首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The crystal structure of Saccharomyces cerevisiae cytoplasmic aspartate aminotransferase (EC 2.6.1.1) has been determined to 2.05 A resolution in the presence of the cofactor pyridoxal-5'-phosphate and the competitive inhibitor maleate. The structure was solved by the method of molecular replacement. The final value of the crystallographic R-factor after refinement was 23.1% with good geometry of the final model. The yeast cytoplasmic enzyme is a homodimer with two identical active sites containing residues from each subunit. It is found in the "closed" conformation with a bound maleate inhibitor in each active site. It shares the same three-dimensional fold and active site residues as the aspartate aminotransferases from Escherichia coli, chicken cytoplasm, and chicken mitochondria, although it shares less than 50% sequence identity with any of them. The availability of four similar enzyme structures from distant regions of the evolutionary tree provides a measure of tolerated changes that can arise during millions of years of evolution.  相似文献   

2.
Based on selective labeling by ATP analogues, Lys68 of the Calvin Cycle enzyme phosphoribulokinase (PRK) from spinach has been assigned to the active-site region [Miziorkoet al. (1990),J. Biol. Chem. 265, 3642–3647]. The equivalent position is occupied by lysyl or arginyl residues in the PRK from both prokaryotic and eukaryotic sources, suggesting a requirement for a basic residue at this location. To examine this possibility, we have replaced Lys68 of the spinach enzyme with arginyl, glutaminyl, alanyl, or glutamyl residues by site-directed mutagenesis. All of the mutant enzymes retain substantial kinase activity; and even in the case of the radical substitution by glutamate, theK m values for ATP and ribulose 5-phosphate are not perturbed significantly. Glutamate at position-68 may destabilize tertiary structure, because the yield of this mutant protein from transformedE. coli is quite low compared to that of the other proteins in this series. Despite the active-site proximity of Lys68, our results show that this residue does not play a key role in catalysis or substrate binding.  相似文献   

3.
Although several high-resolution X-ray crystallographic structures have been determined for Escherichia coli aspartate aminotransferase (eAATase), efforts to crystallize E. coli tyrosine aminotransferase (eTATase) have been unsuccessful. Sequence alignment analyses of eTATase and eAATase show 43% sequence identity and 72% sequence similarity, allowing for conservative substitutions. The high similarity of the two sequences indicates that both enzymes must have similar secondary and tertiary structures. Six active site residues of eAATase were targeted by homology modeling as being important for aromatic amino acid reactivity with eTATase. Two of these positions (Thr 109 and Asn 297) are invariant in all known aspartate aminotransferase enzymes, but differ in eTATase (Ser 109 and Ser 297). The other four positions (Val 39, Lys 41, Thr 47, and Asn 69) line the active site pocket of eAATase and are replaced by amino acids with more hydrophobic side chains in eTATase (Leu 39, Tyr 41, Ile 47, and Leu 69). These six positions in eAATase were mutated by site-directed mutagenesis to the corresponding amino acids found in eTATase in an attempt to redesign the substrate specificity of eAATase to that of eTATase. Five combinations of the individual mutations were obtained from mutagenesis reactions. The redesigned eAATase mutant containing all six mutations (Hex) displays second-order rate constants for the transamination of aspartate and phenylalanine that are within an order of magnitude of those observed for eTATase. Thus, the reactivity of eAATase with phenylalanine was increased by over three orders of magnitude without sacrificing the high transamination activity with aspartate observed for both enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Serine hydroxymethyltransferase (SHMT) is a pyridoxal‐5′‐phosphate (PLP)‐dependent enzyme belonging to the fold type I superfamily, which catalyzes in vivo the reversible conversion of l ‐serine and tetrahydropteroylglutamate (H4PteGlu) to glycine and 5,10‐methylenetetrahydropteroylglutamate (5,10‐CH2‐H4PteGlu). The SHMT from the psychrophilic bacterium Psychromonas ingrahamii (piSHMT) had been recently purified and characterized. This enzyme was shown to display catalytic and stability properties typical of psychrophilic enzymes, namely high catalytic activity at low temperature and thermolability. To gain deeper insights into the structure–function relationship of piSHMT, the three‐dimensional structure of its apo form was determined by X‐ray crystallography. Homology modeling techniques were applied to build a model of the piSHMT holo form. Comparison of the two forms unraveled the conformation modifications that take place when the apo enzyme binds its cofactor. Our results show that the apo form is in an “open” conformation and possesses four (or five, in chain A) disordered loops whose electron density is not visible by X‐ray crystallography. These loops contain residues that interact with the PLP cofactor and three of them are localized in the major domain that, along with the small domain, constitutes the single subunit of the SHMT homodimer. Cofactor binding triggers a rearrangement of the small domain that moves toward the large domain and screens the PLP binding site at the solvent side. Comparison to the mesophilic apo SHMT from Salmonella typhimurium suggests that the backbone conformational changes are wider in psychrophilic SHMT. Proteins 2014; 82:2831–2841. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Activated Factor X releases F1.2, a 271-amino acid peptide, from the amino terminus of prothrombin during blood coagulation. A nine-amino acid peptide, C9 (DSDRAIEGR), corresponding to the carboxyl terminus of F1.2 was synthesized and used to produce a monoclonal antibody, TA1 (K(D)) 1.22 x 10(-6) M). To model the TA1 antibody, we entered the sequence information of the cloned TA1 Fv into the antibody modeling program, ABM, which combines homology methods, conformational search procedures, and energy screening and has proved to be a reliable and reproducible antibody modeling method. Using a novel protein fusion procedure, we expressed the C9 peptide fused to the carboxyl terminus of the PENI repressor protein from Bacillus licheniformis in Escherichia coli. We constructed fusion proteins containing alanine substitutions for each amino acid in the C9 epitope. Binding studies, using the C9 alanine mutants and TA1, and spatial constraints predicted by the modeled TA1 binding cleft enabled us to establish a plausible conformation for C9 complexed with TA1. Furthermore, based on binding results of conservative amino acid substitutions in C9 and mutations in the antibody, we were able to refine the complex model and identify antibody mutations that would improve binding affinity.  相似文献   

