首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described to express and purify human DNA (cytosine-5) methyltransferase (human DNMT1) using a protein splicing (intein) fusion partner in a baculovirus expression vector. The system produces approximately 1 mg of intact recombinant enzyme >95% pure per 1.5 x 10(9) insect cells. The protein lacks any affinity tag and is identical to the native enzyme except for the two C-terminal amino acids, proline and glycine, that were substituted for lysine and aspartic acid for optimal cleavage from the intein affinity tag. Human DNMT1 was used for steady-state kinetic analysis with poly(dI-dC).poly(dI-dC) and unmethylated and hemimethylated 36- and 75-mer oligonucleotides. The turnover number (k(cat)) was 131-237 h(-1) on poly(dI-dC).poly(dI-dC), 1.2-2.3 h(-1) on unmethylated DNA, and 8.3-49 h(-1) on hemimethylated DNA. The Michaelis constants for DNA (K(m)(CG)) and S-adenosyl-L-methionine (AdoMet) (K(m)(AdoMet)) ranged from 0.33-1.32 and 2.6-7.2 microM, respectively, whereas the ratio of k(cat)/K(m)(CG) ranged from 3.9 to 44 (237-336 for poly(dI-dC).poly(dI-dC)) x 10(6) M(-1) h(-1). The preference of the enzyme for hemimethylated, over unmethylated, DNA was 7-21-fold. The values of k(cat) on hemimethylated DNAs showed a 2-3-fold difference, depending upon which strand was pre-methylated. Furthermore, human DNMT1 formed covalent complexes with substrates containing 5-fluoro-CNG, indicating that substrate specificity extended beyond the canonical CG dinucleotide. These results show that, in addition to maintenance methylation, human DNMT1 may also carry out de novo and non-CG methyltransferase activities in vivo.  相似文献   

2.
Previously, the purification of DNA methyltransferase from murine P815 mastocytoma cells by immunoaffinity chromatography was described (Pfeifer, G.P., Grünwald, S., Palitti, F., Kaul, S., Boehm, T.L.J., Hirth, H.P. and Drahovsky, D. (1985) J. Biol. Chem. 260, 13787-13793). Proteins that stimulate the enzymatic activity of DNA methyltransferase have been purified from the same cells. These proteins, which partially coelute with DNA methyltransferase from DEAE-cellulose and heparin-agarose, are separated from the enzyme during the immunoaffinity purification step. A further purification of the stimulating proteins was achieved by butanol extraction, DEAE-cellulose chromatography and gel filtration on Superose 12. Two DNA methyltransferase-stimulating protein fractions were obtained. SDS-polyacrylamide gel electrophoresis of one fraction showed a single polypeptide with a molecular mass of 29 kDa. The second fraction consisted of 5 or 6 polypeptides with molecular masses 78-82 and 51-54 kDa. The proteins stimulate both de novo and maintenance activity of DNA methyltransferase about 3-fold. They enhance the methylation of any natural DNA and of poly[(dI-dC).(dI-dC)] but inhibit the methylation of poly[(dG-dC).(dG-dC)]. The purified proteins do not form a tight complex with DNA methyltransferase; however, they bind both to double-stranded and single-stranded DNA. The sequence specificity of DNA methyltransferase is obviously altered in presence of these proteins.  相似文献   

3.
The activity of eukaryotic DNA methyltransferase diminishes with time when the enzyme is incubated with high concentrations (200-300 micrograms/ml) of unmethylated double-stranded Micrococcus luteus DNA. Under similar conditions, single-stranded DNA induces only a limited decrease of enzyme activity. The inactivation process is apparently due to a slowly progressive interaction of the enzyme with double-stranded DNA that is independent of the presence of S-adenosyl-L-methionine. The inhibited enzyme cannot be reactivated either by high salt dissociation of the DNA-enzyme complex or by extensive digestion of the DNA. Among synthetic polydeoxyribonucleotides both poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT), but not poly(dI-dC).poly(dI-dC), cause inactivation of DNA methyltransferase. This inactivation process may be of interest in regulating the 'de novo' activity of the enzyme.  相似文献   

