首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slices of inferior olive (IO) and cerebellum were co-cultured for several weeks by means of the roller tube technique. Recordings were carried out intracellularly from Purkinje cells (PCs) which were identified morphologically by intracellular injection of the fluorescent dye Lucifer yellow, or by immunohistochemical stainings with antibodies raised against the 28 kD Ca2+-binding protein calbindin. Following stimulation of olivary tissue, an all-or-none full complex spike response was recorded in some PCs consisting of a fast rising spike followed by a depolarizing potential. In other PCs, graded stimulation of the olivary explant induced synaptic potentials which were characterized by step-wise variation in their amplitude and resembled the ones occurring spontaneously. In contrast, only smoothly graded synaptic potentials were observed in cerebellar mono-cultures. These results indicate that some of the PCs in olivo-cerebellar co-cultures are innervated by several olivary neurons.  相似文献   

2.
A study of activity recorded with intracellular micropipettes was undertaken in the caudal abdominal ganglion of the crayfish in order to gain information about central fiber to fiber synaptic mechanisms. This synaptic system has well developed integrative properties. Excitatory post-synaptic potentials can be graded, and synaptic potentials from different inputs can sum to initiate spike discharge. In most impaled units, the spike discharge fails to destroy the synaptic potential, thereby allowing sustained depolarization and multiple spike discharge following single pulse stimulation to an afferent input. Some units had characteristics which suggest a graded threshold for spike generation along the post-synaptic fiber membrane. Other impaled units responded to afferent stimulation with spike discharges of two distinct amplitudes. The smaller or "abortive" spikes in such units may represent non-invading activity in branches of the post-synaptic axon. On a few occasions one afferent input was shown to inhibit the spike discharge initiated by another presynaptic input.  相似文献   

3.
Intracellular recordings from Purkinje cells (PC) in the cerebellum of adult staggerer mutant mice revealed that the orthodromic response of PCs to juxtafastigial (JF) stimulation closely resembled a climbing fiber response (CFR). However, for most of the PCs studied, these responses were graded in a stepwise manner when the stimulus strength was increased. The underlying excitatory synaptic potentials (EPSPs) had the typical shape of EPSPs mediated through climbing fibers (CFs), but their size fluctuated in discrete steps, the highest one reaching the firing level. In the same PCs, the size of the spontaneous EPSPs fluctuated in a similar fashion and the frequency of each step was in the range of CF-mediated EPSPs. These results strongly suggest that in staggerer mice several CFs synapse with each PC instead of a single CF as in normal adults. Furthermore, the activation through some of these CFs does not reach the firing level of the corresponding PC.  相似文献   

4.
本研究在麻醉并制动的大鼠上观察了电刺激巨细胞网状核(Gi)对小脑浦肯野细胞(PC)自发及诱发简单锋电位的影响。结果如下:(1)刺激Gi可使PC的简单锋电位出现潜伏期小于20ms的抑制性或兴奋性反应,并以抑制性反应为主。抑制性反应持续40-100ms,而兴奋性反应的时程可达200ms以上;(2)注射5-HT_2型受体阻断剂methysergide可以减弱或阻断电刺激Gi对PC自发简单锋电位的抑制作用;(3)条件性Gi刺激可以显著压抑或加强由刺激对侧大脑皮层感觉运动区引起的PC诱发简单锋电位反应。以上结果说明:在大鼠存在Gi-小脑通路,这一通路中的部分纤维是5-HT能的。Gi-小脑纤维可能通过突触和/或非经典突触的化学传递方式对PC的电活动产生某种调制性的影响。推测Gi-小脑传入纤维投射可能在某些小脑功能活动,如肌紧张及姿势的调节等方面发挥重要作用。  相似文献   

5.
Chu CP  Bing YH  Liu QR  Qiu DL 《PloS one》2011,6(7):e22752

Background

Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs) via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice.

Methods and Main Results

Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6–8-week-old) HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0), the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs) in the somata of PCs. Application of SR95531, a specific GABAA receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs) in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation.

