首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Our laboratory reported previously that chimeric genes encoding either rat somatostatin (SS) or human GH (hGH), but containing the identical mouse metallothionein-I (MT) promoter/enhancer sequences and hGH 3'-flanking sequences, were selectively expressed in the gonadotrophs of transgenic mice. The experiments reported here were designed to identify the DNA sequences responsible for this unexpected cell-specific expression within the anterior pituitary. We produced new transgenic mice expressing fusion genes that tested separately the requirement of the MT or 3'-hGH sequences for gonadotroph expression. A fusion gene that retained the original MT and SS sequences, with a simian virus 40 polyadenylation signal exchanged for the 3'-hGH sequences, no longer directed strong pituitary expression, but was active in the liver. In contrast, a cytomegalovirus promoter/enhancer-SS-hGH fusion gene was expressed at the same high level in the anterior pituitaries of transgenic mice as the originally studied MT-SS-hGH gene. Immunohistochemical analysis indicated that pituitary expression of the cytomegalovirus promoter/enhancer-SS-hGH fusion gene was also restricted to gonadotroph cells in adult mice. These studies indicate that sequences within the 3'-flanking region of the hGH gene can direct expression of chimeric genes to pituitary cells that do not normally produce growth hormone.  相似文献   

2.
3.
In an attempt to use mouse metallothionein-I (mMT-I) regulatory sequences to direct expression of human ornithine transcarbamylase in the liver of transgenic animals, fusion genes joining either 1.6 kilobases or 185 base pairs of the mMT-I regulatory region to the human ornithine transcarbamylase protein-coding sequence were used to produce transgenic mice. In mice carrying the fusion gene with 1.6 kilobases of the mMT-I 5'-flanking sequences, transgene expression was observed in a wide range of tissues, but, unexpectedly, expression in liver was never observed. Surprisingly, in mice carrying the fusion gene regulated by only 185 base pairs of the mMT-I 5'-flanking sequences, the transgene was expressed exclusively in male germ cells during the tetraploid, pachytene stage of meiosis.  相似文献   

4.
5.
We previously reported that 2.1 kilobase pairs of the 5'-flanking sequence are sufficient for tissue-specific and hormonal/metabolic regulation of the fatty-acid synthase (FAS) gene in transgenic mice. We also demonstrated that the -65 E-box is required for insulin regulation of the FAS promoter using 3T3-L1 adipocytes in culture. To further define sequences required for FAS gene expression, we generated transgenic mice carrying from -644, -444, -278, and -131 to +67 base pairs of the rat FAS 5'-flanking sequence fused to the chloramphenicol acetyltransferase (CAT) reporter gene. Similar to the expression observed with -2100-FAS-CAT transgenic mice, transgenic mice harboring -644-FAS-CAT and -444-FAS-CAT expressed high levels of CAT mRNA only in lipogenic tissues (liver and adipose tissue) in a manner identical to the endogenous FAS mRNA. In contrast, -278-FAS-CAT and -131-FAS-CAT transgenic mice did not show appreciable CAT expression in any of the tissues examined. When previously fasted mice were refed a high carbohydrate, fat-free diet, CAT mRNA expression in transgenic mice harboring -644-FAS-CAT and -444-FAS-CAT was induced dramatically in liver and adipose tissue. The induction was virtually identical to that observed in -2100-FAS-CAT transgenic mice and to the endogenous FAS mRNA. In contrast, -278-FAS-CAT transgenic mice showed induction by feeding, but at a much lower magnitude in both liver and adipose tissue. The -131-FAS-CAT transgenic mice did not show any CAT expression either when fasted or refed a high carbohydrate diet. To study further the effect of insulin, we made these transgenic mice insulin-deficient by streptozotocin treatment. Insulin administration to the streptozotocin-diabetic mice increased CAT mRNA levels driven by the -644 FAS and -444 FAS promoters in liver and adipose tissue, paralleling the endogenous FAS mRNA levels. In the case of -278-FAS-CAT, the induction observed was at a much lower magnitude, and deletion to -131 base pairs did not show any increase in CAT expression by insulin. This study demonstrates that the sequence requirement for FAS gene regulation employing an in vitro culture system does not reflect the in vivo situation and that two 5'-flanking regions are required for proper nutritional and insulin regulation of the FAS gene. Cotransfection of the upstream stimulatory factor and various FAS promoter-luciferase constructs as well as in vitro binding studies suggest a function for the upstream stimulatory factor at both the -65 and -332 E-box sequences.  相似文献   

