首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectral evidence for non-calcium interactions of intracellular Indo-1   总被引:3,自引:0,他引:3  
Indo-1 is widely used to measure intracellular free calcium, [Ca2+]i, by comparing the fluorescence emission at 2 or more wavelengths with the emissions, which are assumed to be known, of Indo-1 when it is fully calcium-bound and when it is fully calcium-free. Accurate quantitation requires that these "reference" values be obtained on intracellular dye, and the full spectra of this study show that the reason is a significant spectral shift of the calcium-free peak, but not the calcium-bound. A mathematical analysis shows that the new peak must be a new state of the Indo-1 molecule, since it cannot be simply due to residual calcium in the cell. When intracellular "reference" spectra were used in the data analysis, [Ca2+]i could be calculated from whole spectra or from the ratio of observations at two wavelengths with good agreement. When extracellular "reference" spectra were used, the value calculated by the ratio method depended on the choice of wavelengths.  相似文献   

2.
Three-photon induced fluorescence of the calcium probe Indo-1.   总被引:1,自引:0,他引:1       下载免费PDF全文
We report the calcium-dependent emission spectral properties of the calcium probe Indo-1 for three-photon excitation. We found that Indo-1 could be readily excited with the femtosecond pulses from a mode-locked Ti:sapphire laser at 885 nm. This wavelength is too long for two-photon excitation, which is expected to occur for wavelengths no longer than twice the longest single-photon absorption wavelength of 400 nm. For excitation at 885 nm the emission intensity was found to depend on the cube of the laser power, as expected for simultaneous interaction with three photons. At wavelengths below 840 nm the emission intensity depends on the square of the laser power, indicating two-photon excitation at shorter wavelengths. The intensity decays of Indo-1 were found to be dependent on Ca2+ and essentially identical for one- and three-photon excitation. The emission anisotropy of Indo-1 was found to be considerably higher for three-photon excitation than for one-photon excitation, consistent with cos6 theta photoselection, as compared with cos2 theta photoselection for one-photon excitation. The high values of the anisotropy are in agreement with those expected for a three-photon process. Calcium-dependent emission spectra were observed for Indo-1 with three-photon excitation, demonstrating that three-photon excitation of Indo-1 can be used for calcium imaging by emission intensity ratio measurements. The calcium-dependent emission spectra indicate a higher three-photon cross-section for the calcium-free form of Indo-1 than for the calcium-bound form. The possible advantages of three-photon excitation include the availability of the appropriate wavelengths with solid-state lasers, enhanced spatial resolution due to a reduced size of the excited volume, absence of light quenching, and possibly high selectivity of the three-photon excitation process.  相似文献   

3.
Several authors have reported unexpected intracellular spectra of both indo-1 and fura-2. One of the major methodological problems in the evaluation of calcium concentration using fluorescent probes is that it is assumed that only two forms of the dyes are detectable within the cells. We show in this study of fura-2 properties that this calcium probe is pH-sensitive and able to bind to cellular proteins. The excitation spectra of protonated and protein-bound forms of fura-2 exhibit a maximum in the same region as that associated with the calcium-free form (i.e., near 365 nm). The very small shift in the excitation spectra upon proton or protein binding precludes the use of classical methods to determine the spectral composition of mixtures of several forms of fura-2. We therefore used the synchronous fluorescence technique to detect the protein-bound form of fura-2 selectively, in order to assess the pH dependence of the fura-2/protein interaction. The nonspecific binding of fura-2 to proteins is reinforced at acidic pH and inhibited by calcium. The fact that the same type of interaction was found between fura-2 and poly-L-lysine suggests that it could be mediated by basic amino acids. Because of the strong overlap of the excitation spectrum of the unprotonated free fura-2 with those associated with the protonated and protein-bound forms, a cytoplasmic acidification may lead to an artifactual measurement of low calcium levels.  相似文献   

