首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effects of a typical fencing training program on selected hormones, neuromuscular performance, and anthropometric parameters in peripubertal boys. Two sets of measurements, before training and after 12 months of training, were performed on 2 groups of 11- to 13-year-old boys. One group consisted of fencers (n = 8), who trained regularly for the 12-month period, and the other group (n = 8) consisted of inactive children of the same age. There was no difference in Tanner's maturation stage of the 2 groups before (controls, 2.5 +/- 0.3; fencers, 2.1 +/- 0.3) and after the 12 months (controls, 3.0 +/- 0.3; fencers, 3.0 +/- 0.3). Serum testosterone, growth hormone, sex hormone binding globulin, free androgen index, and leptin changed significantly over time, reaching similar values in the 2 groups at the end of the study. Significantly greater increases in body mass (16 +/- 3%) and leg cross-sectional area (CSA) (32 +/- 7%) were observed only in the fencers' group, and these differences disappeared when height was set as a changing covariate. Although there was a greater increase in height for the fencers compared to the control group (8.6 +/- 1.2 vs. 3.6 +/- 0.9 cm, p < 0.01), the height reached at the end of the study was almost identical in the 2 groups (controls, 163.6 +/- 5.1; fencers, 165.4 +/- 2.8). Arm CSA, handgrip strength, and vertical jump performance changed significantly over time for both groups, with no differences between groups. It was concluded that a typical fencing training program for peripubertal boys did not have any effect on selected growth and anabolic hormones and did not influence the normal growth process, as this was reflected by changes in selected anthropometric and neuromuscular performance parameters. This may be because of the characteristics of the present fencing training program, which may not be adequate to alter children's hormonal functions in such a way as to override the rapid changes occurring during puberty.  相似文献   

2.
Motor skills during sport activity are influenced by practice-related constraints and leads to the development of appropriate postural sensorimotor strategies. Fencing is highly requiring visual monitoring and high-speed motor skills while retaining efficient balance control. Conversely, pistol shooting is a static activity requiring a high control of body sway. This study aimed to evaluate balance control and the related neurosensory organisation through reproducible postural tasks with and without sensory conflict. Twelve expert fencers, 10 expert shooters and 10 sedentary controls have performed a static posturographic test and a sensory organisation test (in 6 different sensory situations based upon sway-referenced vision and support surface, C1 to C6). Shooters yielded a better balance control during C1 (eyes open) and C2 (eyes closed) than fencers and controls. Fencers showed a better balance control in C5 (eyes closed with sway-referenced support surface) than shooters and controls. While this study confirms the beneficial effects of physical activities on balance control, a differential effect on balance characteristics due to the acquired specific motor skills was also noted. In addition to high proprioceptive sensitivity in sportsmen, dynamic constraints in fencing force fencers to permanently select the most relevant information to manage better sensory conflicting situations.  相似文献   

3.
We have previously demonstrated that high doses of recombinant human granulocyte colony-stimulating factor (rhG-CSF) induce bone changes characterized by osteoclastic bone resorption and osteogenesis due to intramembranous ossification in rats. In this communication we examined the effects of a pretreatment with 3-amino-1-hydroxypropylidene-1,1-bisphosphonate (AHPrBP), which is a powerful inhibitor of osteoclastic bone resorption, on bone changes induced by rhG-CSF in order to investigate the relation between osteoclastic bone resorption and osteogenesis. AHPrBP (5 mg/kg/day) was subcutaneously given to 6-week-old rats for 2 days. From the following day of the final injection of AHPrBP, rats received a subcutaneous injection of rhG-CSF (1,000 micrograms/kg/day) for 14 days, and the femur and tibia were evaluated histopathologically. By the analysis of peripheral blood leukocyte counts, spleen weights and bone marrow findings, the pretreatment with AHPrBP had no effect on the activation of hematopoiesis related to the major pharmacological activity of rhG-CSF. In the rats treated with rhG-CSF alone, accelerated osteoclastic bone resorption and osteogenesis due to intramembranous ossification were observed in the trabeculae of metaphyseal spongiosa. The accelerated osteoclastic bone resorption induced by rhG-CSF was suppressed by the pharmacological activity of AHPrBP. Furthermore, the osteogenesis induced by rhG-CSF was also suppressed by AHPrBP. These results suggest that the osteogenesis induced by rhG-CSF is a sequential reaction of accelerated osteoclastic bone resorption, and moreover that the main action of rhG-CSF on bone is an acceleration of osteoclastic bone resorption.  相似文献   