6.
The human G gamma-globin and beta-globin genes are expressed in erythroid cells at different stages of human development, and previous studies have shown that the two cloned genes are also expressed in a differential stage-specific manner in transgenic mice. The G gamma-globin gene is expressed only in murine embryonic erythroid cells, while the beta-globin gene is active only at the fetal and adult stages. In this study, we analyzed transgenic mice carrying a series of hybrid genes in which different upstream, intragenic, or downstream sequences were contributed by the beta-globin or G gamma-globin gene. We found that hybrid 5'G gamma/3'beta globin genes containing G gamma-globin sequences upstream from the initiation codon were expressed in embryonic erythroid cells at levels similar to those of an intact G gamma-globin transgene. In contrast, beta-globin upstream sequences were insufficient for expression of 5'beta/3'G gamma hybrid globin genes or a beta-globin-metallothionein fusion gene in adult erythroid cells. However, beta-globin downstream sequences, including 212 base pairs of exon III and 1,900 base pairs of 3'-flanking DNA, were able to activate a 5'G gamma/3'beta hybrid globin gene in fetal and adult erythroid cells. These experiments suggest that positive regulatory elements upstream from the G gamma-globin and downstream from the beta-globin gene are involved in the differential expression of the two genes during development.  相似文献   

7.
Transferrin (TF) is a plasma protein that transports and is regulated by iron. The aim of this study was to characterize human TF gene sequences that respond in vivo to cellular signals affecting expression in various tissues and to iron administration. Chimeric genes were constructed containing 152, 622, and 1152 base pairs (bp) of the human TF5'-flanking region with the coding region of a reporter gene, CAT (chloramphenicol acetyltransferase), and introduced into the germ line of mice. Transgenes containing TF 5'-flanking sequences to -152 bp were expressed poorly in all tissues examined. In contrast, transgenes containing TF sequences to -622 or -1152 bp were expressed at high levels in brain and liver, greater than or equal to 1000-fold higher than tissues such as heart and testes. Liver and brain are major sites of endogenous TF mRNA synthesis, but liver mRNA levels are 10-fold higher than brain. A significant diminution of CAT enzymatic activity in liver accompanied iron administration in both TF(0.67) and TF(1.2)CAT transgenic mice, mimicking the decrease of transferrin in humans following iron overload. Levels of endogenous plasma transferrin also decreased in iron-treated transgenic mice. Transgenic mouse lines carrying human TF chimeric genes will be useful models for analyzing the regulation of human transferrin by iron and for determining the molecular basis of transferrin regulation throughout mammalian development into the aging process.  相似文献   

8.
9.
The high-level expression of the rat whey acidic protein (WAP) gene in transgenic mice depends on the interaction of 5'-flanking promoter sequences and intragenic sequences. Constructs containing 949 bp of promoter sequences and only 70 bp of 3'-flanking DNA were expressed at uniformly high levels, comparable to or higher than that of the endogenous gene. Although this WAP transgene was developmentally regulated, it was expressed earlier during pregnancy than was the endogenous WAP gene. Replacement of 3' sequences, including the WAP poly(A) addition site, with simian virus 40 late poly(A) sequences resulted in an approximately 20-fold reduction in the expression of WAP mRNA in the mammary gland during lactation. Nevertheless, position-independent expression of the transgene was still observed. Further deletion of 91 bp of conserved WAP 3' untranslated region (UTR) led to integration site-dependent expression. Position independence was restored following reinsertion of the WAP 3' UTR into the deleted construct at the same location, but only when the insertion was in the sense orientation. The marked differences observed between the expression levels of the 3'-end deletion constructs in transgenic mice were not seen in transfected CID 9 mammary epithelial cells. In these cells, expression of the endogenous WAP gene was dependent on the interaction of these cells with a complex extracellular matrix. In contrast, the transfected WAP constructs were not dependent on extracellular matrix for expression. Thus, both the abnormal expression of WAP in cells cultured on plastic and the precocious developmental expression of WAP in transgenic mice may reflect the absence of a negative control element(s) within these recombinant constructs.  相似文献   

