首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Different clones carrying a chromosomal DNA fragment able to transform Bacillus subtilis mutants dnaA13, dnaB19, dnaG5, recG40 and polA42 to a wild-type phenotype were isolated from a library constructed in plasmid pJH101. A recombinant clone carrying a chromosomal fragment able to transform dnaC mutants was obtained from a Charon 4A library. A restriction map of the cloned DNA fragments was constructed. The 11.3 kb cloned DNA fragment of plasmid pMP60-13 containing the wild-type sequence of dnaG5 was shown to transform a recF33 mutant as well.  相似文献   

2.
The quinol oxidase appears to be mainly responsible for the oxidation of bacterial MKH2 in Bacillus subtilis W23 growing with either glucose or succinate. The activity of the enzyme was maximum with dimethylnaphthoquinol, a water-soluble analogue of the bacterial menaquinol. Menadiol or duroquinol were less actively respired, and naphthoquinol was not oxidized at all. After fourtyfold purification the isolated enzyme contained 5.3 mol cytochrome aa 3 per gram of protein and negligible amounts of cytochrome b and c. The turnover number based on cytochrome aa 3 was about 103 electrons · s-1 at pH 7 and 37°C. The preparation consisted mainly of a M r 57000 and a M r 36000 polypeptide. The N-terminal amino acid sequence of the latter polypeptide differed from that predicted by the qoxA gene of B. subtilis strain 168 (Santana et al. 1992), in that asp-14 predicted by qoxA was missing in the M r 36000 polypeptide.Abbreviations DMN 2,3-dimethyl-1,4-naphthoquinone - DMNH2 2,3-dimethyl-1,4-naphthoquinol - Duroquinol 2,3,5,6-tetramethyl-1,4-benzoquinol - MK menaquinone - MKH2 menaquinol - NBH2 2,3-dimethoxy-5-methyl-6-(n-nonyl)-1,4-benzoquinol - TMPD N,N,N, N,-tetramethyl-1,4-phenylenediamine  相似文献   

3.
Summary The illegitimate recombination between Staphylococcus aureus plasmids pE194 (or pGG20, the hybrid between pE194 and Escherichia coli plasmid pBR322) and pBD17 (plasmid pUB110 without HpaII C-fragment) was studied in Bacillus subtilis. Cointegrates were generated with the frequency of 1–3x10-8. Among 22 hybrids analysed 9 types of recombinants were found. Nucleotide sequences of all three parental plasmids were involved in intermolecular recombination. Nucleotide sequencing of recombinant DNA junctions revealed that in 8 cases recombination occurred between short homologous regions (9–15 bp). One recombinant was formed using nonhomologous sites. The similarity was demonstrated between nucleotide sequences of the recombination sites of two types of cointegrates and those used for pE194 integration into the B. subtilis chromosome. Possible mechanisms of illegitimate recombination are discussed.  相似文献   

4.
The question was investigated as to whether the bacterial menaquinone (MK) is a component of the electron transport chain catalyzing succinate respiration in Bacillus subtilis. Three different methods were applied, and the following consistent results were obtained. (i) Solvent extraction of MK from the bacterial membrane caused total inhibition of the respiratory activities with succinate and NADH, while the activity of succinate dehydrogenase remained unaffected. The respiratory activities were restored onincorporation of vitamin K1 into the membrane preparation. (ii) The membrane fraction of a B. subtilis mutant containing 15% of the wild-type amount of MK, respired succinate and NADH at reduced activities. Wild-type activities were restored on fusion of the preparation to liposomes containing vitamin K1. (iii) The membrane fraction of B. subtilis catalyzed succinate oxidation by various water-soluble naphtho- or benzoquinones at specific activities exceeding to that of succinate respiration. The results suggest that MK is involved in succinate respiration, although its redox potential is unfavorable.Abbreviations MK menaquinone - MKH2 reduced menaquinone - E0' standard redox potential at pH 7 - PMS phenazine methosulfate - DCPIP 2,6-Dichlorophenol-indophenol - Q ubiquinone - Q0 2,3-dimethoxy-5-methyl-1,4-bezoquinone - DMN, 2,3 dimethyl-1,4-naphthoquinone - DMK demethylmenaquinone  相似文献   