4.
Mammalian DNA methyltransferases prefer poly(dI-dC) as substrate   总被引:1,自引:0,他引:1  
The synthetic duplex DNA, poly(dI-dC).poly(dI-dC), is methylated in vitro by human or murine DNA methyltransferases at 20-100 times the rate of other nonmethylated DNAs. Preparation of the hemimethylated derivative, poly(dI-dMeC).poly(dI-dC), of this polymer increases its effectiveness as a substrate by 2-fold, making it 4-10 times more effective as a substrate for mammalian DNA methyltransferases than any other hemimethylated DNA so far reported. However, the apparent slower rate of de novo methylation of poly(dI-dC).poly(dI-dC) as compared to the hemimethylated derivative is due to substrate inhibition, unique to the unmethylated polymer, as the rates of de novo and maintenance methylation are identical at low substrate concentrations.  相似文献   

5.
Mammalian DNA-cytosine 5-methyltransferases methylate cytosines in deoxyinosine containing DNA polymers more rapidly than in other synthetic or naturally occurring DNAs. The initial methylation rate of poly(dI-dC) X poly(dI-dC) is about 10-times higher than that of poly-(dG-dC) X poly(dG-dC) or of the native Micrococcus luteus DNA. In competitive binding experiments, DNA methyltransferase has about 10-fold higher affinity for the dI-containing alternating DNA polymer than for poly(dG-dC) X poly(dG-dC). The observed high methyl accepting capacity of poly(dI-dC) X poly(dI-dC) may be a useful methodological advance to determine de novo DNA methyltransferase activity in extracts of mammalian cells.  相似文献   

6.
The activity of eukaryotic DNA methyltransferase diminishes with time when the enzyme is incubated with high concentrations (200–300 μg/ml) of unmethylated double-stranded Micrococcus luteus DNA. Under similar conditions, single-stranded DNA induces only a limited decrease of enzyme activity. The inactivation process is apparently due to a slowly progressive interaction of the enzyme with double-stranded DNA that is independent of the presence of S-adenosyl-l-methionine. The inhibited enzyme cannot be reactivated either by high salt dissociation of the DNA-enzyme complex or by extensive digestion of the DNA. Among synthetic polydeoxyribonucleotides both poly(dG-dC) · poly(dG-dC) and poly(dA-dT) · poly(dA-dT), but not poly(dI-dC) · poly(dI-dC), cause inactivation of DNA methyltransferase. This inactivation process may be of interest in regulating the ‘de novo’ activity of the enzyme.  相似文献   

7.
A DNA methyltransferase of Mr = 140,000 that is active on both unmethylated and hemimethylated DNA substrates has been purified from the murine plasma-cytoma cell line MPC 11. The maximal rate of methylation was obtained with maintenance methylation of hemimethylated Micrococcus luteus or M13 DNAs. At low enzyme concentrations, the highest rate of de novo methylation occurred with single-stranded DNA or relatively short duplex DNA containing single-stranded regions. Strong substrate inhibition was observed with hemimethylated but not unmethylated DNA substrates. Fully methylated single-stranded M13 phage DNA inhibited neither the de novo nor the maintenance reactions, but unmethylated single-stranded M13 DNA strongly inhibited the maintenance reaction. The kinetics observed with hemimethylated and single-stranded substrates could be explained if the enzyme were to bind irreversibly to a DNA molecule and to aggregate if present in molar excess. Such aggregates would be required for activity upon hemimethylated but not single-stranded DNA. For de novo methylation of duplex DNA, single-stranded regions or large amounts of methyltransferase appear to be required. The relative substrate preference for the enzyme is hemimethylated DNA greater than fully or partially single-stranded DNA greater than fully duplex DNA.  相似文献   

