首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nakai T  Kato K  Shinmyo A  Sekine M 《FEBS letters》2006,580(1):336-340
Arabidopsis contains seven Kip-related protein (KRP) genes encoding CDK (cyclin-dependent kinase) inhibitors (CKIs), which shares a restricted similarity with mammalian p27Kip1. Here, we analyze the characteristics of the KRPs. Although KRP1-KRP7 interact with active cyclin D2 (CYCD2)/CDKA and CYCD2/CDKB complexes to a similar extent, they inhibit kinase activity to a different extent. Our results suggest that inhibitory activity is related to the binding ability between KRP proteins and cyclin/CDK complexes, but secondary and tertiary structure may be also involved. These data provide the first evidence that KRPs inhibit kinase activity associated with plant-specific CDKB.  相似文献   

3.
4.
5.
Endosperm development in maize (Zea mays L.) and related cereals comprises a cell proliferation stage followed by a period of rapid growth coupled to endoreduplication. Regulation of the cell cycle in developing endosperm is poorly understood. We have characterized various subunits of cyclin-dependent kinase (CDK) complexes, master cell cycle regulators in all eukaryotes. A-, B-, and D-type cyclins as well as A- and B-type cyclin-dependent kinases were characterized with respect to their RNA and protein expression profiles. Two main patterns were identified: one showing expression throughout endosperm development, and another characterized by a sharp down-regulation with the onset of endoreduplication. Cyclin CYCB1;3 and CYCD2;1 proteins were distributed in the cytoplasm and nucleus of cells throughout the endosperm, while cyclin CYCD5 protein was localized in the cytoplasm of peripheral cells. CDKB1;1 expression was strongly associated with cell proliferation. Expression and cyclin-binding patterns suggested that CDKA;1 and CDKA;3 are at least partially redundant. The kinase activity associated with the cyclin CYCA1 was highest during the mitotic stage of development, while that associated with CYCB1;3, CYCD2;1 and CYCD5 peaked at the mitosis-to-endoreduplication transition. A-, B- and D-type cyclins were more resistant to proteasome-dependent degradation in endoreduplicating than in mitotic endosperm extracts. These results indicated that endosperm development is characterized by differential expression and activity of specific cyclins and CDKs, and suggested that endoreduplication is associated with reduced cyclin proteolysis via the ubiquitin–proteasome pathway.  相似文献   

6.
7.
The EL2 gene of rice (Oryza sativa), previously classified as early response gene against the potent biotic elicitor N-acetylchitoheptaose and encoding a short polypeptide with unknown function, was identified as a novel cell cycle regulatory gene related to the recently reported SIAMESE (SIM) gene of Arabidopsis thaliana. Iterative two-hybrid screens, in vitro pull-down assays, and fluorescence resonance energy transfer analyses showed that Orysa; EL2 binds the cyclin-dependent kinase (CDK) CDKA1;1 and D-type cyclins. No interaction was observed with the plant-specific B-type CDKs. The amino acid motif ELERFL was identified to be essential for cyclin, but not for CDK binding. Orysa;EL2 impaired the ability of Orysa; CYCD5;3 to complement a budding yeast (Saccharomyces cerevisiae) triple CLN mutant, whereas recombinant protein inhibited CDK activity in vitro. Moreover, Orysa;EL2 was able to rescue the multicellular trichome phenotype of sim mutants of Arabidopsis, unequivocally demonstrating that Orysa;EL2 operates as a cell cycle inhibitor. Orysa;EL2 mRNA levels were induced by cold, drought, and propionic acid. Our data suggest that Orysa;EL2 encodes a new type of plant CDK inhibitor that links cell cycle progression with biotic and abiotic stress responses.  相似文献   

8.
In plants multiple A-type cyclins with distinct expression patterns have been isolated and classified into three subgroups (A1-A3), while in animal somatic cells a single type of cyclin A is required for cell-cycle regulation from the S to M phases. We studied the function of an A2-type cyclin from Medicago sativa (Medsa;cycA2) which, in contrast to animal and most plant A-type cyclins, was expressed in all phases of the cell cycle. Using synchronized alfalfa cell cultures and anti-Medsa;CycA2 polyclonal antibodies, we showed that while the mRNA level increased steadily from the late G1 to the G2-M phase, the protein level after a rapid increase in S-phase reached a plateau during the G2 phase. In the yeast two-hybrid system, the Medsa;CycA2 protein interacted with the PSTAIRE-motif-containing cyclin-dependent kinase Cdc2MsA and with the maize retinoblastoma protein. Unexpectedly, the CycA2-associated kinase activity was biphasic: a first activity peak occurred in the S phase while the major one occurred during the G2/M transition, with no apparent dependence upon the actual levels of the Medsa;CycA2 and Cdc2MsA proteins. Immunohistological localization of the cyclin A2 protein by immunofluorescence and immunogold labelling revealed the presence of Medsa;CycA2 in the nucleus of the interphase and prophase cells, while it was undetectable thereafter during mitosis. Together these data suggest that Medsa;CycA2 plays a role both in the S phase and at the G2/M transition.  相似文献   