4.
A Lückhoff 《Cell calcium》1986,7(4):233-248
Indo-1 is a new fluorescent indicator of the intracellular free calcium concentration Cai++. Indo-1 may be used in a similar manner as its predecessor quin2 but offers the principal advantage that the Ca++ saturated form of the Ca++ chelator has a emission maximum different in wavelength from that of free indo-1 (400 nm versus 483 nm). Therefore, the ratio of the fluorescence intensity F emitted at 400 nm to that of the fluorescence intensity G emitted at 483 nm (or 500 nm) should be a measure of Cai++ independent of the total amount of intracellular dye. However, when indo-1 is loaded into endothelial cells (grown in culture on quartz coverslips) by incubation with the acetoxymethylester of indo-1 (indo-1/AM), the ester in not completely hydrolysed to indo-1 intracellularly. Fluorescence emitted by uncleaved indo-1/AM at wavelengths 483-500 nm interferes with the fluorescence of indo-1. Ester fluorescence is influenced not only by ester concentration but by the fluorescence emitted at 400 nm by Ca++ bound indo-1 as well. Therefore, the ratio F/G cannot reliably evaluate increases in Cai++ in endothelial cells although F/G would indicate a basal Cai++ constant with time. By contrast, the fluorescence F is a sensitive parameter of the intracellular concentration of Ca++ bound indo-1, in particular when the excitation wavelength is set to 332 nm. F was used to measure resting Cai++ in endothelial cells (132 +/- 22 nM; n = 22) and to demonstrate dose-dependent and reversible increases in Cai++ in response to stimulation with bradykinin.  相似文献   

5.
The highly fluorescent probes Indo-1 and Fura-2 were employed to detect intracellular calcium responses in murine splenic lymphocytes following cross-linking of cell surface Ig. Inhibition by phorbol ester (12-O-tetradecanoylphorbol 13-acetate) was rapid and showed a strong preference for the very transient phase of the response which has been identified as a mobilization of intracellular calcium. 12-O-Tetradecanoylphorbol-13-acetate had significantly less effect on the longer lasting increase in intracellular free calcium which involved an influx of extracellular calcium. Whole spectra were used as a check on transients, which were monitored at a single wavelength, in order to eliminate changes that were not calcium-dependent. It was found that such changes could arise from the association of Indo-1, or its acetoxymethyl ester, with phospholipid bilayers since this affected their fluorescence spectra. In addition, the loading of resting cells with dye esters was shown to be greatly enhanced by the inclusion of a small amount of the detergent Pluronic F-127 in the incubation medium. A spectral analysis of labeled cells showed that the extent of hydrolysis of intracellular dye was improved as well as the rate of uptake by cells.  相似文献   

6.
The fluorescent chelator Indo-1 can make simultaneous determinations of two intracellular ion concentrations, such as [Ca2+] and [Cd2+], or [Ca2+] and [Ba2+], in a normal cell suspension. The second ion can be detected even if its spectrum when bound to Indo-1 is same as for the calcium-bound or the ion-free Indo-1, as long as there is a change in height. This is because the mathematical analysis uses not only the spectral shape, but also takes into account increases in total signal intensity. For maximum accuracy, whole spectra were analyzed. When 3 mM [Ba2+] was added to a B cell line that had been stimulated with anti-immunoglobulin to open receptor operated calcium channels, there was a sudden drop in 400 nm Indo-1 fluorescence. Spectral analysis showed that this was due to a drop in intracellular [Ca2+], which was consistent with blockage of the receptor-operated calcium current by extracellular Ba2+. The conductance for Ba2+ was also observable as a slow rise in total fluorescence. There was also a slow increase in intracellular [Ca2+] as barium accumulated in the cell, which was tentatively attributed to blockage of the plasma membrane calcium pump by intracellular Ba2+.  相似文献   