8.
We present the first in vitro study investigating the catalytic properties of a mammalian de novo DNA methyltransferase. Dnmt3a from mouse was cloned and expressed in Escherichia coli. It was shown to be catalytically active in E. coli cells in vivo. The methylation activity of the purified protein was highest at pH 7.0 and 30 mM KCl. Our data show that recombinant Dnmt3a protein is indeed a de novo methyltransferase, as it catalyzes the transfer of methyl groups to unmethylated substrates with similar efficiency as to hemimethylated substrates. With oligonucleotide substrates, the catalytic activity of Dnmt3a is similar to that of Dnmt1: the K(m) values for the unmethylated and hemimethylated oligonucleotide substrates are 2.5 microM, and the k(cat) values are 0.05 h(-1) and 0.07 h(-1), respectively. The enzyme catalyzes the methylation of DNA in a distributive manner, suggesting that Dnmt3a and Dnmt1 may cooperate during de novo methylation of DNA. Further, we investigated the methylation activity of Dnmt3a at non-canonical sites. Even though the enzyme shows maximum activity at CpG sites, with oligonucleotide substrates, a high methylation activity was also found at CpA sites, which are modified only twofold slower than CpG sites. Therefore, the specificity of Dnmt3a is completely different from that of the maintenance methyltransferase Dnmt1, which shows a 40 to 50-fold preference for hemimethylated over unmethylated CpG sites and has almost no methylation activity at non-CpG sites.  相似文献   

9.
The physical and biochemical properties of two pairs of synthetic DNA template-primers were investigated. The copolymer poly(dA-dU) . poly(dA-dU) and the homopolymer duplex poly(dA). poly(dU) were characterized by a lower Tm and by a higher buoyant density value than the respective thymine polynucleotides poly(dA-dT) . poly(dA-dT) and poly(dA) . poly(dT). The polymerizing and the primer terminus adding reactions of a homogenous E. coli DNA polymerase I preparation, as measured by incorporation of [3H]dAMP into the acid-insoluble fraction, were significantly poorer with uracil-containing template-primers than with thymine templates. Moreover, the uracil-containing polynucleotides inhibited the polymerizing activity of DNA polymerase I to a greater extent than the thymine polynucleotides, when the enzymatic activity was investigated with a dATP/dTTP/dUTP-free incorporation system making use of poly(dI-dC) . poly(dI-dC) as the template-primer.  相似文献   

10.
Hemimethylated DNA substrates prepared from cell cultures treated with 5-azacytidine are efficient acceptors of methyl groups from S-adenosylmethionine in the presence of a crude preparation of mouse spleen DNA methyltransferase. Partially purified methyltransferase was also capable of efficiently modifying single-stranded unmethylated DNA. The methylation of single-stranded DNA was less sensitive to inhibition by salt than duplex DNA. The presence of other DNA species in the reaction mix (duplex or single-stranded, methylated or unmethylated) inhibited the modification of the hemimethylated duplex DNA. The enzyme was specific for DNA, since the presence of RNA in reaction mixtures did not inhibit the methylation of DNA. DNA methyltransferase formed a tight-binding complex with hemimethylated duplex DNA containing high levels of 5-azacytosine, and this complex was not dissociated by high concentrations of salt. Treatment of cultured cells with biologically effective concentrations of 5-azacytidine and other cytidine analogs modified in the 5 position resulted in a loss of extractable active enzyme from the cells. The amount of extractable active enzyme recovered slowly with time after treatment. These results suggest that incorporation of 5-azacytidine into DNA inhibits the progress of DNA methyltransferase along the duplex, perhaps by the formation of a tight-binding complex. This complex formation might be irreversible, so that new enzyme synthesis might be required to reverse the block of DNA methylation.  相似文献   