Conclusions

These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABAA receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.  相似文献   

6.
In adult rats whose cerebellar Purkinje cells (PCs) remain polyinnervated by olivary climbing fibres (CFs) after postnatal irradiation, topographical maps of responsive PCs to mechanical stimulation of the third row of contralateral vibrissae show that these cells are more numerous and more diffusely distributed than in the normal rat. PCs responding with the "best responses" are distributed evenly from the midline to 400 microns lateral in the contralateral hemivermis of lobule VII, and not in a parasagittal microzone centred on the plane 200 microns as in the normal rat. Thus it seems likely that synaptic elimination should contribute to microzone formation during postnatal development of the normal cerebellum.  相似文献   

7.
余启祥  包建新 《生理学报》1989,41(2):136-144
在三碘季铵酚制动的去大脑猫上,记录了小脑后叶的第Ⅶ小叶皮层浦肯野细胞(PC)对分别刺激顶核、间位核和齿状核的逆行场电位和逆行单位反应,以确定小脑皮层PC对这三个核团投射的空间分布。在鉴定了PC对其靶核团的投射后,用特制的模拟自然屈腕运动的刺激装置来推动猫同侧前肢的掌背,造成腕关节一次轻微的屈曲,观察该PG对这一刺激的单位反应。实验资料用电子计算机处理,作出平均诱发电位和刺激后时间直方图。 本文以电生理学方法揭示,猫小脑后叶第Ⅶ小叶皮层-核团投射存在较明确的纵区分布模式,纵区之间的分界线走向有一定的弯曲,与前叶略有不同。小脑后叶皮层从中线到两侧2.8mm为顶核区(FZ);其外侧为间位核区(IZ),最大宽度约为3.5mm;齿状核区(DZ)约始于5.0mm处。这三个不同纵区的PC对外周自然屈腕刺激都有反应,但反应细胞的百分数不同,FZ有59%的PC对外周刺激有反应,IZ为84%,DZ为20%。这些结果表明后叶第Ⅶ小叶具有类似于前叶的功能分布,IZ的PC对外周刺激有更大的调制作用,提示该皮层-核团投射的纵区结构有其特定的功能意义。  相似文献   

8.
王建军  肖幼平 《生理学报》1991,43(6):519-529
In anaesthetized and paralyzed rats, the effect of dorsal raphe (DR) conditioning stimulation on cerebellar Purkinje cell (PC) responses to mossy fiber and climbing fiber inputs were examined. The main results are as follows: (1) Stimulation of cerebral sensorimotor cortex elicits widespread activation of mossy and climbing fiber inputs to PCs in contralateral VI and VII lobules of the cerebellum and generates two kinds of evoked responses, i.e. the simple spike (SS) and the complex spike (CS) responses with respectively a latency 8-25 and 12-30 ms. (2) These PC responses could be markedly suppressed by stimulation of DR at intensities which by themselves were subthreshold for directly affecting PC's spontaneous SS and CS activities. (3) This DR-induced depressive effects on evoked PC's SS and CS excitations could be attenuated or blocked by systemic administration of 5-HT receptor blocker methysergide. These results demonstrate that serotonergic fiber input from DR can suppress the efficacy of mossy and climbing fiber synaptic action on PC, or decrease the responsiveness of PC itself to afferent synaptic action. The findings of this study also suggest that the raphe-cerebellar serotonergic fiber afferent system may be involved in some of the important neuronal processing in the cerebellum.  相似文献   

9.
To understand the relationship between the propagation direction of action potentials and dendritic Ca(2+) elevation, simultaneous measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) and intradendritic membrane potential were performed in the wind-sensitive giant interneurons of the cricket. The dendritic Ca(2+) transients induced by synaptically-evoked action potentials had larger amplitudes than those induced by backpropagating spikes evoked by antidromic stimulation. The amplitude of the [Ca(2+)](i) changes induced by antidromic stimuli combined with subthreshold synaptic stimulation was not different from that of the Ca(2+) increases evoked by the backpropagating spikes alone. This result means that the synaptically activated Ca(2+) release from intracellular stores does not contribute to enhancement of Ca(2+) elevation induced by backpropagating spikes. On the other hand, the synaptically evoked action potentials were also increased at distal dendrites in which the Ca(2+) elevation was enhanced. When the dendritic and axonal spikes were simultaneously recorded, the delay between dendritic spike and ascending axonal spike depended upon which side of the cercal nerves was stimulated. Further, dual intracellular recording at different dendritic branches illustrated that the dendritic spike at the branch arborizing on the stimulated side preceded the spike recorded at the other side of the dendrite. These results suggest that the spike-initiation site shifts depending on the location of the activated postsynaptic site. It is proposed that the difference of spike propagation manner could change the action potential waveform at the distal dendrite, and could produce synaptic activity-dependent Ca(2+) dynamics in the giant interneurons.  相似文献   