4.
The structural polymeric collagen of the skin of 19 patients with osteogenesis imperfecta has been examined. In those with severe bone disease, who often have white sclerae, this collagen fraction is less resistant to depolymerization than that of age-matched controls, though the total amount is normal. In patients with less severe bone disease, whose sclerae are usually blue, the polymeric collagen may have normal stability but the total amount is reduced. These results suggest defective cross-linking of collagen in severe osteogenesis imperfecta.  相似文献   

5.
A simple overview of daily orthodontic practice involves use of brackets, wires and elastomeric modules. However, investigating the underlying effect of orthodontic forces shows various molecular and cellular changes. Also, orthodontics is in close relation with dentofacial orthopedics which involves bone regeneration. In this review current and future applications of stem cells(SCs) in orthodontics and dentofacial orthopedics have been discussed. For craniofacial anomalies, SCs have been applied to regenerate hard tissue(such as treatment of alveolar cleft) and soft tissue(such as treatment of hemifacial macrosomia). Several attempts have been done to reconstruct impaired temporomandibular joint. Also, SCs with or without bone scaffolds and growth factors have been used to regenerate bone following distraction osteogenesis of mandibular bone or maxillary expansion. Current evidence shows that SCs also have potential to be used to regenerate infrabony alveolar defects and move the teeth into regenerated areas. Future application of SCs in orthodontics could involve accelerating tooth movement, regenerating resorbed roots and expanding tooth movement limitations. However, evidence supporting these roles is weak and further studies are required to evaluate the possibility of these ideas.  相似文献   

6.
Electro-mechanical behavior of wet bone--Part I: Theory   总被引:1,自引:0,他引:1  
The remodeling properties of bones due to various stimuli have been of substantial interest to the scientists. Examination of electro-mechanical properties of bone and their relation to remodeling and osteogenesis have been investigated mainly by experimental means. In this study, by using continuum physics, it is shown that the remodeling of bones can be formulated theoretically in terms of electrical and mechanical effects. The interactions among the constituents of bone (bone matrix, bone salts, electrolytes and hydrogen ions) and effects of various stimuli (mechanical, electrical and chemical) on the remodeling mechanism of bone tissue are interpreted with this model. Moreover, the stimulation of osteogenesis by electrical means is predicted.  相似文献   

7.
In summary, distraction osteogenesis is a safe and effective means of achieving bone lengthening. These techniques were originally applied to the long bones of the extremities; over the past 10 years they have been effectively applied to the bones of the craniofacial skeleton. The new bone regenerate that is observed after distraction osteogenesis is stable, and relapse rates after skeletal advancement are believed to be lower than with conventional osteotomy and bone graft techniques. There is considerable variability in distraction protocols employed in clinical practice, including differences in the types of devices used and in the rate, rhythm, latency, and period of consolidation for distraction osteogenesis. The greatest application for distraction osteogenesis in the craniofacial skeleton has been with mandible lengthening, for which there is presently a 10-year clinical experience. Midfacial advancement is a newer application of distraction osteogenesis, for which clinical experience has been accrued over the past 5 years. This latter experience indicates that distraction osteogenesis is a viable treatment option for lengthening of the hypoplastic mandible and midface. These techniques have advantages over conventional means of bone graft and rigid fixation because of the quality of the bone regenerate, the decrease in the long-term relapse rate of the advanced bone segments in both the mandible and the midface, and the simultaneous soft-tissue elongation that accompanies the distraction process. Distraction osteogenesis is particularly applicable to the correction of severe deformities of the mandible and midface in children with developmental hypoplasia and syndromic craniosynostosis. However, growth is an added variable in this patient population. The amount of overcorrection in lengthening of the hypoplastic bone required to compensate for continued growth discrepancy of the adjacent facial bones is difficult to predict. Therefore, the families of these patients should be informed that many children will require repeated operations at a later age as they reach skeletal maturity.  相似文献   