5.
Conjugal transfer of the small plasmid pUB110 betweenBacillus subtilis strains was studied under conditions of microcosms with sterile and nonsterile soil. Plasmid transfer proved to be possible after soil inoculation with vegetative partner cells or with their spores. Plasmid transfer occurred at temperatures of 30 and 22–23°C.  相似文献   

6.
Summary Seven mutations leading to riboflavin overproduction inBacillus subtilis were found to be linked to the markerdnaF133 (145° on theB. subtilis genetic map) by transformation. Cotransfer indexes (42.5%–61.7%) suggest that theribC mutations are alleles of the same locus. Results of transduction and transformation crosses suggest the following order of markers:pyrD26ts-6dnaF133ribCrecA1.  相似文献   

7.
Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis   总被引:5,自引:0,他引:5  
Bacillus subtilis C9 produces a lipopeptide-type biosurfactant, surfactin, and rapidly degrades alkanes up to a chain length of C19. The nucleotide sequence of the sfp gene cloned from B. subtilis C9 was determined and its deduced amino acid sequence showed 100% homology with the sfp gene reported before [Nakano et al. (1992) Mol. Gen. Genet. 232: 313–321]. To transform a non-surfactin producer, B. subtilis 168, to a surfactin producer, the sfp gene cloned from B. subtilis C9 was expressed in B. subtilis 168. The transformed B. subtilis SB103 derivative of the strain 168 was shown to produce surfactin measured by its decrease in surface tension, emulsification activity, and TLC analysis of the surface active compound isolated from the culture broth. Like B. subtilis C9, B. subtilis SB103 containing sfp gene readily degraded aliphatic hydrocarbons (C10–19), though its original strain did not. The addition of surfactin (0.5%, w/v) to the culture of B. subtilis 168 significantly stimulated the biodegradation of hydrocarbons of the chain lengths of 10–19; over 98% of the hydrocarbons tested were degraded within 24 h of incubation. These results indicate that the lipopeptide-type biosurfactant, surfactin produced from B. subtilis enhances the bioavailability of hydrophobic hydrocarbons.  相似文献   

8.
Bacillus subtilis is an aerobic endospore forming bacterium widely spread in different environments. Because it represents a biological agent of some health relevance, its rapid detection and identification is highly desirable. By using FT-IR spectroscopy for this purpose slightly different characteristics were obtained from cell mass grown in differently composed cultural media, and harvested in different phases of bacterial growth. If cultivated uniformly, i.e., 24h at 30 degrees C in a minimum-strength nutrient broth, cell mass of B. subtilis delivered a well differentiated spectrum with major absorption bands of nucleic acid structures at 3300cm(-1), cell wall constituents at 3000-2800cm(-1), proteinaceous structures at 1660, 1544 and 1235cm(-1), and some aliphatic structural units at 1080cm(-1). Attenuated total reflectance, and absorption/transmission scanning techniques, delivered structurally identical spectra but those obtained by the former technique were more expressed.  相似文献   

9.
A protein catalyzing the phosphorylation of CMP to CDP was purified and characterized. Kinase activity for UMP copurified during ammonium sulfate fractionation, DEAE-cellulose and hydroxylapatite chromatography, and gel filtration on Sephadex G-75, the ratios of activities for the two substrates remaining constant. The purified product, possessing both activities was homogeneous as judged by the single band following polyacrylamide gel electrophoresis. The protein showed no kinase activity against purine nucleoside monophosphates or the other pyrimidine nucleoside monophosphates: dCMP, dUMP, and dTMP. Thus unlike the enteric bacteria, Escherichia coli and Salmonella typhimurium which have distinct enzymes which phosphorylate UMP and CMP, Bacillus subtilis produces a single pyrimidine ribonucleoside monophosphokinase. The K mvalues of this enzyme from B. subtilis are 0.04 and 0.25 mM for CMP and UMP, respectively, and 0.04 and 0.4 mM for ATP at saturating concentrations of CMP and UMP, respectively. The properties of this enzyme and the differences between enteric bacteria and B. subtilis with respect to the enzymes which phosphorylate CMP are consistent with the measurements which indicate that turnover of messenger RNA is largely hydrolytic in E. coli but largely phosphorolytic in B. subtilis.Non-Standard Abbreviations PRMK Pyridine ribonucleoside monophosphokinase This paper is affectionately dedicated to Professor R. Y. Stanier  相似文献   

