantly, shed light into the mechanism of action of methotrexate in oncology and other highly proliferative diseases and may help explain some unaccounted for effects of this drug. For example, despite the fact that DNA salvage pathway enzymes are highly active, methotrexate can be effective if it only targets enzymes of the de novo pathway.  相似文献   

2.
In this review we list from literature investigations on rat serum proteins using electrophoretic techniques in connection with drug testing. From our own research work, we provide annotated two-dimensional maps of rat serum proteins under control and experimental conditions. Emphasis is on species-specific components and on the effects of acute and chronic inflammation. We discuss our project of structural proteomics on rat serum as a minimally invasive approach to pharmacological investigation, and we outline a typical experimental plan for drug testing according to the above guidelines. We then report in detail on the results of our trials of anti-inflammatory drugs on adjuvant arthritis, an animal model of disease resembling in many aspects human rheumatoid arthritis. We demonstrate a correlation between biochemical parameters and therapeutic findings and outline the advantages of the chosen methodological approach, which proved also sensitive in revealing "side effects" of the test drugs. In an appendix we describe our experimental protocol when performing two-dimensional electrophoresis of rat serum.  相似文献   

3.
Complementary and alternative medicine products are increasingly being used for the treatment of autoimmune diseases. However, the mechanisms of action of these agents are not fully defined. Using the rat adjuvant arthritis (AA) model of human rheumatoid arthritis, we determined whether the ethanol extract of Celastrus aculeatus Merr. (Celastrus), a Chinese herb, can down-modulate the severity of AA, and also examined the Celastrus-induced changes in immune responses to the disease-related antigen mycobacterial heat-shock protein 65 (Bhsp65). AA was induced in the Lewis (LEW; RT.1l) rat by immunization subcutaneously with heat-killed M. tuberculosis H37Ra (Mtb). Celastrus was fed to LEW rats by gavage daily, beginning either before Mtb challenge (preventive regimen) or after the onset of AA (therapeutic regimen). An additional group of rats was given methotrexate for comparison. All rats were graded regularly for the signs of arthritis. In parallel, the draining lymph node cells of Celastrus-treated rats were tested for proliferative and cytokine responses, whereas their sera were tested for the inflammatory mediator nitric oxide. Celastrus feeding suppressed both the induction as well as the progression of AA, and the latter effect was comparable to that of methotrexate. Celastrus treatment induced relative deviation of the cytokine response to anti-inflammatory type and enhanced the production of anti-Bhsp65 antibodies, which are known to be protective against AA. Celastrus feeding also reduced the levels of nitric oxide. On the basis of our results, we suggest further systematic exploration of Celastrus as an adjunct therapeutic modality for rheumatoid arthritis.  相似文献   

4.
We compared the expression levels of proteins in peripheral blood mononuclear cells (PBMCs) of healthy control individuals to those of patients diagnosed with rheumatoid arthritis (RA) using a proteomics approach. Using two-dimensional electrophoresis we identified 18 proteins that were 2-fold or more highly expressed in patients than in controls, and 11 proteins that were 2-fold or more highly expressed in controls than in patients. Some of these differentially expressed proteins, identified by MALDI-TOF spectrometry, have previously been shown to play a potential role in the pathogenesis of RA. Hierarchical cluster analyses of the data segregated the samples into two groups, one which contained only controls and the other which contained only patients, and was used to compare the expression pattern of these 29 proteins in individual samples with the median expression pattern determined in the healthy control and in the RA patient groups. This analyses was able to predict whether a sample was derived from a rheumatoid arthritis patient or from a healthy individual, suggesting that a comparison of such protein expression patterns may be of diagnostic value.  相似文献   

5.
OM-89 (Subreum) is anE. coli extract used for oral administration in the treatment of rheumatoid arthritis. It contains bacterial heat shock proteins, namely hsp60 and hsp70, which were shown to be major immunogenic constitutents of the drug. Immunity to bacterial heat-shock antigens was shown to be a means of immunomodulation of (experimental) autoimmune disease and possibly inflammation in general. This was demonstrated for mycobacterial hsp60 respectively hsp70 in autoimmune disease models for arthritis, diabetes and encephalitis. Parallel to the effects displayed by immunisation with hsp, oral administration of hsp-containing OM-89 was found to modify autoimmune disease in a number of animal models, such as for arthritis, diabetes and SLE. In rats immunisation with OM-89 was found to lead to proliferative T cell responses to hsp60 and hsp70 of bothE. coli and mycobacterial origin. Conversely, immunisation with hsp antigens could induce T cell reactivity specific for OM-89. Given this and the autoimmune disease modulating properties of both hsp and OM-89 it is argued that OM-89 acts via the same mechanism as proposed for hsp: that peripheral tolerance is induced at the level of regulatory T cells with specificity for heat-shock proteins. This may constitute one mode of action for OM-89 as an arthritis suppressive oral drug in man.  相似文献   