8.
Distraction osteogenesis is an established treatment strategy in the reconstruction of the craniofacial skeleton. The underlying mechanisms that drive bone formation during this process are largely unknown, but a regulatory role for mechanical force is believed to be critical. The integrin-mediated signal transduction cascade is a primary pathway by which signal transduction of mechanical stimuli (i.e., mechanotransduction) occurs. Focal adhesion kinase (FAK) is a significant regulator in this pathway. The authors hypothesize that mechanical forces created during distraction osteogenesis are responsible for the osteogenic response that takes place, and that these changes arise through integrin-dependent mechanotransduction. Using a rat model of distraction osteogenesis, the authors examined the expression of FAK in critical size defects (n = 15), subcritical size defects (n = 15), and mandibles undergoing distraction osteogenesis (n = 15). Their findings demonstrated FAK immunolocalization in mandibles undergoing distraction osteogenesis, but not in the critical size defects or in subcritical size defects, despite varying degrees of bone formation in the latter two groups. Furthermore, bone sialoprotein mRNA in situ hybridization patterns were found to mirror FAK immunolocalization patterns in mandibles undergoing distraction osteogenesis, demonstrating an association of FAK expression with the osteogenic process specific to distraction osteogenesis. These findings suggest that the bone formation in distraction osteogenesis is regulated by mechanical force by means of integrin-dependent mechanotransduction pathways.  相似文献   

9.
10.
Several investigations have demonstrated a precise balance to exist between bone morphogenetic protein (BMP) agonists and antagonists, dictating BMP signaling and osteogenesis. We report a novel approach to manipulate BMP activity through a down-regulation of the potent BMP antagonist Noggin, and examined the effects on the bone forming capacity of osteoblasts. Reduction of noggin enhanced BMP signaling and in vitro osteoblast bone formation, as demonstrated by both gene expression profiles and histological staining. The effects of noggin suppression on in vivo bone formation were also investigated using critical-sized calvarial defects in mice repaired with noggin-suppressed osteoblasts. Radiographic and histological analyses revealed significantly more bone regeneration at 2 and 4 weeks post-injury. These findings strongly support the concept of enhanced osteogenesis through a down-regulation in Noggin and suggest a novel approach to clinically accelerate bone formation, potentially allowing for earlier mobilization of patients following skeletal injury or surgical resection.  相似文献   

11.
Recent developments in bone tissue engineering have paved the way for more efficient and cost-effective strategies. Additionally, utilization of autologous sources has been considered very desirable and is increasingly growing. Recently, activated platelet rich plasma (PRP) has been widely used in the field of bone tissue engineering, since it harbours a huge number of growth factors that can enhance osteogenesis and bone regeneration. In the present study, the osteogenic effects of PRP coated nanofibrous PES/PVA scaffolds on adipose-derived mesenchymal stem cells have been investigated. Common osteogenic markers were assayed by real time PCR. Alkaline phosphate activity, calcium deposition and Alizarin red staining assays were performed as well. The results revealed that the highest osteogenic differentiation occurred when cells were cultured on PRP coated PES/PVA scaffolds. Interestingly, direct application of PRP to culture media had no additive effects on osteogenesis of cells cultured on PRP coated PES/PVA scaffolds or those receiving typical osteogenic factors. The highest osteogenic effects were achieved by the simplest and most cost-effective method, i.e. merely by using PRP coated scaffolds. PRP coated PES/PVA scaffolds can maximally induce osteogenesis with no need for extrinsic factors. The major contribution of this paper to the current researches on bone regeneration is to suggest an easy, cost-effective approach to enhance osteogenesis via PRP coated scaffolds, with no additional external growth factors.  相似文献   