6.
Serine hydroxymethyltransferases (SHMTs) play an essential role in one‐carbon unit metabolism and are used in biomimetic reactions. We determined the crystal structure of free (apo) and pyridoxal‐5′‐phosphate‐bound (holo) SHMT from Methanocaldococcus jannaschii, the first from a hyperthermophile, from the archaea domain of life and that uses H4MPT as a cofactor, at 2.83 and 3.0 Å resolution, respectively. Idiosyncratic features were observed that are likely to contribute to structure stabilization. At the dimer interface, the C‐terminal region folds in a unique fashion with respect to SHMTs from eubacteria and eukarya. At the active site, the conserved tyrosine does not make a cation‐π interaction with an arginine like that observed in all other SHMT structures, but establishes an amide‐aromatic interaction with Asn257, at a different sequence position. This asparagine residue is conserved and occurs almost exclusively in (hyper)thermophile SHMTs. This led us to formulate the hypothesis that removal of frustrated interactions (such as the Arg‐Tyr cation‐π interaction occurring in mesophile SHMTs) is an additional strategy of adaptation to high temperature. Both peculiar features may be tested by designing enzyme variants potentially endowed with improved stability for applications in biomimetic processes. Proteins 2014; 82:3437–3449. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
VDE is a homing endonuclease gene in yeasts with an unusual evolutionary history including horizontal transmission, degeneration, and domestication into the mating-type switching locus HO. We investigate here the effects of these features on its molecular evolution. In addition, we correlate rates of evolution with results from site-directed mutagenesis studies. Functional elements have lower rates of evolution than degenerate ones and higher conservation at functionally important sites. However, functionally important and unimportant sites are equally likely to have been involved in the evolution of new function during the domestication of VDE into HO. The domestication event also indicates that VDE has been lost in some species and that VDE has been present in yeasts for more than 50 Myr.  相似文献   

8.
本研究旨在利用理性设计的方法来提高来源于土曲霉Aspergillus terreus的酸性脂肪酶ATL的催化活力。通过同源比对,选择脂肪酶盖子区域和底物结合口袋域中的位点进行定点突变,得到8种ATL的突变脂肪酶。结果发现,盖子区域突变酶ATLLid与底物结合口袋域突变酶ATLV218W的催化活性显著提高。ATLLid和ATLV218W对底物对硝基苯酚月桂酸酯p-nitrophenyl laurate(p-NPL)的催化活性最高,k_(cat)值较ATL分别提高了39.37倍和50.79倍,k_(cat)/K_m值较ATL分别提高了2.85倍和8.48倍。与ATL相比,ATLLid和ATLV218W的热稳定性略有下降,最适p H为5.0,p H 4.0–8.0具有较好的稳定性,说明突变未对ATL的嗜酸耐酸特性产生影响。通过同源建模模拟及分子对接技术分析底物p-NPL与酶分子间的相互作用,解析了ATLLid和ATLV218W催化活性提高的机理。  相似文献   