6.
Major achievements have been reached in the treatment of rheumatoid arthritis during past decades due to the recognition of methotrexate as an anchor drug for treatment of rheumatoid arthritis, due to the notion of a treatment window of opportunity in patients with recent-onset rheumatoid arthritis necessitating early aggressive therapy, due to the development of biologics and due to remission as a treatment target. Most biologics have a much faster onset of action than synthetic disease-modifying anti-rheumatic drugs, but presently there is no convincing evidence that biologic drugs have a superior clinical efficacy in comparison with the synthetic drugs. Biologics are, however, accompanied by less radiological deterioration.  相似文献   

7.
We have studied the effect of methotrexate in murine acute graft vs host (GvH) disease at concentrations analogous to those used in human rheumatoid arthritis. The GvH reaction was induced by i.v. injection of parental spleen cells into a normal F1 recipient. The acute suppression of T cell function in GvH mice was prevented by methotrexate given orally for 10 days at 1.0 or 0.5 mg/kg but not at 0.25 mg/kg. T cell mitogen response and IL-2 secretion that were inhibited in GvH mice were restored by methotrexate. Protection from immunosuppression in drug-treated GvH mice lasted at least 3 wk after drug dosing was stopped. The mechanism of the protective effect appears to be a preferential inhibition of donor and host Lyt-2+ Ts cell proliferation. In mixing experiments we found that methotrexate inhibited Ts function in GvH mice. By dual fluorescence labeling we showed that the engraftment of donor Lyt-2+ cells was prevented by drug treatment. This was not true of donor L3T4+ cells which were clearly present in the spleens of GvH mice after methotrexate treatment. These donor L3T4 cells were functional in that they induced the production of anti-DNA autoantibodies in the methotrexate-treated GvH mice.  相似文献   

8.
The efficiency of methotrexate use in the basic therapy of rheumatoid arthritis is limited because of risk of side effects and fast drug efflux from zone of joints as well. We have developed a new stabilized form of methotrexate using phospholipid micelles of the injection form of the Phosphogliv preparation as a carrier. Phosphogliv has recently been developed in the Institute of Biomedical Chemistry (Moscow), as the emulsion of 50 nm phospholipid nanoparticles stabilized by glycyrrhizic acid. The conditions of maximal methotrexate incorporation into the phospholipid nanoparticles were optimized under control of HPLC (60% of total methotrexate was associated with nanoparticles). Methotrexate in phospholipid nanoparticles exhibited higher therapeutic efficiency in experimental adjuvant arthritis in rats than with free methotrexate. (This was evaluated by the decrease of edema and swelling of joints and inhibition of secondary inflammatory reaction.) The increase of antirheumatic activity of the developed preparation may also be attributed to the influence of glycyrrhizic acid, possessing both anti-inflammatory and immune properties. It is suggested to use a new form of methotrexate for intra-articular administration for rheumatoid arthritis treatment.  相似文献   

9.
Blockade of chemokines or chemokine receptors is emerging as a new potential treatment for various immune-mediated conditions. This review focuses on the therapeutic potential in rheumatoid arthritis, based on studies in animal models and patients. Several knockout models as well as in vivo use of chemokine antagonists are discussed. Review of these data suggests that this approach might lead to novel therapeutic strategies in rheumatoid arthritis and other chronic inflammatory disorders.  相似文献   

10.
We reported recently that albumin is a suitable drug carrier for targeted delivery of methotrexate (MTX) to tumors. Due to pathophysiological conditions in neoplastic tissue, high amounts of albumin accumulate in tumors and are metabolized by malignant cells. MTX, covalently coupled to human serum albumin (MTX-HSA) for cancer treatment, is currently being evaluated in phase II clinical trials. Because synovium of patients with rheumatoid arthritis (RA) shares various features observed also in tumors, albumin-based drug targeting of inflamed joints might be an attractive therapeutic approach. Therefore, the pharmacokinetics of albumin and MTX in a mouse model of arthritis was examined. Additionally, uptake of albumin by synovial fibroblasts of RA patients and the efficacy of MTX and MTX-HSA in arthritic mice were studied. The results show that when compared with MTX, significantly higher amounts of albumin accumulate in inflamed paws, and significantly lower amounts of albumin are found in the liver and the kidneys. The protein is metabolized by human synovial fibroblasts in vitro and in vivo. MTX-HSA was significantly more effective in suppression of the onset of arthritis in mice than was MTX. In conclusion, albumin appears to be a suitable drug carrier in RA, most likely due to effects on synovial fibroblasts, which might increase therapeutic efficacy and reduce side effects of MTX.  相似文献   