9.
10.
Maize CycD3;1 associates to CDKA or CDKB1;1 proteins during germination and the complexes formed develop kinase activity. These complexes appear to vary in size as germination proceeds, suggesting association to different sets of proteins. CycD3;1 and associated CDK proteins respond to phytohormones and sucrose. Results revealed a reduction in the CycD3;1 protein amount along germination in the presence of indoleacetic acid (IAA) or abscisic acid (ABA), although in the latter protein levels recover at the end of germination. While the levels of CDKA increase with IAA, they decrease with ABA. Both phytohormones, IAA and ABA, increase levels of CDKB1;1 only during the early germination times. CycD3;1 associated kinase activity is only reduced by both phytohormones towards the end of the germination period. On the other hand, lack of sucrose in the imbibition medium strongly reduces CycD3;1 protein levels without affecting the levels of neither CDKA nor CDKB1;1. The corresponding CycD3;1 associated kinase activity is also severely decreased. The presence of sucrose in the medium appears to stabilize the CycD3;1 protein levels.  相似文献   

11.
Protein kinase N1 (PKN1) is a member of the protein kinase C superfamily. Aberrations of PKN1 kinase activity are involved in several human pathological processes, including cancer. We found that PKN family proteins (PKN1/2/3) are phosphorylated in response to antitubulin drug-induced mitotic arrest. We identified cyclin-dependent kinase 1 (CDK1) as the corresponding kinase for PKN protein phosphorylation. CDK1 phosphorylates PKN1 at S533, S537, S562, and S916 in vitro and in cells during drug-induced mitotic arrest. Immunofluorescence staining further confirmed that PKN1 phosphorylation occurs during normal mitosis in a CDK1-dependent manner. Knockdown of PKN1 significantly inhibited anchorage-independent growth and migration without affecting proliferation in multiple cancer cell lines. We further showed that mitotic phosphorylation is essential for PKN1's oncogenic function, as the non-phosphorylatable mutant PKN1-4A failed to rescue anchorage-independent growth and migration in PKN1-knockdown cells. Thus, our findings reveal a novel regulatory mechanism for PKN1 in mitosis and its role in tumorigenesis.  相似文献   

12.
Cyclin-dependent kinases (CDKs) are the main regulators of cell cycle progression in eukaryotes. The role and regulation of canonical CDKs, such as the yeast (Saccharomyces cerevisiae) Cdc2 or plant CDKA, have been extensively characterized. However, the function of the plant-specific CDKB is not as well understood. Besides being involved in cell cycle control, Arabidopsis (Arabidopsis thaliana) CDKB would integrate developmental processes to cell cycle progression. We investigated the role of CDKB in Ostreococcus (Ostreococcus tauri), a unicellular green algae with a minimal set of cell cycle genes. In this primitive alga, at the basis of the green lineage, CDKB has integrated two levels of regulations: It is regulated by Tyr phosphorylation like cdc2/CDKA and at the level of synthesis-like B-type CDKs. Furthermore, Ostreococcus CDKB/cyclin B accounts for the main peak of mitotic activity, and CDKB is able to rescue a yeast cdc28(ts) mutant. By contrast, Ostreococcus CDKA is not regulated by Tyr phosphorylation, and it exhibits a low and steady-state activity from DNA replication to exit of mitosis. This suggests that from a major role in the control of mitosis in green algae, CDKB has evolved in higher plants to assume other functions outside the cell cycle.  相似文献   

13.
14.
15.
Growth of tomato fruits is determined by cell division and cell expansion, which are tightly controlled by factors that drive the core cell cycle. The cyclin-dependent kinases (CDKs) and their interacting partners, the cyclins, play a key role in the progression of the cell cycle. In this study the role of CDKA1, CDKB1, and CDKB2 in fruit development was characterized by fruit-specific overexpression and down-regulation. CDKA1 is expressed in the pericarp throughout development, but is strongly up-regulated in the outer pericarp cell layers at the end of the growth period, when CDKB gene expression has ceased. Overexpression of the CDKB genes at later stages of development and the down-regulation of CDKA1 result in a very similar fruit phenotype, showing a reduction in the number of cell layers in the pericarp and alterations in the desiccation of the fruits. Expression studies revealed that CDKA1 is down-regulated by the expression of CDKB1/2 in CDKB1 and CDKB2 overexpression mutants, suggesting opposite roles for these types of CDK proteins in tomato pericarp development.  相似文献   