10.
Neurons of the inferior olive of the rat were studied at different stages of their postnatal (PN) development by using the current clamp technique in slices maintained in vitro. Antidromic and synaptic activation of inferior olivary neurons could be achieved in preparations as young as PN day 2. Neurons at this age already exhibited a variety of ionic conductances which included fast sodium-dependent spikes, high-threshold and low-threshold calcium spikes, potassium-dependent currents, Ca-dependent after-hyperpolarizing potentials (AHPS), and both instantaneous and time-dependent inward rectification at hyperpolarized levels of membrane potential. The two types of Ca-dependent responses recorded in olivary neurons during the first postnatal week were graded with the magnitude of the depolarization imposed on the cells. Furthermore, the high-threshold Ca spikes were only clearly observed during this early period when K conductances were depressed by the injection of caesium into the cells or by bath application of 4-aminopyridine. In contrast, the high-threshold Ca spikes could be obtained without suppression of K currents and were all-or-none in character in some neurons after PN day 8 and in all neurons after PN day 11. The observations suggest that the balance between K and Ca currents changes throughout maturation and is largely in favour of the K current until about the end of the first PN week. At all ages studied, the low-threshold Ca spikes were much less sensitive to the Ca channel blocker cadmium than were the high-threshold Ca spikes. Finally, spontaneous, regular oscillations of the membrane potential were observed for the first time at PN day 16 and were only commonly observed after PN day 19, suggesting a late development of electrotonic coupling between olivary neurons.  相似文献   

11.
In vitro studies have supported the occurrence of cerebellar long-term depression (LTD), an interaction between the parallel fibers and Purkinje cells (PCs) that requires the combined activation of the parallel and climbing fibers. To demonstrate the existence of LTD in alert animals, we investigated the plasticity of local field potentials (LFPs) evoked by electrical stimulation of the whisker pad. The recorded LFP showed two major negative waves corresponding to trigeminal (broken into the N2 and N3 components) and cortical responses. PC unitary extracellular recording showed that N2 and N3 occurred concurrently with PC evoked simple spikes, followed by an evoked complex spike. Polarity inversion of the N3 component at the PC level and N3 amplitude reduction after electrical stimulation of the parallel fiber volley applied on the surface of the cerebellum 2 ms earlier strongly suggest that N3 was related to the parallel fiber-PC synapse activity. LFP measurements elicited by single whisker pad stimulus were performed before and after trains of electrical stimuli given at a frequency of 8 Hz for 10 min. We demonstrated that during this later situation, the stimulation of the PC by parallel and climbing fibers was reinforced. After 8-Hz stimulation, we observed long-term modifications (lasting at least 30 min) characterized by a specific decrease of the N3 amplitude accompanied by an increase of the N2 and N3 latency peaks. These plastic modifications indicated the existence of cerebellar LTD in alert animals involving both timing and synaptic modulations. These results corroborate the idea that LTD may underlie basic physiological functions related to calcium-dependent synaptic plasticity in the cerebellum.  相似文献   

12.
Evoked focal potentials which were induced in vitro in a slice of olfactory tract by stimulation of the lateral olfactory tract (LOT) have been studied. The potential consisted of an initial biphasic wave, the compound action potential of LOT, population synaptic responses, and population spike. Functional significance and possible mechanisms of changes of different focal potential waves have been discussed.  相似文献   

13.
Responses of neuroblastoma cells to iontophoretically applied acetylcholine   总被引:3,自引:0,他引:3  
Dissociated mouse neuroblastoma cells were studied in vitro by using intracellular microelectrodes for electrical stimulation and recording. Some, but not all cells, which exhibited well developed action potentials to electrical stimulation also showed changes in membrane potential to iontophoretically applied acetylcholine (ACh). The types of responses to ACh varied. Short latency depolarizing responses to pulses of ACh (similar to those obtained with skeletal muscle) as well as sustained depolarization to steady ACh application (D response) occurred. A longer latency prolonged hyperpolarizing response (H response) and bi- and triphasic combinations of H and D responses were also seen. Pairs of cells showing morphologic contact were tested for the occurrence of effective synaptic coupling by placing intracellular microelectrodes in each cell. In none of 95 cases tested did spike activity produced by direct electrical stimulation of one cell elicit a synaptic potential of 200 μv or more in the other.  相似文献   