10.
11.
The regulation and possible function of the preproenkephalin gene in testis were studied in vivo in transgenic mice containing: (1) bases ?193 to +210 of the human proenkephalin gene and an additional one kilobase of 3' proenkephalin flanking sequence driving expression of bacterial chloramphenicol acetyltransferase (CAT), and (2) the same promoter and flanking sequences driving expression of a rat proenkephalin cDNA. Five lines of mice, designated HEC1–5, expressed the first construct and 10, HER1–10, the second. Each HEC male and many HER males showed dramatic expression of the transgene in the testis, although much lower expression was observed in the brain and other enkephalin-producing tissues. High levels of expression in testis can thus be achieved with a very short promoter region and do not require intron A sequences previously considered necessary. Altered enkephalin expression may affect testicular function. One founder, HER8, displayed grossly abnormal testicular morphology and was completely infertile. A second founder, HER6, had low sperm motility. Two offspring from other lines also displayed subnormal fertility. These studies support a role for specific promoter sequences in testis expression and may further support a significant role for proenkephalin in testicular function. © 1994 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
Previous studies in our laboratory have demonstrated the mammary-specific expression of the entire rat beta-casein gene with 3.5 kilobases (kb) of 5' and 3.0 kb of 3' DNA in transgenic mice (Lee et al., Nucleic Acids Res. 16:1027-1041, 1988). In an attempt to localize sequences that dictate this specificity, lines of transgenic mice carrying two different rat beta-casein promoter-bacterial chloramphenicol acetyltransferase (cat) fusion genes have been established. Twenty and eight lines of transgenic mice carrying two fusion genes containing either 2.3 or 0.5 kb, respectively, of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A were identified, most of which transmitted the transgenes to their offspring in a Mendelian pattern. CAT activity was detected predominantly in the lactating mammary gland of female transgenic mice but not in the male mammary fat pad. A several-hundred-fold variation in the level of cat expression was observed in the mammary gland of different lines of mice, presumably due to the site of integration of the transgenes. CAT activity was increased in the mammary gland during development from virgin to midpregnancy and lactation. Unexpectedly, the casein-cat transgenes were also expressed in the thymus of different lines of both male and female mice, in some cases at levels equivalent to those observed in the mammary gland, and in contrast to the mammary gland, CAT activity was decreased during pregnancy and lactation in the thymus. Thus, 0.5 kb of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A are sufficient to target bacterial cat gene expression to the mammary gland of lactating mice.  相似文献   

15.
16.
17.
18.
19.
The myelin basic proteins (MBPs) are a family of polypeptides that are predominantly expressed in the nervous system where they play a major role in myelination. We have generated four lines of transgenic mice carrying a transgene in which 1.34 kb of the 5'-flanking sequence of the mouse MBP gene was fused upstream of the coding region of the Escherichia coli lac Z gene in order to investigate developmental and tissue-specific expression of the MBP gene. Expression of both the lacZ transgene and the endogenous MBP gene followed a common developmental pattern in mouse brain. Transgene expression was detected in primary oligodendrocytes, but not in type 2 astrocytes. In addition, the lacZ gene product was expressed in epithelial cells of certain nonneural tissues, namely kidney, epididymis, ureter, and seminal vesicles. The ectopic expression of the transgene was associated with the development of DNase I hypersensitive sites at the site of insertion which was found to be within the intron 1 region of the endogenous MBP gene. The results reported here strongly suggest that the 1.34-kb 5'-flanking region of the MBP gene contains cis-regulatory elements that confer developmental regulation of the MBP gene, although this region appears to lack elements that restrict its expression to the nervous system.  相似文献   

20.
The E alpha MHC class II gene with 1.4 kb of 5'-flanking and 0.5 kb of 3'-flanking sequences was introduced into (H-2b X s)F2 mice, which do not express their endogenous E alpha gene. The transgene was expressed in thymic tissue and in adherent spleen cells and was induced in peritoneal exudate cells by gamma-interferon. In contrast to the normal E alpha gene, there was no expression in B lymphocytes. Since transgenic animals made with constructs containing 3.2 kb and 2 kb of 5'-flanking sequences show normal expression pattern of the E alpha gene, it appears that deletion of 5'-flanking sequences between -1.4 kb and -2 kb inactivated or eliminated regulatory sequences required for expression of E alpha specifically in B cells. The presence of pBR327 DNA linked to the -1.4 kb E alpha transgene suppresses expression in peripheral adherent cells, yielding mice expressing E alpha only in the thymus. These mice appear to be tolerant to I-E, as measured in mixed leukocyte response experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号