首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice (Oryza sativa) was cultivated by Asian Neolithic farmers >11,000 years ago, and different cultures have selected for divergent starch qualities in the rice grain during and after the domestication process. An intron 1 splice donor site mutation of the Waxy gene is responsible for the absence of amylose in glutinous rice varieties. This mutation appears to have also played an important role in the origin of low amylose, nonglutinous temperate japonica rice varieties, which form a primary component of Northeast Asian cuisines. Waxy DNA sequence analyses indicate that the splice donor mutation is prevalent in temperate japonica rice varieties, but rare or absent in tropical japonica, indica, aus, and aromatic varieties. Sequence analysis across a 500-kb genomic region centered on Waxy reveals patterns consistent with a selective sweep in the temperate japonicas associated with the mutation. The size of the selective sweep (>250 kb) indicates very strong selection in this region, with an inferred selection coefficient that is higher than similar estimates from maize domestication genes or wild species. These findings demonstrate that selection pressures associated with crop domestication regimes can exceed by one to two orders of magnitude those observed for genes under even strong selection in natural systems.  相似文献   

2.
Waxy maize was first reported in China in 1909 and is mainly used in food production in Asia. The evidence for strong domestication selection in the Waxy locus of rice and a selective sweep around its genomic region make us to wonder whether there has been similar selection in Waxy in glutinous maize. To address this issue, DNA sequences of Waxy, three flanking genes and an unlinked gene (Adh1) of 30 accessions sampled from Chinese waxy maize accessions, including representative landraces and inbred lines, were determined in this study. Sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed in the Waxy locus in Chinese waxy maize but not in nonglutinous maize; comparison with the unlinked gene confirmed that this pattern was different to Waxy. Sequence analysis across a 143 kb genomic segment centered on the Waxy locus revealed patterns consistent with a selective sweep in the upstream region of Waxy. The selective sweep detected based on current limited genomic sequences exceeded over 50 kb, indicating strong selection in this or a bigger region. However, No sweep effect was detected in the repetitive downstream region of Waxy. Phylogenetic analysis indicated that Chinese waxy maize was domesticated from the cultivated flint maize (Zea mays ssp. mays) that was introduced from the new world. At least two independent deletions in exon 7 (30 bp) and 10 (15 bp) were identified in the Chinese accessions respectively. These findings demonstrate a similar pattern of domestication selection in the Waxy genomic region in both glutinous maize and rice, suggesting that this pattern in the rise of glutinous phenotype is likely in other cereal crops.  相似文献   

3.
In rice, amylose content(AC) is controlled by a single dominant Waxy gene. We used Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)/CRISPR-associated 9(Cas_9) to introduce a loss-of-function mutation into the Waxy gene in two widely cultivated elite japonica varieties. Our results show that mutations in the Waxy gene reduce AC and convert the rice into glutinous ones without affecting other desirable agronomic traits, offering an effective and easy strategy to improve glutinosity in elite varieties. Importantly, we successfully removed the transgenes from the progeny. Our study provides an example of generating improved crops with potential for commercialization, by editing a gene of interest directly in elite crop varieties.  相似文献   

4.
A polymorphism in rice amylases at an early stage of seed germination is analyzed by zymogram. In nonglutinous cultivars of rice, α-amylase isozymes are mainly confirmed in germinating seeds. However, in glutinous cultivars, β-amylase isozymes, which are not confirmed in nonglutinous cultivars, make up the major part of the total amylase activity and the expression of α-amylases are repressed.  相似文献   

5.
Polymorphism in rice amylases at an early stage of seed germination   总被引:4,自引:0,他引:4  
A polymorphism in rice amylases at an early stage of seed germination is analyzed by zymogram. In non-glutinous cultivars of rice, alpha-amylase isozymes are mainly confirmed in germinating seeds. However, in glutinous cultivars, beta-amylase isozymes, which are not confirmed in nonglutinous cultivars, make up the major part of the total amylase activity and the expression of alpha-amylases are repressed.  相似文献   

