首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzymes of the purine nucleotide cycle-AMP deaminase, adenylosuccinate synthetase, and adenylosuccinate lyase-were examined as a functional unit in an in vitro system which simulates the purine nucleotide composition of sarcoplasm. Activity of each cycle enzyme in extracts of rat skeletal muscle was observed to increase as ATP/ADP, reflecting the energy state of the system, was lowered from approximately 50 to 1. The increase in AMP deaminase activity could be attributed to effects of energy state and factors such as AMP concentration, which are obligatorily coupled to energy state. The increases in synthetase and lyase activities were accounted for by increases in the concentration of IMP and adenylosuccinate, respectively. The inhibitory influence of IMP concentration on synthetase activity reported in other systems was not observed in this system; synthetase activity progressively increased as IMP concentration was raised to approximately 4 mM, and apparent saturation occurred at concentrations above 4 mM. Also, adenylosuccinate was found to be an activator of AMP deaminase. The results of this study document that the activities of the enzymes of the purine nucleotide cycle increase in parallel at low energy states, and the components of the cycle function as a coordinated unit with individual enzyme activities linked via concentrations of cycle intermediates.  相似文献   

2.
Rat muscle 5′-AMP aminohydrolase (EC 3.5.4.6), adenylosuccinate synthetase (EC 6.3.4.4), and adenylosuccinate lyase (EC 4.3.2.2) activities were elevated 50–60% in zinc-deficient weanling rats when compared with restricted-fed zinc supplemental control rats. In addition, the activities of these enzymes were increased by 50–100% when zinc-deficient rats were compared with ad libitum-fed controls. There was no significant difference in total muscle protein or total muscle zinc among the three groups of animals. This increased activity of the purine nucleotide cycle may be responsible for the recently observed increase in blood ammonia in zinc-deficient rats when compared to controls.  相似文献   

3.
OPERATION OF THE PURINE NUCLEOTIDE CYCLE IN ANIMAL TISSUES   总被引:1,自引:0,他引:1  
1. The operation of the purine nucleotide cycle, consisting of the enzymes adenylate deaminase (E.C. 3.5.4.6), adenylosuccinate synthetase (E.C. 6.3.4.4) and adenylosuccinate lyase (E.C. 4.3.2.2), has been reviewed with reference to its metabolic function in animal tissues.
2. Abundant evidence, both from in vitro and in vivo studies, suggests that the purine nucleotide cycle serves to stabilize the adenylate 'energy charge' (or 'phosphorylation potential') in the cytoplasm of vertebrate cells during a temporary imbalance between ATP-consumption and ATP-production. This stabilization, however, is absent or much less efficient in tissues of invertebrates.
3. The hypothesis that AMP-deaminase is involved in the regulation of glycolysis is not supported by recent work. In a variety of cell types, including skeletal muscle and blood platelets, blocking of AMP-deaminase activity (due to a genetic defect or to pharmacological inhibition) is without effect on the glycolytic rate. Detailed kinetic and histochemical analysis of energy metabolism shows lack of correlation between AMP-deaminase activity and glycolysis in skeletal muscle during exercise.
4. The purine nucleotide cycle appears to control the level of citric acid cycle intermediates in skeletal muscle. Pharmacological inhibition of adenylosuccinate lyase or adenylosuccinate synthetase leads to a reduced availability of four-carbon 'sparker' molecules to the Krebs cycle with a concomitant impairment of aerobic energy production during muscular work.
5. The cycle appears to be a major pathway for amino acid deamination in skeletal muscle and brain of vertebrates, but not in kidney or liver.  相似文献   

4.
Normal rat kidney contains primarily the L isozyme of adenylosuccinate synthetase. The increase in total adenylosuccinate synthetase activity that occures in response to NH4Cl-feeding or a low potassium diet is mainly due to increase in the L isozyme, rather than to an increase in the M isozyme. 1 day after uninephrectomy there is little change in total adenylosuccinate synthetase activity or isozyme distribution in the remaining kidney. These results do not support extension to kidney of the theory proposed for liver that the L isozyme is involved in purine biosynthesis while the M isozyme is involved in ammonia production from amino acids via the purine nucleotide cycle.  相似文献   