14.
The magnocellular neuropeptidergic cells (MNCs) of the paraventricular and supraoptic nuclei have been a model for biochemical and physiological studies of peptidergic neurons in the mammalian brain, but nearly all the electrophysiological studies of these vasopressinergic and oxytocinergic neuroendocrine cells are based on extracellular recordings. This paper reviews recent literature on electrophysiological properties of neurons in the magnocellular nuclei in which the rat in vitro slice preparation and intracellular recording were used. Spontaneously occurring action potentials and synaptic potentials (excitatory and inhibitory) have been observed in hypothalamic slices. The spike patterns have included slow and irregular firing, short rapid bursts of inactivating spikes, and slow phasic discharge with prolonged active and silent periods. Some studies have shown that increased osmolality causes neuronal firing, but this area is controversial. Intracellular injections of lucifer yellow have shown that some MNCs are dye-coupled and electron microscopic observations with the freeze-fracture technique have revealed occasional gap junctions, thus suggesting that some MNCs are electrotonically coupled. Both excitatory and inhibitory postsynaptic potentials have been evoked with extracellular stimulation. Therefore, action potentials, synaptic potentials, burst discharges, and probably electrotonic coupling have been found with intracellular recording in mammalian neuroendocrine cells. Future studies with intracellular recording and staining followed by immunohistochemical identification of cells should provide significant new information on the membrane physiology and synaptic pharmacology of vasopressinergic and oxytocinergic cells.  相似文献   

15.
Some electrical properties of the synapses between central giant axons (presynaptic) and the motor giant axon (postsynaptic) of the crayfish abdominal nerve cord have been investigated. Postsynaptic potential change in response to presynaptic volleys contains two components: a spike potential and a synaptic potential of very long time course. Amplitude of the synaptic potential is graded according to the number of active presynaptic axons. Conductance increase in the synaptic membrane endures over most of the period of potential change, and it is this rather than the "electrical time constant" of the membrane that in large measure determines the form of the synaptic potential. Temporal summation of synaptic potential occurs during repetitive presynaptic stimulation, and after such stimulation the rate of decay of synaptic potential is greatly slowed.  相似文献   

16.
The level of electrotonic coupling in the inferior olive is extremely high, but its functional role in cerebellar motor control remains elusive. Here, we subjected mice that lack olivary coupling to paradigms that require learning-dependent timing. Cx36-deficient mice showed impaired timing of both locomotion and eye-blink responses that were conditioned to a tone. The latencies of their olivary spike activities in response to the unconditioned stimulus were significantly more variable than those in wild-types. Whole-cell recordings of olivary neurons in vivo showed that these differences in spike timing result at least in part from altered interactions with their subthreshold oscillations. These results, combined with analyses of olivary activities in computer simulations at both the cellular and systems level, suggest that electrotonic coupling among olivary neurons by gap junctions is essential for proper timing of their action potentials and thereby for learning-dependent timing in cerebellar motor control.  相似文献   

17.
The effects of adenosine A2 receptor antagonist (CP-66713) on long-term potentiation were studied using guinea pig hippocampal slices in a perfusion system. Tetanic stimulation of Schaffer collateral input which was applied during perfusion of CP-66713 (10 microM), did not induce long-term potentiation but rather long-term depression of evoked synaptic potentials (field EPSP), but induced long-term potentiation of the population spike in CA1 neurons. Thus, adenosine derivatives which accumulate in the synaptic cleft during the tetanic stimulation may be involved in induction of the long-term potentiation via A2 receptors at the synapse. The clear discrimination between long-term depression of the field EPSP and long-term potentiation of the population spike suggests EPSP-spike potentiation at the postsynaptic sites.  相似文献   

18.
19.
After contralateral hemi-cerebellectomy, neurons in the cat inferior olive may either degenerate, appear unchanged (affected) or become hypertrophic. Morphological and physiological aspects of the latter two cell types are studied by means of intracellular recording and injection techniques and compared to normal olivary neurons. It is demonstrated that affected and hypertrophic olivary neurons can be activated by mesodiencephalic stimulation. Affected olivary neurons are morphologically very similar to normal cells. However, they may respond with long latency action potentials only to mesodiencephalic stimulation. Hypertrophic olivary neurons have an enlarged dendritic tree and soma. The soma and proximal dendrites are studded with spine-like processes. Their reaction to mesodiencephalic stimulation is very diverse and may consist of short and/or long latency action potentials that may or may not trigger dendritic spikes. It is argued that olivary hypertrophy does not present either a degenerative or regenerative state, but that both hypertrophic as well as affected olivary neurons can survive axotomy due to a strong and continuous electrotonic coupling, made possible by destruction of the GABAergic cerebellar afferents.  相似文献   

20.
(1) Motor innervation of the pharynx levator muscle of Helix pomatia was investigated with intracellular recording and axonal iontophoresis of cobalt chloride. (2) Muscle fibers respond to direct electrical stimulation of the muscle with active graded responses or non-overshooting spike potentials. (3) Each fiber is innervated via the external and internal lip nerves by several (mostly 3) excitatory nerve fibers each. Two types of EPSPs can be distinguished according to amplitude, duration, and facilitation. (4) Axonal CoCl2-staining via an external lip nerve branch revealed many nerve fibers entering the muscle and branching there into a rich network of blebbed fibers of various diameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号