7.
The study of the physicochemical properties of Mag-indo-1, a fluorescent probe used for intracellular magnesium measurements, has shown that in a biological environment the deprotonated form of this probe is in simultaneous equilibrium with a protonated form, a protein and a magnesium-bound form. The complex emission fluorescence spectrum emitted by a single living cell was analyzed using a computerized method, allowing the evaluation of the Mag-indo-1 to the cellular fluorescence. This approach used to evaluate intracellular Mg2+ concentration has also shown the variability of the important participation of protein-bound Mag-indo-1 to the cellular fluorescence. Thus the widely used ratioing method, unable to take into account this variability, cannot afford a reliable evaluation of [Mg2+]. Whatever the technique used for investigation (microfluorimetry, flow cytometry, etc.) the evaluation of [Mg2+]i using the fluorescent probe Mag-indo-1 requires a method able to quantify, in complex fluorescence, the fluorescence intensity of the forms involved in the equilibrium with Mg2+.Abbreviations [Ca2+]1 intracellular calcium concentration - [Mg2+]i intracellular magnesium concentration  相似文献   

8.
The dyes carboxy-SNARF-1 and BCECF are fluorescent probes of intracellular pH that exhibit changes in spectral shape upon proton binding which allow one to use measurements of fluorescence at two or more wavelengths in order to measure pH without artifacts associated with variability in dye loading, etc. In evaluating these dyes for this study, whole spectra, rather than measurements at two wavelengths, were analyzed. For BCECF, the effects of the intracellular milieu were minimal: both the pH-sensitive excitation spectrum and the pKa agreed closely with values found in extracellular solution. In contrast, both the spectra and the pKa for the emission spectrum-shifting carboxy-SNARF-1 showed significant differences between intracellular and extracellular dye. As a result, extremely misleading values for intracellular pH will be obtained if one attempts to use extracellular dye to calibrate intracellular carboxy-SNARF-1 measurements. Multiple origins were found for the discrepancy: (i) the intracellular dye was found to be significantly quenched, with the deprotonated form being more strongly quenched than the protonated form; and (ii) the pKa for the equilibrium with intracellular hydrogen ions was shifted by +0.2 pH units. These effects were readily reversed by disruption of the cell, but were not due to sequestering of dye in an acidic cell compartment.  相似文献   

9.
Although in erythrocytes calcium is thought to be important in homeostasis, measurements of this ion concentration are generally seen as rather problematic because of the auto-fluorescence or absorption properties of the intracellular milieu. Here, we describe experiments to assess the usability of popular calcium indicators such as Fura-2, Indo-1 and Fluo-4. In our experiments, Fluo-4 turned out to be the preferable indicator because (i) its excitation and emission properties were least influenced by haemoglobin and (ii) it was the only dye for which excitation light did not lead to significant auto-fluorescence of the erythrocytes. From these results, we conclude that the use of indicators such as Fura-2 together with red blood cells has to be revisited critically. We thus utilized Fluo-4 in erythrocytes to demonstrate a robust but heterogeneous calcium increase in these cells upon stimulation by prostaglandin E(2) and lysophosphatidic acid. For the latter stimulus, we recorded emission spectra of individual erythrocytes to confirm largely unaltered Fluo-4 emission. Our results emphasize that in erythrocytes measurements of intracellular calcium are reliably possible with Fluo-4 and that other indicators, especially those requiring UV-excitation, appear less favourable.  相似文献   

10.
Fluorometric determination of cytosolic calcium, [Ca2+]c, using Indo-1 in intact tissue, is limited by problems in obtaining calibration parameters for Indo-1 in vivo. Therefore, the goal of this study was to calibrate Indo-1 using in vitro constants, obtained from protein-containing reference solutions designed to produce similar Indo-1 spectral properties to those in vivo. Due to wavelength-dependent tissue light absorbance, the in vitro constants had to be absorbance-corrected using a novel method. The correction factor was calculated from the relationship between the Indo-1 fluorescence intensities at the two detection wavelengths. A mixture of proteins at approximately 28 mg/ml had a similar Indo-1 isosbestic wavelength (430 nm) to that found in vivo (427 nm), and a similar fluorescence ratio maximum with saturating Ca2+ to that found in vivo (after absorbance correction). Using calibration constants from this protein mixture, calculated [Ca2+]c in a Langendorf perfused rat heart was 187 nM during diastole, and 464 nM in systole. This new calibration method circumvented the considerable experimental problems of previous methods which required measurements with the cytosol fully depleted and fully saturated with Ca2+.  相似文献   