5.
Adenylosuccinate synthetase (IMP:L-aspartate ligase (GDP), EC 6.3.4.4) plays an important role in purine biosynthesis catalyzing the GTP-dependent conversion of IMP to AMP. The enzyme was purified from the cytosol of Dictyostelium discoideum using GTP-agarose chromatography as the critical step. It has an apparent molecular mass of 44 kDa. Monoclonal antibodies identified several forms of the enzyme with pI values between 8.1 and 9.0. Michaelis-Menten constants (Km) were low for the nucleotide substrates IMP (Km = 30 microM) and GTP (Km = 35 microM) as compared with the value for aspartic acid (Km = 440 microM). These values are in good agreement with constants reported from other organisms. Immunological studies indicated that the protein is predominantly localized in the cytosol and only partially associated with particulate fractions. The enzyme is present throughout the developmental cycle of D. discoideum. Using monoclonal antibodies, the gene was cloned from a lambda gt11 expression library. The complete sequence represents the first reported primary structure of an eucaryotic adenylosuccinate synthetase. Southern blots hybridized with a cDNA probe demonstrate that adenylosuccinate synthetase is encoded by a single gene and contains at least one intron. The deduced amino acid sequence shows 43% identity to adenylosuccinate synthetase from Escherichia coli. Homologous regions include short sequence motifs, such as the glycine-rich loop which is typical for GTP-binding proteins.  相似文献   

6.
Vertebrates possess two isozymes of adenylosuccinate synthetase. The acidic isozyme is similar to the synthetase from bacteria and plants, being involved in the de novo biosynthesis of AMP, whereas the basic isozyme participates in the purine nucleotide cycle. Reported here is the first instance of overexpression and crystal structure determination of a basic isozyme of adenylosuccinate synthetase. The recombinant mouse muscle enzyme purified to homogeneity in milligram quantities exhibits a specific activity comparable with that of the rat muscle enzyme isolated from tissue and K(m) parameters for GTP, IMP, and l-aspartate (12, 45, and 140 microm, respectively) similar to those of the enzyme from Escherichia coli. The mouse muscle and E. coli enzymes have similar polypeptide folds, differing primarily in the conformation of loops, involved in substrate recognition and stabilization of the transition state. Residues 65-68 of the muscle isozyme adopt a conformation not observed in any previous synthetase structure. In its new conformation, segment 65-68 forms intramolecular hydrogen bonds with residues essential for the recognition of IMP and, in fact, sterically excludes IMP from the active site. Observed differences in ligand recognition among adenylosuccinate synthetases may be due in part to conformational variations in the IMP pocket of the ligand-free enzymes.  相似文献   

7.
1. Enzymes that convert IMP into adenylosuccinate (adenylosuccinate synthetase) and adenylosuccinate into AMP (adenylosuccinate lyase) were isolated from wheat germ and pea seeds and their properties are described. 2. These enzymes were purified approx. 200-fold from wheat-germ extracts. 3. A heat treatment provided adenylosuccinate lyase free of adenylosuccinate synthetase but the behaviour of the two enzymes was almost identical in a number of fractionation procedures. The two activities were finally separated by filtration on Sephadex G-100. 4. The identification of these enzymes in plant tissues is discussed in relation to the pathway of purine synthesis.  相似文献   

8.
Adenylosuccinate synthetase (EC 6.3.4.4) catalyzes the first step in formation of AMP from IMP. At least two isozymes exist in vertebrate tissue. An acidic form, present in most tissues, has been suggested to be involved in de novo biosynthesis while a basic isozyme, which predominates in muscle, appears to function in the purine nucleotide cycle. Antibodies specific for the basic isozyme detect a single protein in mouse tissues with highest levels in skeletal muscle, tongue, esophagus, and heart tissue consistent with a role for the enzyme in muscle metabolism. A series of degenerate oligonucleotides were constructed based on peptide sequences from purified rat muscle enzyme and then used to clone a mouse muscle cDNA encoding the basic isozyme. The clone contains a open reading frame of 1356 bases with 452 amino acids. Northern analysis of RNA from mouse tissues showed a tissue distribution similar to that of the protein, indicating a high level of gene expression in muscle. Transfection of COS cells with the mouse muscle cDNA allows expression of a functional protein with a molecular mass of approximately 50 kDa, consistent with the open reading frame and the size of the isolated rat enzyme. The deduced amino acid sequence of the mouse synthetase is 47 and 37% identical to the synthetase sequences from Dictyostelium discoideum and Escherichia coli, respectively. The availability of antibodies and cDNA clones specific for the basic isozyme of adenylosuccinate synthetase from muscle will facilitate future genetic and biochemical analysis of this protein and its role in muscle physiology.  相似文献   