11.
Patients with rheumatoid arthritis (RA) and osteoarthritis (OA) consume 'natural health products' (NHPs) whose therapeutic efficacy, toxicity and mechanisms of action are poorly understood. In a previous issue of Arthritis Research and Therapy, Haqqi and colleagues characterized IL-1-activated mitogen-activated protein kinase kinase 3 (MKK3) and p38-mitogen-activated protein kinase (MAPK) isoforms in human OA chondrocytes. The cartilageprotective mechanisms of pomegranate extract involve diminishing MKK3-activated p38α, JNK, NF-κB and Runx2 pathways, which regulate inflammatory proteins and cartilage-destroying proteases. Epigallocatechin- 3-gallate, resveratrol, curcumin and other NHP active ingredients suppress multiple inflammatory and catabolic molecular mediators of arthritis. Non-toxicity, reduced severity and incidence of arthritis in animal models warrant testing NHP active ingredients for preventing human OA and RA.  相似文献   

12.
Therapeutic monoclonal antibodies have revolutionized the treatment of various inflammatory diseases. Immunogenicity against these antibodies has been shown to be clinically important: it is associated with shorter response duration because of diminishing concentrations in the blood and with infusion reactions. Concomitant immunomodulators in the form of methotrexate or azathioprine reduced the immunogenicity of therapeutic antibodies in rheumatoid arthritis, Crohn disease, and juvenile idiopathic arthritis. The occurrence of adverse events does not increase when immunomodulators are added to therapeutic antibodies. The mechanism whereby methotrexate and azathioprine influence immunogenicity remains unclear. Evidence-based consensus on prescribing concomitant immunomodulators is needed.  相似文献   

13.
Boja ES  Rodriguez H 《Proteomics》2012,12(8):1093-1110
Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry (MRM-MS), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM-MS-based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents.  相似文献   

14.
The antifolate anticancer drug methotrexate (MTX) has potent activity against Plasmodium falciparum in vitro. Experience of its use in the treatment of rheumatoid arthritis indicates that it could be safe and efficacious for treating malaria. We sought to establish a murine malaria model to study the mechanism of action and resistance of MTX and its analogue aminopterin (AMP). We used Plasmodium berghei, Plasmodium yoelii yoelii, Plasmodium chabaudi and Plasmodium vinckei. None of these species were susceptible to either drug. We have also tested the efficacy of pyrimethamine in combination with folic acid in P. berghei, and data indicate that folic acid does not influence pyrimethamine efficacy, which suggests that P. berghei may not transport folate. Since MTX and AMP utilise folate receptor/transport to gain access to cells, their lack of efficacy against the four tested murine malaria species may be the result of inefficiency of drug transport.  相似文献   

15.

Background

Ligand-targeted approaches have proven successful in improving the therapeutic index of a number of drugs. We hypothesized that the specific targeting of TNF-alpha antagonists to inflamed tissues could increase drug efficacy and reduce side effects.

Results

Using uteroglobin (UG), a potent anti-inflammatory protein, as a scaffold, we prepared a bispecific tetravalent molecule consisting of the extracellular ligand-binding portion of the human TNF-alpha receptor P75 (TNFRII) and the scFv L19. L19 binds to the ED-B containing fibronectin isoform (B-FN), which is expressed only during angiogenesis processes and during tissue remodeling. B-FN has also been demonstrated in the pannus in rheumatoid arthritis. L19-UG-TNFRII is a stable, soluble homodimeric protein that maintains the activities of both moieties: the immuno-reactivity of L19 and the capability of TNFRII to inhibit TNF-alpha. In vivo bio-distribution studies demonstrated that the molecule selectively accumulated on B-FN containing tissues, showing a very fast clearance from the blood but a very long residence time on B-FN containing tissues. Despite the very fast clearance from the blood, this fusion protein was able to significantly improve the severe symptomatology of arthritis in collagen antibody-induced arthritis (CAIA) mouse model.