11.
Cytosolic free calcium ions represent important second-messengers in platelets. Therefore, quantitative measurement of intraplatelet calcium provides a popular and very sensitive tool to evaluate platelet activation and reactivity. Current protocols for determination of intracellular calcium concentrations in platelets have a number of limitations. Cuvette-based methods do not allow measurement of calcium flux in complex systems, such as whole blood, and therefore require isolation steps that potentially interfere with platelet activation. Flow cytometry has the potential to overcome this limitation, but to date the application of calibrated, quantitative readout of calcium kinetics has only been described for Indo-1. As excitation of Indo-1 requires a laser in the ultraviolet range, such measurements cannot be performed with a standard flow cytometer. Here, we describe a novel, rapid calibration method for ratiometric calcium measurement in platelets using both Ar+-laser excited fluorescence dyes Fluo-4 and Fura Red. We provide appropriate equations that allow rapid quantification of intraplatelet calcium fluxes by measurement of only two standardisation buffers. We demonstrate that this method allows quantitative calcium measurement in platelet rich plasma as well as in whole blood. Further, we show that this method prevents artefacts due to platelet aggregate formation and is therefore an ideal tool to determine basal and agonist induced calcium kinetics.  相似文献   

12.
Rapid microspectrofluorometry has been used to evaluate 1-pyrene-butyric acid as an oxygen probe in single living EL2 ascites tissue culture cells. Despite instrumental conditions preventing detection of the pyrene butyric acid maxima at 380 and 400 nm, the probe having penetrated the cell can be easily identified (maximum around 440 nm in unconnected spectra) from the fluorescence emission spectrum, as compared with NAD(P)H emission in controls (maximum around 460 nm). Fluorescence changes during gradually increasing anaerobiosis under nitrogen flow, are compatible with a linear relationship between the reciprocal of the fluorescence intensity and the intracellular oxygen concentration (increase in 430, 434, 442/461 nm ratios at anaerobiosis). The cells having absorbed the probe continue to catabolize glycolytic substrate, but some inhibition is noticeable (e.g. from the amplitude of the NAD(P)H fluorescence increase spectrum due to intracellular addition of glucose-6-P). In principle rapid microspectrofluorometry allows a multiprobe (e.g. 1-pyrene-butyric acid for oxygen, vs NAD(P)H for metabolism) exploration of the living cell.  相似文献   

13.
The INCA program converts Consort 30-generated fluorescence list mode data collected from Indo-1-stained cells to absolute intracellular calcium concentrations (nM Ca2+i). The calcium data are plotted vs. time, allowing the user to analyze the fractions of cells responding to a given stimulus. Converted files can be restored to disk after replacing FL1 and FL2 with time and calcium, respectively, for future analysis.  相似文献   

14.
Calcium imaging is a common technique that is useful for measuring calcium signals in cultured cells. Calcium imaging techniques take advantage of calcium indicator dyes, which are BAPTA-based organic molecules that change their spectral properties in response to the binding of Ca2+ ions. Calcium indicator dyes fall into two categories, ratio-metric dyes like Fura-2 and Indo-1 and single-wavelength dyes like Fluo-4. Ratio-metric dyes change either their excitation or their emission spectra in response to calcium, allowing the concentration of intracellular calcium to be determined from the ratio of fluorescence emission or excitation at distinct wavelengths. The main advantage of using ratio-metric dyes over single wavelength probes is that the ratio signal is independent of the dye concentration, illumination intensity, and optical path length allowing the concentration of intracellular calcium to be determined independently of these artifacts. One of the most common calcium indicators is Fura-2, which has an emission peak at 505 nM and changes its excitation peak from 340 nm to 380 nm in response to calcium binding. Here we describe the use of Fura-2 to measure intracellular calcium elevations in neurons and other excitable cells.Download video file.(73M, flv)  相似文献   