12.
There are many different types of periodontal diseases. One such disease causes a defect of alveolar bone that is considered serious. Hence, researchers have examined potential treatments for this type of disease using tissue engineering techniques. Periodontal tissues are exposed to mechanical stress caused by occlusion and mastication, and both the cells and extracellular matrix in these tissues undergo architectural modifications to compensate for the applied stress. Therefore, in this study we analyzed the effect of mechanical tension on the osteogenesis of human dental pulp stem cells (DPSCs). To identify osteogenesis induced by mechanical stress in dental pulp, we examined the effects of tension on DPSCs. We evaluated the effects of mechanical stimuli on the osteogenesis of human dental pulp cells grown on silk scaffolds subjected to 10% strain using a bioreactor. The tension was applied with 0.2 Hz over the course of 5 days and was then continuously applied for 10 more days. We evaluated cell differentiation by RT-PCR, Western blotting and immunohistochemistry. Applying 10% tension to the culture resulted in increases in collagen type I, fibronectin, osteoprotegerin, and bone sialoprotein expression and decreases in a-smooth muscle actin expression. These data suggest that mechanical stimulation promotes osteogenesis in DPSCs.  相似文献   

13.
目的:探讨三维颌骨牵张治疗颌骨畸形的临床效果。方法:回顾性分析我院2005年1月-2011年6月收治的颌骨畸形患者42例,根据牵张方法不同分为观察组和对照组,观察组采用三维颌骨牵张,对照组采用平行于矢状轴方向进行牵张,比较两组的牵张效果。结果:术后随访6~24个月,两组牵张时间进行比较,t=7.824,P<0.05,两组牵张时间差异有统计学意义。观察组无牵引器松动而发生发生牵张失败的病例,观察组无失败病例,对照组为6例,占28.57%,x2=4.861,P<0.05,两组牵张失败率差异有统计学意义。观察组与对照组患者咬颌关系(x2=5.091,P<0.05)、颞颌关节(x2=6.431,P<0.05)、颜面外观(x2=4.434,P<0.05)比较,两组差异有统计学意义。结论:三维颌骨牵张法能达到成骨快,成骨质量高的要求,因此在下颌骨正畸过程中适宜采用三维颌骨牵张法。  相似文献   

14.
《The Journal of cell biology》1994,127(6):1767-1775
Tetranectin is a protein shared by the blood and the extracellular matrix. Tetranectin is composed of four identical, noncovalently bound polypeptides each with a molecular mass of approximately 21 kD. There is some evidence that tetranectin may be involved in fibrinolysis and proteolysis during tissue remodeling, but its precise biological function is not known. Tetranectin is enriched in the cartilage of the shark, but the gene expression pattern in the mammalian skeletal system has not been determined. In the present study we have examined the expression pattern and putative function of tetranectin during osteogenesis. In the newborn mouse, strong tetranectin immunoreactivity was found in the newly formed woven bone around the cartilage anlage in the future bone marrow and along the periosteum forming the cortex. No tetranectin immunoreactivity was found in the proliferating and hypertrophic cartilage or in the surrounding skeletal muscle. Using an in vitro mineralizing system, we examined osteoblastic cells at different times during their growth and differentiation. Tetranectin mRNA appeared in the cultured osteoblastic cells in parallel with mineralization, in a pattern similar to that of bone sialoprotein, which is regarded as one of the late bone differentiation markers. To explore the putative biological role of tetranectin in osteogenesis we established stably transfected cell lines (PC12-tet) overexpressing recombinant tetranectin as evidenced by Northern and Western blot analysis and immunoprecipitation. Both control PC12 cells and PC12-tet cells injected into nude mice produced tumors containing bone material, as evidenced by von Kossa staining for calcium and immunostaining with bone sialoprotein and alkaline phosphatase antiserum. Nude mice tumors established from PC12-tet cells contained approximately fivefold more bone material than those produced by the untransfected PC12 cell line or by the PC12 cells transfected with the expression vector with no insert (Mann Whitney rank sum test, p < 0.01), supporting the notion that tetranectin may play an important direct and/or indirect role during osteogenesis. In conclusion, we have established a potential role for tetranectin as a bone matrix protein expressed in time and space coincident with mineralization in vivo and in vitro.  相似文献   