Conclusions

The recombinant protein described here, able to selectively deliver the TNF-alpha antagonist TNFRII to inflamed tissues, could yield important contributions for the therapy of degenerative inflammatory diseases.  相似文献   

16.

Introduction  

Despite the advent of biological therapies for the treatment of rheumatoid arthritis, there is a compelling need to develop alternative therapeutic targets for nonresponders to existing treatments. Soluble receptors occur naturally in vivo, such as the splice variant of the cell surface receptor for vascular endothelial growth factor (VEGF) – a key regulator of angiogenesis in rheumatoid arthritis. Bioinformatics analyses predict that the majority of human genes undergo alternative splicing, generating proteins – many of which may have regulatory functions. The objective of the present study was to identify alternative splice variants (ASV) from cell surface receptor genes, and to determine whether the novel proteins encoded exert therapeutic activity in an in vivo model of arthritis.  相似文献   

17.
Reports in recent years indicate that the increasing emergence of resistance to drugs be using to TB treatment. The resistance to them severely affects to options for effective treatment. The emergence of multidrug-resistant tuberculosis has increased interest in understanding the mechanism of drug resistance in M. tuberculosis and the development of new therapeutics, diagnostics and vaccines. In this study, a label-free quantitative proteomics approach has been used to analyze proteome of multidrug-resistant and susceptible clinical isolates of M. tuberculosis and identify differences in protein abundance between the two groups. With this approach, we were able to identify a total of 1,583 proteins. The majority of identified proteins have predicted roles in lipid metabolism, intermediary metabolism, cell wall and cell processes. Comparative analysis revealed that 68 proteins identified by at least two peptides showed significant differences of at least twofolds in relative abundance between two groups. In all protein differences, the increase of some considering proteins such as NADH dehydrogenase, probable aldehyde dehydrogenase, cyclopropane mycolic acid synthase 3, probable arabinosyltransferase A, putative lipoprotein, uncharacterized oxidoreductase and six membrane proteins in resistant isolates might be involved in the drug resistance and to be potential diagnostic protein targets. The decrease in abundance of proteins related to secretion system and immunogenicity (ESAT-6-like proteins, ESX-1 secretion system associated proteins, O-antigen export system and MPT63) in the multidrug-resistant strains can be a defensive mechanism undertaken by the resistant cell.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0511-2) contains supplementary material, which is available to authorized users.  相似文献   

18.
Oncoproteomics is an important innovation in the early diagnosis, management and development of personalized treatment of acute lymphoblastic leukaemia (ALL). As inherent factors are not completely known – e.g. age or family history, radiation exposure, benzene chemical exposure, certain viral exposures such as infection with the human T‐cell lymphoma/leukaemia virus‐1, as well as some inherited syndromes may raise the risk of ALL – each ALL patient may modify the susceptibility of therapy. Indeed, we consider these unknown inherent factors could be explained via coupling cytogenetics plus proteomics, especially when proteins are the ones which play function within cells. Innovative proteomics to ALL therapy may help to understand the mechanism of drug resistance and toxicities, which in turn will provide some leads to improve ALL management. Most important of these are shotgun proteomic strategies to unravel ALL aberrant signalling networks. Some shotgun proteomic innovations and bioinformatic tools for ALL therapies will be discussed. As network proteins are distinctive characteristics for ALL patients, unrevealed by cytogenetics, those network proteins are currently an important source of novel therapeutic targets that emerge from shotgun proteomics. Indeed, ALL evolution can be studied for each individual patient via oncoproteomics.  相似文献   

19.
20.
In recent years, phenotypic-based screens have become increasingly popular in drug discovery. A major challenge of this approach is that it does not provide information about the mechanism of action of the hits. This has led to the development of multiple strategies for target deconvolution. Thermal proteome profiling (TPP) allows for an unbiased search of drug targets and can be applied in living cells without requiring compound labeling. TPP is based on the principle that proteins become more resistant to heat-induced unfolding when complexed with a ligand, e.g., the hit compound from a phenotypic screen. The melting proteome is also sensitive to other intracellular events, such as levels of metabolites, post-translational modifications and protein-protein interactions. In this review, we describe the principles of this approach, review the method and its developments, and discuss its current and future applications. While proteomics has generally focused on measuring relative protein concentrations, TPP provides a novel approach to gather complementary information on protein stability not present in expression datasets. Therefore, this strategy has great potential not only for drug discovery, but also for answering fundamental biological questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号