9.
The fitness effects of mutations are central to evolution, yet have begun to be characterized in detail only recently. Site-directed mutagenesis is a powerful tool for achieving this goal, which is particularly suited for viruses because of their small genomes. Here, I discuss the evolutionary relevance of mutational fitness effects and critically review previous site-directed mutagenesis studies. The effects of single-nucleotide substitutions are standardized and compared for five RNA or single-stranded DNA viruses infecting bacteria, plants or animals. All viruses examined show very low tolerance to mutation when compared with cellular organisms. Moreover, for non-lethal mutations, the mean fitness reduction caused by single mutations is remarkably constant (0.10–0.13), whereas the fraction of lethals varies only modestly (0.20–0.41). Other summary statistics are provided. These generalizations about the distribution of mutational fitness effects can help us to better understand the evolution of RNA and single-stranded DNA viruses.  相似文献   

10.
合成Bacillus acidopullulyticus的全长普鲁兰酶基因并在毕赤酵母X-33中进行组成型外分泌表达,重组酶的最适作用温度为60℃,最适作用pH值为4.5~5.0,酶比活力为2.0 U/mg.采用重叠延伸PCR方法对普鲁兰酶基因进行定点突变,实验结果表明,625、626位点Ala、Leu氨基酸突变为Leu、Tyr氨基酸后,该酶的催化效率有所降低,而Gln487Ala的突变对催化效率没有较大的影响.该研究结果为探究关键氨基酸区域对催化效率的影响提供了一定的理论和实验基础.  相似文献   

11.
Cyclic nucleotide phosphodiesterase 3A (PDE3A) hydrolyzes cAMP to AMP, but is competitively inhibited by cGMP due to a low k(cat) despite a tight K(m). Cyclic AMP elevation is known to inhibit all pathways of platelet activation, and thus regulation of PDE3 activity is significant. Although cGMP elevation will inhibit platelet function, the major action of cGMP in platelets is to elevate cAMP by inhibiting PDE3A. To investigate the molecular details of how cGMP, a similar but not identical molecule to cAMP, behaves as an inhibitor of PDE3A, we constructed a molecular model of the catalytic domain of PDE3A based on homology to the recently determined X-ray crystal structure of PDE4B. Based on the excellent fit of this model structure, we mutated nine amino acids in the putative catalytic cleft of PDE3A to alanine using site-directed mutagenesis. Six of the nine mutants (Y751A, H840A, D950A, F972A, Q975A, and F1004A) significantly decreased catalytic efficiency, and had k(cat)/K(m) less than 10% of the wild-type PDE3A using cAMP as substrate. Mutants N845A, F972A, and F1004A showed a 3- to 12-fold increase of K(m) for cAMP. Four mutants (Y751A, H840A, D950A, and F1004A) had a 9- to 200-fold increase of K(i) for cGMP in comparison to the wild-type PDE3A. Studies of these mutants and our previous study identified two groups of amino acids: E866 and F1004 contribute commonly to both cAMP and cGMP interactions while N845, E971, and F972 residues are unique for cAMP and the residues Y751, H836, H840, and D950 interact with cGMP. Therefore, our results provide biochemical evidence that cGMP interacts with the active site residues differently from cAMP.  相似文献   

12.
Catalytic aldolase antibodies, generated by reactive immunization, catalyze the aldol reaction with the efficiency of natural enzymes, but accept a much broader range of substrates. Two separate groups of aldolase antibodies that catalyze the same aldol reactions with antipodal selectivity were analyzed by comparing their amino acid sequences with their crystal structures, site-directed mutagenesis data, and computational docking of the transition states of the aldol reaction. The crystal structure of aldolase antibody 93F3 Fab' at 2.5A resolution revealed a combining site with two lysine residues, including LysL89 that reacts to form the covalent enamine intermediate. In contrast, antibody 33F12 has one active site lysine, LysH93. The reactive lysine residues in each group of antibodies are differentially located on the heavy and light chain variable regions in pseudo-symmetric opposite orientations, but both within highly hydrophobic environments. Thus, the defining feature for the observed enantioselectivities of these aldolase antibody catalysts is the respective location and relative disposition of the reactive lysine residues within the active sites of these catalysts.  相似文献   