9.
The inhibition of Escherichia coli strain B and strain W-11 by 6-methylpurine depended on the formation of 6-methylpurine ribonucleotide by the action of adenine phosphoribosyltransferase (AMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.7). 6-Methylpurine ribonucleotide inhibited the de novo synthesis of purines, presumably via pseudofeedback inhibition of phosphoribosylpyrophosphate amidotransferase (EC 2.4.2.14). The same mechanism accounted for its inhibition of adenylosuccinate synthetase [IMP: l-aspartate ligase (GDP), EC 6.3.4.4]. Adenine and 6-methylaminopurine prevented inhibition by competing for the action of adenine phosphoribosyltransferase. In addition, adenine reversed this inhibition by replenishing the AMP to bypass both sites of inhibition. Nonproliferating suspensions of strain B-94, which lacked adenylosuccinate lyase (EC 4.3.2.2), converted exogenous hypoxanthine and aspartate to succinoadenine derivatives which accumulated in the medium. Compounds which inhibited adenylosuccinate synthetase inhibited accumulation of the succinoadenine derivatives. A method was described for the isolation of mutants which potentially possessed an altered adenylosuccinate synthetase.  相似文献   

10.
A systematic investigation into the interaction of several triazinyl dyes with two enzymes from purine metabolism, IMP dehydrogenase (IMP: NAD+ oxidoreductase, EC 1.2.1.14( and adenylosuccinate synthetase (IMP: L-aspartate ligase (GDP-forming), EC 6.3.4.4) has been conducted. Evidence from kinetic inhibition studies, enzyme inactivation with specific affinity labels and specific elution techniques from agarose-immobilised dyes indicate that triazine dyes such as Procion Blue H-B (Cibacron Blue F3G-A), Red HE-3B and Red H-3B are able to differentiate between the nucleotide-binding sites of these enzymes. This information has been exploited to design specific elution techniques for the purification of these enzymes by affinity chromatography.  相似文献   

11.
Regulation of isoleucine, valine, and leucine biosynthesis and isoleucyl-, valyl-, and leucyl-transfer ribonucleic acid (tRNA) synthetase formation was examined in two mutant strains of Escherichia coli. One mutant was selected for growth resistance to the isoleucine analogue, ketomycin, and the other was selected for growth resistance to both trifluoroleucine and valine. Control of the synthesis of the branched-chain amino acids by repression was altered in both of these mutants. They also exhibited altered control of formation of isoleucyl-tRNA synthetase (EC 6.1.15, isoleucine:sRNA ligase, AMP), valyl-tRNA synthetase (EC 6.1.1.9, valine:sRNA ligase, AMP), and leucyl-tRNA synthetase (EC 6.1.1.4, leucine:sRNA ligase, AMP). These results suggest the existence of a common element for the control of these two classes of enzymes in Escherichia coli.  相似文献   

12.
A comparative study of the operation of the purine nucleotide cycle and of the activity of adenylosuccinase in extracts of muscle from the two strains of dystrophic mouse shows that the cycle is defective in both cases in the conversion of adenylosuccinate to AMP. However, adenylosuccinase activity is only slightly reduced in the standard conditions for its direct assay.  相似文献   

13.
Pachkov M  Dandekar T  Korbel J  Bork P  Schuster S 《Gene》2007,396(2):215-225
Elementary modes analysis allows one to reveal whether a set of known enzymes is sufficient to sustain functionality of the cell. Moreover, it is helpful in detecting missing reactions and predicting which enzymes could fill these gaps. Here, we perform a comprehensive elementary modes analysis and a genomic context analysis of Mycoplasma pneumoniae nucleotide metabolism, and search for new enzyme activities. The purine and pyrimidine networks are reconstructed by assembling enzymes annotated in the genome or found experimentally. We show that these reaction sets are sufficient for enabling synthesis of DNA and RNA in M. pneumoniae. Special focus is on the key modes for growth. Moreover, we make an educated guess on the nutritional requirements of this micro-organism. For the case that M. pneumoniae does not require adenine as a substrate, we suggest adenylosuccinate synthetase (EC 6.3.4.4), adenylosuccinate lyase (EC 4.3.2.2) and GMP reductase (EC 1.7.1.7) to be operative. GMP reductase activity is putatively assigned to the NRDI_MYCPN gene on the basis of the genomic context analysis. For the pyrimidine network, we suggest CTP synthase (EC 6.3.4.2) to be active. Further experiments on the nutritional requirements are needed to make a decision. Pyrimidine metabolism appears to be more appropriate as a drug target than purine metabolism since it shows lower plasticity.  相似文献   

14.
Cell-free extracts of rat brain catalyze the reactions of the purine nucleotide cycle. Ammonia is formed during the deamination but not the amination phase of the cycle. The activity of adenylate deaminase in brain is sufficient to account for the maximum rates of ammonia production that have been reported. The activity of glutamate dehydrogenase is not sufficient to account for these rates of ammonia production. The activities of adenylosuccinate synthetase and adenylosuccinase are nearly sufficient to account for the steady state rates of ammonia production observed in brain. Demonstration of the cycle in extracts of brain is complicated by the occurrence of side reactions, in particular those catalyzed by phosphomonoesterase, nucleoside phosphorylase, and guanase.  相似文献   