11.
Previously, we have derived murine hybridomas producing monoclonal antibodies against DNA methyltransferase from human placenta (Kaul, S., Pfeifer, G. P., and Drahovsky, D. (1984) Eur. J. Cell Biol. 34, 330-335). One of these monoclonal antibodies, M2B10, which undergoes immune complex formation also with DNA methyltransferase from P815 mouse mastocytoma cells, was used for the immunoaffinity purification of mouse and human DNA methyltransferases. In sodium dodecyl sulfate-polyacrylamide gels and in immunoblotting studies, the immunoaffinity-purified mouse DNA methyltransferase revealed 5-6 polypeptides of molecular masses 150-190 kDa. The immunoaffinity-purified human placental DNA methyltransferase was characterized by a polypeptide of 158 kDa, presumably representing the native enzyme molecule and by polypeptides of 105-108 kDa and 50-68 kDa, probably generated by a limited proteolysis of the native enzyme molecule. The immunoaffinity-purified DNA methyltransferases preferred hemimethylated DNA substrates over unmethylated ones, and among all unmethylated substrates tested, poly[(dG-dC).(dG-dC)] had the highest methyl-accepting activity. DNA polymers of at least 90 base pairs in length were required for the binding reaction of the immunoaffinity-purified human DNA methyltransferase, and this initial binding was apparently independent of the nucleotide composition of the DNA polymer and of the presence of S-adenosyl-L-methionine.  相似文献   

12.
Purification of human DNA (cytosine-5-)-methyltransferase   总被引:7,自引:0,他引:7  
We have developed a facile procedure for the purification of DNA methyltransferase activity from human placenta. The procedure avoids the isolation of nuclei and the dialysis and chromatography of large volumes. A purification of 38,000-fold from the whole cell extract has been achieved. The procedure employs ion exchange, affinity, and hydrophobic interaction chromatography coupled with preparative glycerol gradient centrifugation. A protein of 126,000 daltons was found to copurify with the activity and was the major band seen in the most highly purified material after SDS gel electrophoresis. This observation, coupled with an observed sedimentation coefficient of 6.3S, suggests that the enzyme is composed of a single polypeptide chain of this molecular weight. Hemimethylated DNA was found to be the preferred substrate for the enzyme at each stage in the purification. The ratio of the activity of the purified product on hemimethylated to that on unmethylated M13 duplex DNA was about 12 to 1. Thus, the purified activity has the properties postulated for a maintenance methyltransferase. The availability of highly purified human DNA methyltransferase should facilitate many studies on the structure, function, and expression of these activities in both normal and transformed cells.  相似文献   

13.
We have partially purified a DNA methyltransferase from human placenta using a novel substrate for a highly sensitive assay of methylation of hemimethylated DNA. This substrate was prepared by extensive nick translation of bacteriophage XP12 DNA, which normally has virtually all of its cytosine residues replaced by 5-methylcytosine (m5C). Micrococcus luteus DNA was just as good a substrate if it was first similarly nick translated with m5dCTP instead of dCTP in the polymerization mixture. At different stages in purification and under various conditions (including in the presence or absence of high mobility group proteins), the methylation of m5C-deficient DNA and that of hemimethylated DNA were compared. Although hemimethylated , m5C-rich DNAs were much better substrates than were m5C-deficient DNAs and normal XP12 DNA could not be methylated, all of these DNAs were bound equally well by the enzyme. In contrast, from the same placental extract, a DNA-binding protein of unknown function was isolated which binds to m5C-rich DNA in preference to the analogous m5C-poor DNA.  相似文献   