6.
同源四倍体水稻突变株D4063-1直链淀粉含量比来源二倍体明恢63下降一半,即其直链淀粉含量为5.23%。为研究其直链淀粉含量下降的原因, 根据普通水稻Wx基因设计引物, 扩增测序获得了D4063-1Wx基因的全序列, 并与已报道的Wx基因进行比对分析; 同源四倍体水稻D4063-1Wx基因最显著变化为在外显子序列中发生碱基缺失, 导致移码突变, 在第9外显子终止密码子提前出现。D4063-1Wx基因碱基位点的变化还导致其序列上酶切位点的变化,对常用限制性内切酶位点分析结果表明, 同源四倍体水稻相对于籼稻和粳稻多了2个sphⅠ酶切位点, 相对于粳稻减少了6个AccⅠ, 增加了4个XbaⅠ, 1个XhoⅠ, 1个PstⅠ和1个SalⅠ酶切位点。聚类分析表明D4063-1Wx基因序列与籼稻亲源关系较近, 由此推测D4063-1Wx基因来源于籼稻的Wxa基因型。另外, 根据D4063-1Wx基因的碱基差异, 推测D4063-1Wx基因外显子碱基变化导致的RNA加工障碍是其直链淀粉降低的主要原因, 并可能与其米饭较软等品质相关。本研究还根据D4063-1和籼稻、粳稻的序列差异及D4063-1在该片段上的特征序列位点设计了用于识别D4063-1的寡核苷酸片段,并作为PCR反应的引物命名为AUT4063-1,将该引物与作者设计的扩增普通籼稻、粳稻Wx基因的引物F5配合使用, 建立了识别D4063-1的显性和共显性两种检测方式的分子标记, 为快速、准确鉴别低直链淀粉含量突变体D4063-1创造了条件。  相似文献   

7.
Hemophilia A, an X-linked disease caused by deficiency of factor VIII, is characterized by variation in clinical severity and coagulation activity. This variation is though to reflect heterogeneity of mutations in the factor VIII gene. Here we describe a CG-to-CA mutation within a potential cryptic donor splice site in intron 4 of the factor VIII gene from a patient with mild disease. This mutation makes the cryptic sequence resemble more closely the consensus sequence for donor splice sites. We infer that the mutation activates the cryptic donor splice site, which in turn causes a defect in RNA processing.  相似文献   

8.
We have previously described several human immunodeficiency virus type 1 (HIV-1) mutants that are characterized by an excessive-RNA-splicing phenotype and reduced virus particle production. In one of these mutants (NLD2up), the sequence of 5′ splice site D2 was changed to a consensus splice donor site. This splice site overlaps the HIV-1 integrase reading frame, and thus, the NLD2up mutant also bears a G-to-W change at amino acid 247 of the integrase. A previously described E-to-K mutant at position 246 of the C-terminal domain of the integrase, which resulted in a G-to-A mutation at the +3 position of overlapping splice donor D2 (NLD2A3), was also shown to affect virus particle production and Gag protein processing. By using second-site mutations to revert the excessive-splicing phenotype, we show that the effects on Gag protein processing and virus particle production of both the NLD2up and NLD2A3 mutants are caused by excessive viral RNA splicing due to the activation of the overlapping 5′ splice site and not to the changes in the integrase protein. Both integrase protein mutations, however, are lethal for virus infectivity. These studies suggest that changes in the usage of overlapping splice sites may be a possible alternative explanation for a defective virus phenotype resulting from changes in protein-coding sequences or in the nucleotide sequence during codon optimization.  相似文献   

9.
The origin and evolution of the waxy type of foxtail millet [Setaria italica (L.) P. Beauv] were studied by analyzing structural variation in the Waxy gene. Initially, the Waxy gene was amplified by RT-PCR, RACE and genomic PCR from a non-waxy strain to determine the structure of the wild-type gene. Secondly, we screened by PCR for polymorphisms at the Waxy locus in 79 strains with various waxy phenotypes. We then carried out genomic Southern analysis on 67 strains and identified seven RFLP classes which were designated as types I-VII. RFLP type was correlated with phenotype, such that types I and II corresponded to non-waxy, types III and VI to low-amylose, and types IV, V and VII to waxy phenotypes. The differences between RFLP types could be attributed to insertions in the Waxy gene. Types II and VI were caused by the insertion of a Tourist element into intron 1 and a SINE-like sequence into intron 12, respectively. Types III, IV, V and VII were characterized by the insertion of large sequences into the Waxy gene that may alter the expression of the gene. Thus, multiple, independent insertions in the Waxy gene appear to have caused the loss-of-function waxy phenotypes. Furthermore, the geographical distributions of the three RFLP types associated with the waxy phenotype (types IV, V and VII) were distinct, with type IV being found mainly in Taiwan and Japan, type V in Korea, and type VII in Myanmar. These results indicate a polyphyletic origin for the waxy phenotype in landraces of foxtail millet.  相似文献   