15.
Absorption, fluorescence emission, and fluorescence excitation spectra of stilbazolium merocyanine (1-(n-butyl)-4[(3,5-dimethoxy-4-oxocyclohexa-2,5-dienylidene)ethylidene]-1,4-dihydropyridyne) dye in water solution without and with colloidal silver addition were measured. In the presence of the colloid, besides the absorption band assigned to the protonated species of the dye (at 391 nm), an absorption band related to the free-base species appears at 490 nm. From the absorption and emission spectra, measured at various dye concentrations, follows that the aggregates are not effectively formed. Therefore, the long-wavelength absorption and fluorescence bands have to be related to some dye forms created by the solvatochromic effects. The fluorescence bands of the protonated and the free-base species are located at 559 nm and at about 630 nm, respectively. The shape of the long-wavelength band suggests the occurrence of more than one free-base form of the dye. At some dye and colloid concentrations, the global emission of the sample is enhanced as a result of silver addition. The increase in the emission yield of the dye could be partially due to not only the change in the concentrations of dye forms exhibiting various emission yields but is also due to the resonance surface plasmon effect. Because of the superposition of several effects, before the practical application of merocyanine as an indicator of metal presence in biological samples, its spectral properties in the system investigated should be established.  相似文献   

16.
Using laser image cytometry and Indo-1 fluorescence, we investigated the intracellular free Ca2+ concentration ([Ca2+]i) of confluent A172 human glioblastoma cells stimulated by the BB homodimer of platelet-derived growth factor (PDGF-BB). The shape of the calcium transients and the delay time between stimulation and the beginning of the transient varied considerably. The percentage of responsive cells, the peak [Ca2+]i and the duration of the response were directly related to PDGF-BB dose, while the delay time was inversely related; the maximal response occurred at a PDGF-BB concentration of 20 ng/ml. Studies with EGTA and inorganic calcium-channel blockers (Ni2+, La3+) showed that the increase of [Ca2+]i resulted from initial release of intracellular stores and subsequent calcium influx across the plasma membrane. Opening of calcium channels in the plasma membrane, monitored directly by studying Mn2+ quenching of Indo-1 fluorescence, was stimulated by PDGF-BB and blocked by La3+; the opening occurred 55 +/- 10 s after the initial increase in [Ca2+]i. Therefore, in these tumor cells, intracellular release always occurs before channel opening in the plasma membrane. Depolarization of cells with high extracellular [K+] did not generally induce calcium transients but did decrease calcium influx. L-type calcium-channel blockers (verapamil, nifedipine, and diltiazem) had little or no effect on the calcium influx induced by PDGF-BB. These results indicate that PDGF-BB induces calcium influx by a mechanism independent of voltage-sensitive calcium channels in A172 human glioblastoma cells.  相似文献   

17.
The fast (1 min) regeneration process of the photoactive Pchlide forms after a light flash was studied in etiolated wheat leaves, and this process was simulated in vitro by incubating etioplast inner membranes of wheat with excess NADPH or NADP+. The 77 K fluorescence spectra were recorded after flash illumination, dark incubation and a subsequent flash illumination of the samples. A non-photoactive Pchlide form with an emission maximum at 650 nm was transiently detected in leaves during regeneration of a photoactive Pchlide form with an emission maximum at 654 nm. Gaussian deconvolution of fluorescence spectra of isolated membranes showed that this 650 nm form appeared in conditions of excess NADP+, as suggested in previous studies. Additionally a Pchlide form emitting at 638.5 nm was detected in the same conditions. The analysis of the spectra of leaves at different times after a flash indicated that these two non-photoactive forms are involved as intermediates in the regeneration of photoactive Pchlide. This regeneration is in correlation with the production of the Chlide form emitting at 676 nm. The results demonstrate that, in vivo, part of the NADPH:protochlorophyllide oxidoreductase is reloading with nonphotoactive Pchlide on a fast time-scale and that the 676 nm Chlide form is the released product of the phototransformation in this process.  相似文献   