16.
17.
The retinoblastoma (Rb) protein was originally identified as a product of a tumour suppressor gene that plays a pivotal role in regulating both the cell cycle and differentiation in mammals. The growth-suppressive activity of Rb is regulated by phosphorylation with cyclin-dependent kinase (CDK), and inactivation of the Rb function is one of the critical steps for transition from the G1 to the S phase. We report here the cloning of a cDNA (NtRb1) from Nicotiana tabacum which encodes a Rb-related protein, and show that this gene is expressed in all the organs examined at the mRNA level. We have demonstrated that NtRb1 interacts with tobacco cyclin D by using yeast two-hybrid and in vitro binding assays. In mammals, cyclin D can assemble with CDK4 and CDK6, but not with Cdc2, to form active complexes. Surprisingly, tobacco cyclin D and Cdc2 proteins can form a complex in insect cells, which is able to phosphorylate tobacco Rb-related protein in vitro. Using immunoprecipitation with the anti-cyclin D anti-body, cyclin D can be found in a complex with Cdc2 in suspension-cultured tobacco BY-2 cells. These results suggest that the cdc2 gene modulates the cell cycle through the phosphorylation of Rb-related protein by forming an active complex with cyclin D in plants.  相似文献   

18.
Cyclin-dependent kinase (CDK) Tyr15 phosphorylation plays a major role in regulating G(2)/M CDKs, but the role of this phosphorylation in regulating G(1)/S CDKs is less clear. We have studied the regulation and function of Cdc2-Tyr15 phosphorylation in the fission yeast Schizosaccharomyces pombe G(1)/S CDK Cig2/Cdc2. This complex is subject to high level Cdc2-Tyr15 phosphorylation inhibiting its kinase activity in hydroxyurea-treated cells blocked in S-phase. We show that this Tyr15 phosphorylation is required to maintain efficient mitotic checkpoint arrest, because Cig2 accumulates during the block and this accumulation can advance mitotic onset. This mitotic induction operates, at least in part, through activation of the normal G(2)/M CDK complex Cdc13/Cdc2. Thus, Tyr15 phosphorylation of G(1)/S CDK complexes is important in the checkpoint control blocking mitotic onset when DNA replication is inhibited.  相似文献   

19.
PASTICCINO2 (PAS2), a member of the protein Tyr phosphatase-like family, is conserved among all eukaryotes and is characterized by a mutated catalytic site. The cellular functions of the Tyr phosphatase-like proteins are still unknown, even if they are essential in yeast and mammals. Here, we demonstrate that PAS2 interacts with a cyclin-dependent kinase (CDK) that is phosphorylated on Tyr and not with its unphosphorylated isoform. Phosphorylation of the conserved regulatory Tyr-15 is involved in the binding of CDK to PAS2. Loss of the PAS2 function dephosphorylated Arabidopsis thaliana CDKA;1 and upregulated its kinase activity. In accordance with its role as a negative regulator of the cell cycle, overexpression of PAS2 slowed down cell division in suspension cell cultures at the G2-to-M transition and early mitosis and inhibited Arabidopsis seedling growth. The latter was accompanied by altered leaf development and accelerated cotyledon senescence. PAS2 was localized in the cytoplasm of dividing cells but moved into the nucleus upon cell differentiation, suggesting that the balance between cell division and differentiation is regulated through the interaction between CDKA;1 and the antiphosphatase PAS2.  相似文献   

20.
Reversible phosphorylation of proteins by kinases and phosphatases plays a key regulatory role in several eukaryotic cellular functions including the control of the division cycle. Increasing numbers of sequence and biochemical data show the involvement of cyclin-dependent kinases (CDKs) and cyclins in regulation of the cell cycle progression in higher plants. The complexity represented by different types of CDKs and cyclins in a single species such as alfalfa, indicates that multicomponent regulatory pathways control G2/M transition. A set of cdc2-related genes (cdc2Ms A, B, D and F) was expressed in G2 and M cells. Phosphorylation assays also revealed that at least three kinase complexes (Cdc2Ms A/B, D and F) were successively active in G2/M cells after synchronization. Interaction between alfalfa mitotic cyclin (Medsa;CycB2;1) and a kinase partner has been reported previously. The present yeast two-hybrid analyses showed differential interaction between defined D-type cyclins and Cdc2Ms kinases functioning in G2/M phases. Localization of Cdc2Ms F kinase to the preprophase band (PPB), the perinuclear ring in early prophase, the mitotic spindle and the phragmoplast indicated a pivotal role for this kinase in mitotic plant cells. So far limited research efforts have been devoted to the functions of phosphatases in the control of plant cell division. A homologue of dual phosphatase, cdc25, has not been cloned yet from alfalfa; however tyrosine phosphorylation was indicated in the case of Cdc2Ms A kinase and the p13suc1-bound kinase activity was increased by treatment of this complex with recombinant Drosophila Cdc25. The potential role of serine/threonine phosphatases can be concluded from inhibitor studies based on okadaic acid or endothall. Endothall elevated the kinase activity of p13suc1-bound fractions in G2-phase alfalfa cells. These biochemical data are in accordance with observed cytological abnormalities. The present overview with selected original data outlines a conclusion that emphasizes the complexity of G2/M regulatory events in flowering plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号