15.
16.
Osteogenesis is a complex series of events involving the differentiation of mesenchymal stem cells to generate new bone. In this study, we examined the effect of pulsed electromagnetic fields (PEMFs) on cell proliferation, alkaline phosphatase (ALP) activity, mineralization of the extracellular matrix, and gene expression in bone marrow mesenchymal stem cells (BMMSCs) during osteogenic differentiation. Exposure of BMMSCs to PEMFs increased cell proliferation by 29.6% compared to untreated cells at day 1 of differentiation. Semi‐quantitative RT‐PCR indicated that PEMFs significantly altered temporal expression of osteogenesis‐related genes, including a 2.7‐fold increase in expression of the key osteogenesis regulatory gene cbfa1, compared to untreated controls. In addition, exposure to PEMFs significantly increased ALP expression during the early stages of osteogenesis and substantially enhanced mineralization near the midpoint of osteogenesis. These results suggest that PEMFs enhance early cell proliferation in BMMSC‐mediated osteogenesis, and accelerate the osteogenesis. Bioelectromagnetics 31:209–219, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
By means of scanning and transmissive electron microscopy methods structure of the developing bone has been studied. Interconnection of the cell structure and spatial organization of the adjoining matrix has been demonstrated. On the surface of the growing bone not only forming areas have been revealed, where under osteoblasts at various functional states, osteoid layer is determined, but also areas of resorption and completed osteogenesis. This demonstrates an interrupted character of osteogenesis at modelling. At the same time for the remodelling process presence of erosive lacunae is specific; they are filled with a newly deposited collagenous matrix. Therefore, it is possible to suppose that formation of the bone as an organ during the postnatal development includes in itself both mechanisms supporting its form at outgrowth of the osseous matrix volume (modeling) and its continuous rearrangement and adaptation to real conditions of functioning (remodelling).  相似文献   

18.
The osteogenic capacity of mesenchymal stem cells (MSCs) and the importance of β-adrenergic signals in bone formation and resorption have been well investigated. However, little is known about the development of β-adrenergic receptor (β-AR) systems and the role of β-adrenergic signals in osteogenic differentiation of MSCs, which is critically important in bone physiology and pharmacology. In this study, we demonstrated that both the mRNA and protein levels of β2- and β3-AR are up-regulated following osteogenesis of mouse MSCs. We also established that β-AR agonists negatively while antagonists positively affect MSC osteogenesis. Both β2- and β3-AR are involved in MSC osteogenesis, with β2-AR being dominant. The effect of β-ARs on MSC osteogenesis is partly mediated via the cAMP/PKA signaling. These findings suggest that MSC is also a target for β-adrenergic regulation and β-adrenergic signaling plays a role in MSC osteogenesis.  相似文献   

19.
20.
Distraction osteogenesis is a form of in vivo tissue engineering in which the gradual separation of cut bone edges results in the generation of new bone. In this study, the temporal and spatial expression of bone morphogenetic proteins (BMPs) 2, 4, and 7 was examined in a rabbit model of mandibular distraction osteogenesis. Fourteen skeletally mature male rabbits were studied. After osteotomy, a distractor was applied to one side of the mandible. After 1 week of latency, distraction was initiated at 0.25 mm every 12 hours for 3 weeks (distraction period), followed by a 3-week consolidation period. Two animals were killed each week after surgery. The generate bone was analyzed for the expression of BMP-2, -4, and -7 by using standard bone histological and immunohistochemical techniques. BMP-2 and -4 were highly expressed in osteoblastic cells during the distraction period and in chondrocytes during the consolidation period. BMP-7 demonstrated relatively minor expression in osteoblastic cells during the distraction period. All BMPs were strongly expressed in vascularized connective tissue during the distraction period. These data indicate that BMPs participate in the translation of mechanical stimuli into a biological response during mandibular distraction osteogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号