14.
We have purified GST-fused recombinant mouse Dnmt3a and three isoforms of mouse Dnmt3b to near homogeneity. Dnmt3b3, an isoform of Dnmt3b, did not have DNA methylation activity. Dnmt3a, Dnmt3b1 or Dnmt3b2 showed similar activity toward poly(dG-dC)-poly(dG-dC) for measuring de novo methylation activity, and toward poly(dI-dC)-poly(dI-dC) for measuring total activity. This indicates that the enzymes are de novo-type DNA methyltransferases. The enzyme activity was inhibited by NaCl or KCl at concentrations >100 mM. The kinetic parameter, KmAdoMet, for Dnmt3a, Dnmt3b1 and Dnmt3b2 was 0.4, 1.2 and 0.9 µM when poly(dI-dC)-poly(dI-dC) was used, and 0.3, 1.2 and 0.8 µM when poly(dG-dC)-poly(dG-dC) was used, respectively. The KmDNA values for Dnmt3a, Dnmt3b1 and Dnmt3b2 were 2.7, 1.3 and 1.5 µM when poly(dI-dC)-poly(dI-dC) was used, and 3.5, 1.0 and 0.9 µM when poly(dG-dC)-poly(dG-dC) was used, respectively. For the methylation specificity, Dnmt3a significantly methylated CpG >> CpA. On the other hand, Dnmt3b1 methylated CpG > CpT ≥ CpA. Immuno-purified Dnmt3a, Myc-tagged and overexpressed in HEK 293T cells, methylated CpG >> CpA > CpT. Neither Dnmt3a nor Dnmt3b1 methylated the first cytosine of CpC.  相似文献   

15.
DNA methyltransferase Dnmt1 ensures clonal transmission of lineage-specific DNA methylation patterns in a mammalian genome during replication. Dnmt1 is targeted to replication foci, interacts with PCNA, and favors methylating the hemimethylated form of CpG sites. To understand the underlying mechanism of its maintenance function, we purified recombinant forms of full-length Dnmt1, a truncated form of Dnmt1-(291-1620) lacking the binding sites for PCNA and DNA and examined their processivity using a series of long unmethylated and hemimethylated DNA substrates. Direct analysis of methylation patterns using bisulfite-sequencing and hairpin-PCR techniques demonstrated that full-length Dnmt1 methylates hemimethylated DNA with high processivity and a fidelity of over 95%, but unmethylated DNA with much less processivity. The truncated form of Dnmt1 showed identical properties to full-length Dnmt1 indicating that the N-terminal 290-amino acid residue region of Dnmt1 is not required for preferential activity toward hemimethylated sites or for processivity of the enzyme. Remarkably, our analyses also revealed that Dnmt1 methylates hemimethylated CpG sites on one strand of double-stranded DNA during a single processive run. Our findings suggest that these inherent enzymatic properties of Dnmt1 play an essential role in the faithful and efficient maintenance of methylation patterns in the mammalian genome.  相似文献   

16.
DNA cytosine 5-methyltransferase has been extensively purified (about 2600-fold) from the soft tissue of human placenta by chromatography on DEAE-cellulose and hydroxyapatite, and by an affinity step on agarose-immobilized S-adenosylhomocysteine. The isolated enzyme has a molecular weight of 135000 and methylates DNA from various sources in native and heat-denatured forms. The synthetic copolymer poly(dG-dC)·poly(dG-dC) is methylated in B- and Z-conformation to about the same extent. DNA containing hemimethylated sites was isolated from P815 cells grown in the presence of 5-azacytidine. This P815 DNA was used to measure the ‘maintenance’ DNA methylase activity, whereas 5-methylcytosine-free procaryotic DNA served as a substrate for the ‘de novo’ DNA methylase activity in our enzyme preparation. The crude extract as well as the highly purified DNA methylase are capable of transferring methyl groups to these two types of substrate. The fact that both types of activity co-chromatograph during the isolation procedure suggests that one enzyme molecule may exercise both the ‘maintenance’ and ‘de novo’ activity.  相似文献   

17.
A partially purified HeLa cell DNA methylase will methylate a totally unmethylated DNA (de novo methylation) at about 3-4% the rate it will methylate a hemimethylated DNA template (maintenance methylation). Our evidence suggests that many, if not most, dCpdG sequences in a natural or synthetic DNA can be methylated by the enzyme. There is a powerful inhibitor of DNA methylase activity in crude extracts which has been identified as RNA. The inhibition of DNA methylase by RNA may indicate that this enzyme is regulated in vivo by the presence of RNA at specific chromosomal sites. The pattern of binding of RNA to DNA in the nucleosome structure and the DNA replication complex may determine specific sites of DNA methylation. An even more potent inhibition of DNA methylase activity is observed with poly(G), but not poly(C), poly(A), or poly(U). The only other synthetic polynucleotides studied which inhibit DNA methylation as well as poly(G) are the homopolymers poly(dC).poly(dG) and poly (dA).poly(dT). These results point out the unique importance of the guanine residue itself in the binding of the DNA methylase to dCpdG, the site of cytosine methylation. The surprising inhibition of the methylation reaction by poly(dA).poly(dT), which is itself not methylated by the enzyme, suggests the possible involvement of adjacent A and T residues in influencing the choice of sites of methylation by the enzyme.  相似文献   