10.
11.
Ser/Arg-rich (SR) proteins play important roles in the constitutive and alternative splicing of pre-mRNA. We isolated 20 rice (Oryza sativa) genes encoding SR proteins, of which six contain plant-specific characteristics. To determine whether SR proteins modulate splicing efficiency and alternative splicing of pre-mRNA in rice, we used transient assays in rice protoplasts by cotransformation of SR protein genes with the rice Waxy(b) (Wx(b))-beta-glucuronidase fusion gene. The results showed that plant-specific RSp29 and RSZp23, an SR protein homologous to human 9G8, enhanced splicing and altered the alternative 5' splice sites of Wx(b) intron 1. The resulting splicing pattern was unique to each SR protein; RSp29 stimulated splicing at the distal site, and RSZp23 enhanced splicing at the proximal site. Results of domain-swapping experiments between plant-specific RSp29 and SCL26, which is a homolog of human SC35, showed the importance of RNA recognition motif 1 and the Arg/Ser-rich (RS) domain for the enhancement of splicing efficiencies. Overexpression of plant-specific RSZ36 and SRp33b, a homolog of human ASF/SF2, in transgenic rice changed the alternative splicing patterns of their own pre-mRNAs and those of other SR proteins. These results show that SR proteins play important roles in constitutive and alternative splicing of rice pre-mRNA.  相似文献   

12.
Cultivated rice fields worldwide are plagued with weedy rice, a conspecific weed of cultivated rice (Oryza sativa L.). The persistence of weedy rice has been attributed, in part, to its ability to shatter (disperse) seed prior to crop harvesting. In the United States, separately evolved weedy rice groups have been shown to share genomic identity with exotic domesticated cultivars. Here, we investigate the shattering phenotype in a collection of U.S. weedy rice accessions, as well as wild and cultivated relatives. We find that all U.S. weedy rice groups shatter seeds easily, despite multiple origins, and in contrast to a decrease in shattering ability seen in cultivated groups. We assessed allelic identity and diversity at the major shattering locus, sh4, in weedy rice; we find that all cultivated and weedy rice, regardless of population, share similar haplotypes at sh4, and all contain a single derived mutation associated with decreased seed shattering. Our data constitute the strongest evidence to date of an evolution of weeds from domesticated backgrounds. The combination of a shared cultivar sh4 allele and a highly shattering phenotype, suggests that U.S. weedy rice have re‐acquired the shattering trait after divergence from their progenitors through alternative genetic mechanisms.  相似文献   

13.
14.
15.
Mouse mammary tumor virus (MMTV) encodes a superantigen (Sag) that is required for efficient milk-borne transmission of virus from mothers to offspring. The mRNA used for Sag expression is controversial, and at least four different promoters (two in the long terminal repeat and two in the envelope gene) for sag mRNA have been reported. To determine which RNA is responsible for Sag function during milk-borne MMTV transmission, we mutated a splice donor site unique to a spliced sag RNA from the 5' envelope promoter. The splice donor mutation in an infectious provirus was transfected into XC cells and injected into BALB/c mice. Mice injected with wild-type provirus showed Sag activity by the deletion of Sag-specific T cells and induction of mammary tumors in 100% of injected animals. However, mice injected with the splice donor mutant gave sporadic and delayed T-cell deletion and a low percentage of mammary tumors with a long latency, suggesting that the resulting tumors were due to the generation of recombinants with endogenous MMTVs. Third-litter offspring of mice injected with wild-type provirus showed Sag-specific T-cell deletion and developed mammary tumors with kinetics similar to those for mice infected by nursing on MMTV-infected mothers, whereas the third-litter offspring of the splice donor mutant-injected mice did not. One of the fifth-litter progeny of splice donor mutant-injected mice showed C3H Sag activity and had recombinants that repaired the splice donor mutation, thus confirming the necessity for the splice donor site for Sag function. These experiments are the first to show that the spliced sag mRNA from the 5' envelope promoter is required for efficient milk-borne transmission of C3H MMTV.  相似文献   