10.
Lagodich  A. V.  Shtaniuk  Ya. V.  Prozorov  A. A.  Titok  M. A. 《Molecular Biology》2004,38(3):366-369
Restriction enzyme analysis, cloning, and sequencing showed that large (more than 90 kb) plasmids isolated from different Bacillus subtilisstrains are identical in structure of the region ensuring stable inheritance of plasmid replicons and are widespread in Belarussian environmental strains of B. subtilis.  相似文献   

11.
A collection of 212 gram-positive bacilli isolated from natural habitats was screened for the presence of intervening sequences (introns and intein-coding sequences) in the SPbeta prophage-related ribonucleotide reductase genes bnrdE and bnrdF. Three novel configurations were identified on the basis of the presence of (i) intervening sequences in bnrdE and bnrdF, and (ii) an ORF in the bnrdE-bnrdF spacer. Analysis of the cell wall genetic determinants as well as of the incorporation of radio-labelled glycerol into cell wall allowed newly and previously identified B. subtilis strains with different configurations of bnrdE/bnrdF intervening sequences to be assigned to one of two subspecies. Strains apparently belonging to the subsp. subtilis contain three intervening sequences many of which are associated with the putative homing endonuclease activity. Strains of the subsp. spizizenii contain only one or two ORF-less group I introns. Introns occupying bnrdF are confined to the subspecies subtilis.  相似文献   

12.
We herein describe the development of a Bacillus subtilis system that can be used to produce large quantities of recombinant (r-) human salivary cystatins, a cysteine protease inhibitor of family 2 in the cystatin superfamily. The B. subtilis that lacked the alkaline protease E gene (DeltaaprE type mutant strain) was prepared by homologous recombination. The cDNA fragments coding for mature cystatins (S and SA) were ligated in frame to the DNA segment for the signal peptide of endoglucanase in the pHSP-US plasmid vector that was then use to transform the DeltaaprE type mutant strain of B. subtilis. The transformants carrying the expression vectors were cultivated in 5-L jar fermenters for 3 days at 30 degrees C. Both r-cystatin S and r-cystatin SA were successfully expressed and secreted into the culture broth, and were purified using a fast performance liquid chromatography system. The first use of DeltaaprE type mutant strain of B. subtilis made it possible to obtain a high yield of secreted protein, which makes this system an improvement over expression in Escherichia coli. We conclude that this system has high utility for expression of commercial quantities of secreted proteins.  相似文献   

13.
14.
Bacillus subtilis strain Marburg was grown exponentially with a doubling time of 65 min. To follow the time course of various cell cycle events, cells were collected by agar filtration and were then classified according to length. The DNA replication cycle was determined by a quantitative analysis of radioautograms of tritiated thymidine pulse labeled cells. The DNA replication period was found to be 45 min. This period is preceded and followed by periods without DNA synthesis of about 10 min.The morphology and segregation of nucleoplasmic bodies was studied in thin sections. B. subtilis contains two sets of genomes. DNA replication and DNA segregation seem to go hand in hand and DNA segregation is completed shortly after termination of DNA replication.Cell division and cell separation were investigated in whole mount preparations (agar filtration) and in thin sections. Cell division starts about 20 min after cell birth; cell separation starts at about 45 min and before completion of the septum.  相似文献   

15.
Surfactin productivity by Bacillus subtilis was increased from 0.33 g l–1 to 2.6 g l–1 by adding 0.01 mM Mn2+ to a defined glucose medium. The final yield exceeded that of most reported values for genetically improved strains.  相似文献   