18.
The mouse (cytosine-5) DNA methyltransferase (Dnmt1) consists of a regulatory N-terminal and a catalytic C-terminal domain, which are fused by a stretch of Gly-Lys dipeptide repeats. The C-terminal region contains all of the conserved motifs found in other cytosine-5 DNA methyltransferases including the relative position of the catalytic Pro-Cys dipeptide. In prokaryotes, the methyltransferases are simpler and lack the regulatory N-terminal domain. We constructed three hybrid methyltransferases, containing the intact N-terminus of the murine Dnmt1 and most of the coding sequences from M.HhaI (GCGC), M.HpaII (CCGG) or M.SssI (CG). These hybrids are biologically active when expressed in a baculovirus system and show the specificity of the parental C-terminal domain. Expression of these recombinant constructs leads to de novo methylation of both host and viral genomes in a sequence-specific manner. Steady-state kinetic analyses were performed on the murine Dnmt1-HhaI hybrid using poly(dG-dC).poly (dG-dC), unmethylated and hemimethylated oligonucleotides as substrates. The enzyme has a slow catalytic turnover number of 4.38 h(-1) for poly(dG-dC). poly(dG-dC), and exhibits 3-fold higher catalytic efficiency for hemimethylated substrates.  相似文献   

19.
Over 20% of the cytosine bases in frog virus 3 DNA are methylated at the 5-carbon position. To determine whether this high degree of methylation is the result of a virus-specific enzyme, we examined the kinetics of induction and the substrate specificity of a DNA methyltransferase from frog virus 3-infected fathead minnow cells. A novel DNA methyltransferase activity appeared in the cytoplasm of infected cells at 3 h postinfection. This activity was induced in the absence of viral DNA replication and was therefore probably an early viral enzyme. In contrast to the methyltransferase activity extracted from uninfected cell nuclei, the cytoplasmic enzyme showed a strong template preference for double-stranded over single-stranded and for unmethylated over hemimethylated DNA. The dinucleotide sequence dCpdG was a necessary and sufficient exogenous substrate for methylation in vitro. A mutant of frog virus 3, isolated as resistant to 5-azacytidine and having unmethylated virion DNA, did not induce cytoplasmic DNA methyltransferase, leading to the conclusion that this activity is coded for by the virus.  相似文献   

20.
The EcoKI methyltransferase methylates two adenines on opposite strands of its bipartite DNA recognition sequence AAC(N6)GTGC. The enzyme has a strong preference for hemimethylated DNA substrates, but the methylation state of the DNA does not influence its binding affinity. Methylation interference was used to compare the contacts made by the EcoKI methyltransferase with unmodified, hemimethylated or fully modified DNAs. Contacts were seen at or near the N7 position of guanine, in the major groove, for all of the guanines in the EcoKI recognition sequence, and at two guanines on the edge of the intervening spacer sequence. The presence of the cofactor and methyl donor S-adenosyl methionine had a striking effect on the interference pattern for unmodified DNA which could not be mimicked by the presence of the cofactor analogue S-adenosyl homocysteine. In contrast, S-adenosyl methionine had no effect on the interference patterns for either kind of hemimethylated DNA, or for fully modified DNA. Differences between the interference patterns for the unmodified DNA and any of the three forms of methylated DNA provide evidence that methylation of the target sequence influences the conformation of the protein-DNA interface, and illustrate the importance of S-adenosyl methionine in the distinction between unmodified and methylated DNA by the methyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号