13.
Summary Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) possessing multiple pharmacological properties. One of its interesting properties is to inhibit human immunodeficiency virus (HIV) replication but its strong immunogenicity has limited the repeated clinical administration. To map the antigenic determinants and reduce the immunogenicity of TCS, two potential antigenic sites (YFF81–83 and KR173–174) were identified by computer modeling, and then three TCS mutants namely TCSYFF81–83ACS, TCSKR173–174CG, and TCSYFF-KR were constructed by site-directed mutagenesis. The RI activity and DNase-like activity of the three constructed TCS mutants were similar to natural TCS but with much lower immunogenicity. Results suggested that the two selected sites are all located at or near the antigenic determinants of TCS. In toxicity studies, the LD50 of the three TCS mutants was not different from natural TCS. These findings would be useful in designing a better therapeutic agent for AIDS.Qunxing An and Sanhua Wei equally contribute to this work.  相似文献   

14.
A homology model for the pig isozyme of the pyridoxal phosphate-dependent enzyme gamma-aminobutyrate (GABA) aminotransferase has been built based mainly on the structure of dialkylglycine decarboxylase and on a multiple sequence alignment of 28 evolutionarily related enzymes. The proposed active site structure is presented and analyzed. Hypothetical structures for external aldimine intermediates explain several characteristics of the enzyme. In the GABA external aldimine model, the pro-S proton at C4 of GABA, which abstracted in the 1,3-azaallylic rearrangement interconverting the aldimine and ketimine intermediates, is oriented perpendicular to the plane of the pyridoxal phosphate ring. Lys 329 is in close proximity and is probably the general base catalyst for the proton transfer reaction. The carboxylate group of GABA interacts with Arg 192 and Lys 203, which determine the specificity of the enzyme for monocarboxylic omega-amino acids such as GABA. In the proposed structure for the L-glutamate external aldimine, the alpha-carboxylate interacts with Arg 445. Glu 265 is proposed to interact with this same arginine in the GABA external aldimine, enabling the enzyme to act on omega-amino acids in one half-reaction and on alpha-amino acids in the other. The reactivities of inhibitors are well explained by the proposed active site structure. The R and S isomers of beta-substituted phenyl and p-chlorophenyl GABA would bind in very different modes due to differential steric interactions, with the reactive S isomer leaving the orientation of the GABA moiety relatively unperturbed compared to that of the natural substrate. In our model, only the reactive S isomer of the mechanism-based inhibitor vinyl-GABA, an effective anti-epileptic drug known clinically as Vigabatrin, would orient the scissile C4-H bond perpendicular to the coenzyme ring plane and present the proton to Lys 329, the proposed general base catalyst of the reaction. The R isomer would direct the vinyl group toward Lys 329 and the C4-H bond toward Arg 445. The active site model presented provides a basis for site-directed mutagenesis and drug design experiments.  相似文献   

15.
Human placental ribonuclease inhibitor(hRI)is an acidic protein of Mr-50kDa with unusually high contents of leucine and cysteine residues.It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease.hRI has 32 cysteine residues,and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI.The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence.In the present aork,two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis.The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation.After colony screening,the bacterium was cultured and the product Was purified with affinity chromatography.The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect.Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI.But the capacity of anti-oxidative effect increased by 7~9 times.The enhancement in anti-oxidative efrect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained.  相似文献   