16.
17.
Summary A new mapping method involving protoplast fusion in Bacillus subtilis is described. Protoplasts from an isogenic standard marker strain containing purA and from a strain containing both purB and the marker, x, to be mapped were fused with polyethylene glycol, and purA + purB + fusants were selected. After isolation of single colonies and determination of unselected markers, marker x was mapped between two standard markers. This method was fully applicable to PBS1-resistant strains (e.g., lyt strains). The results obtained by protoplast fusion, conventional transformation and/or lysed protoplast transformation indicated that a lyt strain, Ni15, contained two new autolysin-minus mutations (lyt-151 and lyt-152). The properties of lyt-15 are also discussed.Abbreviations NTG N-methyl-N-nitro-N-nitrosoguanidine - SMM 0.5 M sucrose, 0.02 M MgCl2, 0.02 M maleate buffer, pH 6.5  相似文献   

18.
While about 80% of the cell-bound intracellular serine protease of Bacillus subtilis A-50 have been recovered in the soluble fraction upon disruption of cells, the rest of the enzyme was found to be associated with the membrane fraction. Soluble cytoplasmic intracellular serine protease, as well as membrane-bound serine protease liberated by nonionic detergent treatment, have been isolated in a pure state and shown to be identical. The same protease might also be found extracellularly, due presumably to cell lysis or altered membrane permeability. Intracellular serine protease of Bacillus subtilis A-50 was clearly related to Bacillus subtilis serine proteases W1 and bacillopeptidase F described as extracellular enzymes.Abbreviations ISP intracellular serine protease - ISP-A-Bsu A-50 and ISP-B-Bsu A-50 molecular forms A and B of B. subtilis A-50 intracellular serine protease, respectively - SDS sodium dodecyl sulfate - PMSF phenylmethyl sulfonylfluoride - pNA p-nitroanilide - Buffer A 50 mM Tris-(hydroxymethyl)aminomethane-1 mM CaCl2 adjusted to pH 8.5 with HCl  相似文献   

19.
Linearization of pBG0 (a hydrid between Escherichia coli plasmid pBR322 and Staphylococcus aureus plasmid pUB110) was performed by lysis of the oxolinic acid treated Bacillus subtilis protoplasts with sodium dodecyl sulfate. This plasmid DNA linearization was used both for a detailed mapping of DNA gyrase cleavage sites of various strength and for the nucleotide sequence determinations at the points of gyrase-mediated scission by introducing the XhoI linker DNA. A total of 40 plasmids carrying inserted XhoI linker were sequenced by labeling 3' termini of XhoI sites; 38 of them were found to contain a duplication of four base-pairs of the plasmid sequence flanking the linker, which were characteristic of the oxolinic acid-induced DNA cleavage by E. coli DNA gyrase in vitro and in vivo. The relative strength of these sequenced sites was established by comparing their positions to the sites mapped on the appropriate plasmid genome. This allowed us to propose a consensus sequence of B. subtilis DNA gyrase in vivo cleavage site:GNAT GATCATNC% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaaeikaiaabsfacaqGPaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca% caqGOaGaae4raiaabMcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai% aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa% aeiiaiaabccacaqGOaGaaeyqaiaabMcaaaa!4E92!\[{\rm{(T) (G) (A)}}\]where N is any nucleotide. The bases in parentheses were preferred secondarily. The involvement of DNA gyrase in illegitimate recombination events in Bacillus subtilis is discussed.  相似文献   

20.
Early in sporulation, the mother cell compartment of Bacillus subtilis transcribes the mother cell metabolic gene (mmg) operon. The gene mmgA was assigned by other workers using sequence homology as an acetyl-CoA acetyltransferase [E.C. 2.3.1.9]. The gene was overexpressed in Escherichia coli, and the protein was purified by Ni2+-affinity chromatography. However, the expected MmgA-catalyzed biosynthesis of acetoacetyl-CoA from acetyl-CoA was undetectable by a standard UV assay, HPLC, and mass spectrometry. These methods indicated a preference for the reverse degradative thiolytic reaction, with a k cat of 80 s−1, and a K m of 70 and 50 μM for CoA and acetoacetyl-CoA, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号