15.
16.
l-Leucine inhibits urea synthesis in rat hepatocytes from a number of nitrogen sources, including ammonia. The inhibition by l-leucine is largely overcome by addition of 1 mM l-ornithine, suggesting that the main site of l-leucine action is at ornithine transcarbamylase, rather than at glutamate dyhydrogenase. l-Norvaline is a more potent inhibitor of urea synthesiss than is l-leucine, but again the inhibition is largely counteracted by l-ornithine. Addition of aminooxyacetate and l-norvaline strongly suppresses the formation of glucose and lactate from l-asparagine, suggesting that an alternate pathway of aspartate metabolism, the purine nucleotide cycle, in not a major pathway. Hadacidin, an inhibitor of adenylosuccinate synthetase, an enzyme of the purine nucleotide cycle, has no effect on urea synthesis in rat liver cells.  相似文献   

17.
The purine nucleotide cycle in the hind leg skeletal muscle of hereditary dystrophic mice (C57BL6J-dydy) was investigated. The amount of adenine nucleotide produced from adenylosuccinate by the muscle extract in the dystrophic group was less than 3 % of that in the control group, while adenine nucleotide plus adenylosuccinate converted from IMP in the dystrophic group was about 70 % of that of the control group. Moreover, the activity of AMP deaminase of the dystrophic group was about 50 % of that of the control group. These results indicate that the purine nucleotide cycle is defective in the dystrophic muscle. This abnormality was suggested to be caused by the considerably low activity of adenylosuccinase.  相似文献   

18.
By means of spectrophotometric method there was determined the activity of three enzymes of biosynthesis of purine nucleotides: amino imidazole ribonucleotide-carboxylase (AIR-carboxylase, EC 4.1.1.21), an enzyme of biosynthesis of purine nucleotides de novo in plerocercoids of Schistocephalus pungitii and Digramma interrupta; inosine monophosphate-dehydrogenase (IMPh-dehydrogenase, EC 1.2.1.14), an enzyme of salvage path, and adenylosuccinate lyase (EC 4.3.2.2), an enzyme taking part both in biosynthesis de novo and salvage in plerocercoids of Schistocephalus pungitii. The activity of AIR-carboxylase was not determined. Specific activities of adenylosuccinate lyase and IMPh-dehydrogenase amount to (1.3 +/- 0.3) x 10(-3) and (1.2 +/- 0.4) x 10(-3) mumole/min.mg protein, respectively. The activity of the three enzymes was determined in the liver of ten-spined stickleback, a host of S. pungitii plerocercoids. The question of metabolic dependence of Ligulidae plerocercoids on hosts to provide for purine bases is discussed.  相似文献   

19.
Vertebrates have muscle and non-muscle isozymes of adenylosuccinate synthetase (AdSS, EC 6.3.4.4), which catalyzes the first committed step in AMP synthesis. A novel muscle isozyme of adenylosuccinate synthetase, human AdSSL1, is identified from human bone marrow stromal cells. AdSSL1 is 98% identical to mouse muscle type AdSS1 and contains conserved sequence and structural features of adenylosuccinate synthetase. Human AdSSL1 gene is mapped to chromosome 14p32.33. After stimulation, leukemia cells express AdSSL1 in a time-dependent manner different from that of non-muscle adenylosuccinate synthetase. The human AdSSL1 is predominantly expressed in skeletal muscle and cardiac tissue consistent with the potential role for the enzyme in muscle metabolism. Overexpressed AdSSL1 protein in COS-7 cells locates in cytoplasm. Recombinant AdSSL1 protein possesses typical enzymatic activity to catalyze adenylosuccinate formation. The identification of human AdSSL1 with predominant expression in muscle tissue will facilitate future genetic and biochemical analysis of the enzyme in muscle physiology. (Mol Cell Biochem 269: 85–94, 2005)  相似文献   

20.
Bacillus subtilis genes purA, encoding adenylosuccinate synthetase, and guaA, coding for GMP synthetase, appear to be lethal when cloned in multicopy plasmids in Escherichia coli. The nucleotide sequences of purA and guaA were determined from a series of gene fragments isolated by polymerase chain reaction amplification, library screening, and plasmid rescue techniques. Identifications were based on amino acid sequence alignments with enzymes from other organisms. Comparison of the 5'-flanking regions of purA and guaA with the pur operon suggests similarities in mechanisms for gene regulation. Nucleotide sequences are now available for all genes involved in the 14-step pathway for de novo purine nucleotide synthesis in B. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号