16.
17.
Four residues in the carboxy-terminal domain of human epidermal growth factor (hEGF), glutamate 40, glutamine 43, arginine 45, and aspartate 46 were targeted for site-directed mutagenesis to evaluate their potential role in epidermal growth factor (EGF) receptor-ligand interaction. One or more mutations were generated at each of these sites and the altered recombinant hEGF gene products were purified and evaluated by radioreceptor competition binding assay. Charge-conservative replacement of glutamate 40 with aspartate resulted in a decrease in receptor binding affinity to 30% relative to wild-type hEGF. On the other hand, removal of the electrostatic charge by substitution of glutamate 40 with glutamine or alanine resulted in only a slightly greater decrease in receptor binding to 25% relative receptor affinity. The introduction of a positive charge upon substitution of glutamine 43 with lysine had no effect on receptor binding. The substitution of arginine 45 with lysine also showed no effect on receptor binding, unlike the absolute requirement observed for the arginine side-chain at position 41 [Engler DA, Campion SR, Hauser MR, Cook JS, Niyogi, SK: J Biol Chem 267:2274-2281, 1992]. Subsequent elimination of the positive charge of lysine 45 by reaction with potassium cyanate showed that the electrostatic property of the residue at this site, as well as that at lysine 28 and lysine 48, was not required for receptor-ligand association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Human placental ribonuclease inhibitor (hRI) is an acidic protein of Mr∼50kDa with unusually high contents of leucine and cysteine residues. It is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonuclease. hRI has 32 cysteine residues, and the oxidative formation of disulfide bonds from those cysteine residues is a rapid cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence. In the present aork, two molecules of alanine substituting for Cys328 and Cys329 were performed by site-directed mutagenesis. The site-mutated RI cDNA was constructed into plasmid pPIC9K and then transformed Pichia pastoris GS115 by electroporation. After colony screening, the bacterium was cultured and the product was purified with affinity chromatography. The affinity of the recombinant human RI with double site mutation was examined for RNase A and its anti-oxidative effect. Results indicated that there were not many changes in the affinity for RNase A detected when compared with the wild type of RI. But the capacity of anti-oxidative effect increased by 7∼9 times. The enhancement in anti-oxidative effect might be attributed to preventing the formation of disulfide bond between Cys328 and Cys329 and the three dimensional structure of RI was thereby maintained. __________ Translated from HEREDITAS, 2005, 27(2) [译自: 遗传,2005,27(2)]  相似文献   

19.
The alpha-galactosidase (AGA) from Bifidobacterium adolescentis DSM 20083 has a high transglycosylation activity. The optimal conditions for this activity are pH 8, and 37 degrees C. At high melibiose concentration (600 mM), approximately 64% of the enzyme-substrate encounters resulted in transglycosylation. Examination of the acceptor specificity showed that AGA required a hydroxyl group at C-6 for transglycosylation. Pentoses, hexuronic acids, deoxyhexoses, and alditols did not serve as acceptor molecules. Disaccharides were found to be good acceptors. A putative 3D-structure of the catalytic site of AGA was obtained by homology modeling. Based on this structure and amino acid sequence alignments, site-directed mutagenesis was performed to increase the transglycosylation efficiency of the enzyme, which resulted in four positive mutants. The positive single mutations were combined, resulting in six double mutants. The mutant H497M had an increase in transglycosylation of 16%, whereas most of the single mutations showed an increase of 2%-5% compared to the wild-type AGA. The double mutants G382C-Y500L, and H497M-Y500L had an increase in transglycosylation activity of 10%-16%, compared to the wild-type enzyme, whereas the increase for the other double mutants was low (4%-7%). The results show that with a single mutation (H497M) the transglycosylation efficiency can be increased from 64% to 75% of all enzyme-substrate encounters. Combining successful single mutants in double mutations did not necessarily result in an extra increase in transglycosylation efficiency. The donor and acceptor specificity did not change in the mutants, whereas the thermostability of the mutants with G382C decreased drastically.  相似文献   

20.
Antibody 10F11 catalyzes the retro-Diels-Alder reaction of the bicyclic prodrug 1 releasing HNO and anthracene 4 (kcat/kuncat=2500). Earlier X-ray crystal structures of Fab 10F11 showed that tryptophan H104 at the bottom of the binding pocket interacts by pi-stacking with the aromatic ring of the substrate. Antibody 10F11 was expressed as a chimeric Fab and subjected to site-directed mutagenesis. Expression was improved by substituting a serine for a phenylalanine residue on the Fv-domain surface. Nine active-site mutants were then prepared including replacements at TrpH104, PheH101 and SerH100. Catalysis depends mainly on TrpH104 and PheH101. Catalysis is most likely caused by a combination of shape complementarity and specific electronic interactions between transition state and the aromatic residue H104. Medium and de-solvation effects have no effect on the reaction rate. Catalysis was improved to (kcat/kuncat=6300) by substituting phenylalanine for LeuL101 to indirectly enhance pi-stacking between transition state and TrpH104.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号