18.
We have developed new methodology for measuring intracellular pH (pHi) in cultured cell monolayers and epithelia by analyzing the emission spectra of the trapped fluorescent pH probe, 1,4-dihydroxyphthalonitrile (1,4-DHPN). This compound is unique since both its acid and base forms possess different fluorescence emission characteristics that can be used to quantitate pHi. The fluorescence difference spectrum between an acid and alkaline solution of 1,4-DHPN has a maximum at 455 nm and a minimum at 512 nm. By determining the ratio of the intensity at these two wavelengths as a function of pH, a calibration curve was constructed. Since the two intensities are determined simultaneously, the measurement is independent of dye concentration, bleaching, and intensity fluctuation of the excitation source. Furthermore, analysis of the emission spectra permitted the detection of light scattering, binding effects, and chemical modification of the probe. A microspectrofluorometer was constructed to analyze low light level emission spectra from intracellular 1,4-DHPN. The instrument consists of a modified Leitz inverted microscope (E. Leitz, Inc., Rockleigh, NJ) with a Ploem illuminator adapted for broadband excitation and objective focusing capability. The emission spectra were collected by focusing the fluorescence from the cell onto the entrance slit of an imaging monochromator, which was scanned by a SIT camera interfaced with a computer. This permitted the acquisition of fluorescence emission spectra extending from 391-588 nm in approximately 33 ms. pHi measured in the cultured toad kidney epithelial cell line, A6, was 7.49 +/- 0.04 (n = 12) with an external pH of 7.6. A6 cells were found to regulate pHi in response to both acute acid and alkali loads and maintained pHi relatively constant over a wide range of external pH values. The technique described in this report overcomes several of the difficulties encountered with other fluorescent pH probes where excitation spectroscopy is required to monitor pH.  相似文献   

19.
The identification and quantification of fluorescent compounds in a complex fluorescence spectra are always difficult, especially in the case of low signal:noise ratio. We propose a computerised method that allows the resolution of low light level complex fluorescence spectra into its components. Based on a linear combination of N possible characteristic fluorescence spectra, and using N weighting functions, this method allows the integration of fluorescence intensities over the entire fluorescence spectra and the generation of n equations with N unknowns. The compounds that participate in complex fluorescence spectra are identified and quantified. Because fluorescence intensities can be integrated we can resolve complex fluorescence spectra presenting a low signal:noise ratio. The reliability and sensitivity of our method are shown through examples of resolution of complex intracellular fluorescence of single living cells pretreated with benzo(a)pyrene. Depending on the cell type and treatment, two, four, or five components can be identified in the complex fluorescence spectra.  相似文献   

20.
When fluorescent indicators are used to measure intracellular ligands in single cells, the quality of the data is usually limited by quantum (shot) noise. For indicators which shift excitation or emission wavelengths upon ligand binding, a ratiometric method is usually employed. In choosing the spectral windows for excitation or collection of fluorescence, there is a trade-off between maximum sensitivity to ligand binding, and maximum collection of light. We show that there is a well-defined optimum choice of windows which minimizes the error caused by quantum noise in the estimated ligand concentration. An algorithm for determining these optimum windows is presented. As an example, we consider the measurement of intracellular calcium by indo-1 fluorescence emission ratio in cardiac myocytes. The optimum wavelength bands for collection of fluorescence are considerably wider than those commonly employed. The use of these windows in a pulsed-excitation time-resolved calcium measurement instrument resulted in improved signal to noise ratio of the calcium signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号