16.
Mutations within coding sequences of the various human papillomavirus type 16 (HPV-16) genes have been used to demonstrate that the HPV-16 E7 gene is necessary and sufficient for transformation of rodent cells. We now provide evidence that, in addition to E7 coding sequences, a small cis-acting region immediately flanking the 3' end of E7 coding sequences is also required for transformation. This was shown by translation termination linker insertion, progressive deletion analysis, and site-directed mutagenesis. Disruption of the nucleotide (nt) 880 splice donor site within the 3'-flanking region by deletion of as few as 4 nt or substitution of 3 nt totally abolished transformation. Regeneration of the wild-type sequence in a previously transformation-incompetent splice site mutant restored transformation. Mutating the wild-type splice donor site to the consensus splice site resulted in a stronger transformation phenotype, while mutating the +2 position of the consensus sequence significantly reduced the frequency of transformation. It was shown with RNase protection assays that the amount of E7 mRNA in transformation-deficient splice site mutants was much lower. Nuclear runoff experiments revealed that there was no change in the rate of synthesis of E7 message in the nt 880 splice site mutant. Furthermore, mutations of HPV-16 sequences indicated that the two other early region splice donor sites have no more than minor roles in transformation and efficient RNA accumulation. These results indicate that the specific integrity of the nt 880 splice donor site is essential for both accumulation of E7 RNA and efficient E7-mediated transformation.  相似文献   

17.
Exposure to light precipitates the symptoms of several genetic disorders that affect both skin and internal organs. It is presumed that damage to non-cutaneous organs is initiated indirectly by light, but this is difficult to study in mammals. Zebrafish have an essentially transparent periderm for the first days of development. In a previous large-scale genetic screen we isolated a mutation, dracula (drc), which manifested as a light-dependent lysis of red blood cells [1]. We report here that protoporphyrin IX accumulates in the mutant embryos, suggesting a deficiency in the activity of ferrochelatase, the terminal enzyme in the pathway for heme biosynthesis. We find that homozygous drc(m248) mutant embryos have a G-->T transversion at a splice donor site in the ferrochelatase gene, creating a premature stop codon. The mutant phenotype, which shows light-dependent hemolysis and liver disease, is similar to that seen in humans with erythropoietic protoporphyria, a disorder of ferrochelatase.  相似文献   

18.
19.
Zhang J  Wang J  Ma Y  Du W  Zhao S  Zhang Z  Zhang X  Liu Y  Xiao H  Wang H  Jin L  Liu J 《PloS one》2011,6(11):e27982
Dentinogenesis imperfecta (DGI) type II is an autosomal dominant disease characterized by a serious disorders in teeth. Mutations of dentin sialophosphoprotein (DSPP) gene were revealed to be the causation of DGI type II (DGI-II). In this study, we identified a novel mutation (NG_011595.1:g.8662T>C, c.135+2T>C) lying in the splice donor site of intron 3 of DSPP gene in a Chinese Han DGI-II pedigree. It was found in all affected subjects but not in unaffected ones or other unrelated healthy controls. The function of the mutant DSPP gene, which was predicted online and subsequently confirmed by in vitro splicing analysis, was the loss of splicing of intron 3, leading to the extended length of DSPP mRNA. For the first time, the functional non-splicing of intron was revealed in a novel DSPP mutation and was considered as the causation of DGI-II. It was also indicated that splicing was of key importance to the function of DSPP and this splice donor site might be a sensitive mutation hot spot. Our findings combined with other reports would facilitate the genetic diagnosis of DGI-II, shed light on its gene therapy and help to finally conquer human diseases.  相似文献   

20.
Using a protein truncation assay, we have identified a new mutation in the neurofibromatosis type 1 (NF1) gene that causes a severe defect in NF1 pre-mRNA splicing. The mutation, which consists of a G to A transition at position +1 of the 5' splice site of exon 12a, is associated with the loss of both exons 11 and 12a in the NF1 mRNA. Through the use of in vivo and in vitro splicing assays, we show that the mutation inactivates the 5' splice site of exon 12a, and prevents the definition of exon 12a, a process that is normally required to stimulate the weak 3' splice site of exon 12a. Because the 5' splice site mutation weakens the interaction of splicing factors with the 3' splice site of exon 12a, we propose that exon 11/exon 12a splicing is also compromised, leading to the exclusion of both exons 11 and 12a. Our results provide in vivo support for the importance of the exon definition model during NF1 splicing, and suggest that the NF1 region containing exons 11 and 12a plays an important role in the activity of neurofibromin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号