首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A survey of entomopathogenic nematodes was conducted in the north Pacific (Guanacaste Conservation Area) and southeast Caribbean (Gandoca-Manzanillo Natural Refuge) regions of Costa Rica. Out of a total of 41 soil samples, 5 were positive for entomopathogenic nematodes (20.5%), with 3 (12.3%) containing Steinernema and 2 (8.2%) Heterorhabditis isolates. Morphological and molecular studies were undertaken to characterize these isolates. The Heterorhabditis isolates were identified as Heterorhabditis indica and the three Steinernema isolates were identified as two new undescribed species. H. indica was recovered from a coastal dry forest. Steinernema n. sp. 1 was isolated from a rainforest valley, between volcanoes. Steinernema sp. n. 2 was isolated from sand dunes in the Caribbean Coast (Punta Uva) near the rainforest strip along the coast. Although limited to two geographic regions, this study suggests entomopathogenic nematodes may be diverse and perhaps widely distributed in Costa Rica. A more intensive survey, covering all geographic regions is currently undergoing.  相似文献   

2.
We tested the effect of soil type on the performance of the entomopathogenic pathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. Soil types used were loamy sand, sandy loam, loam, silt loam, clay loam, acidic sand, and a highly organic potting mix. Infectivity was tested by exposing third-instar Anomala orientalis or Popillia japonica to nematodes in laboratory and greenhouse experiments and determining nematode establishment in the larvae and larval mortality. Infectivity of H. bacteriophora and H. zealandica was the highest in potting mix, did not differ among loamy sand and the loams, and was the lowest in acidic sand. Infectivity of S. glaseri was significantly lower in acidic sand than in loamy sand in a laboratory experiment but not in a greenhouse experiment, and did not differ among the other soils. Infectivity of S. scarabaei was lower in silt loam and clay loam than in loamy sand in a greenhouse experiment but not in a laboratory experiment, but was the lowest in acidic sand and potting mix. Persistence was determined in laboratory experiments by baiting nematode-inoculated soil with Galleria mellonella larvae. Persistence of both Heterorhabditis spp. and S. glaseri was the shortest in potting mix and showed no clear differences among the other substrates. Persistence of S. scarabaei was high in all substrates and its recovery declined significantly over time only in clay loam. In conclusion, generalizations on nematode performance in different soil types have to be done carefully as the effect of soil parameters including soil texture, pH, and organic matter may vary with nematode species.  相似文献   

3.
Entomopathogenic nematodes cannot be considered only as parasitic organisms. With dead Galleria mellonella larvae, we demonstrated that these nematodes use scavenging as an alternative survival strategy. We consider scavenging as the ability of entomopathogenic nematodes to penetrate, develop and produce offspring in insects which have been killed by causes other than the nematode-bacteria complex. Six Steinernema and two Heterorhabditis species scavenged but there were differences among them in terms of frequency of colonisation and in the time after death of G. mellonella larvae that cadavers were penetrated. The extremes of this behaviour were represented by Steinernema glaseri which was able to colonise cadavers which had been freeze-killed 240 h earlier and Heterorhabditis indica which only colonised cadavers which had been killed up to 72 h earlier. Also, using an olfactometer, we demonstrated that entomopathogenic nematodes were attracted to G. mellonella cadavers.  相似文献   

4.
The susceptibility of the boll weevil (BW), Anthonomus grandis Boheman, to Steinernema riobrave and other nematode species in petri dishes, soil (Hidalgo sandy clay loam), and cotton bolls and squares was investigated. Third instar weevils were susceptible to entomopathogenic nematode (EN) species and strains in petri dish bioassays at 30 degrees C. Lower LC(50)'s occurred with S. riobrave TX- 355 (2 nematodes per weevil), S. glaseri NC (3), Heterorhabditis indicus HOM-1 (5), and H. bacteriophora HbL (7) than H. bacteriophora IN (13), S. riobrave TX (14), and H. bacteriophora HP88 (21). When infective juveniles (IJs) of S. riobrave were applied to weevils on filter paper at 25 degrees C, the LC(50) of S. riobrave TX for first, second, and third instars, pupae, and 1-day-old and 10-days-old adult weevils were 4, 5, 4, 12, 13, and 11IJs per weevil, respectively. The mean time to death, from lowest to highest concentration, for the first instar (2.07 and 1.27days) and second instar (2.55 and 1.39days) weevils were faster than older weevil stages. But, at concentrations of 50 and 100IJs/weevil, the mean time to death for the third instar, pupa and adult weevils were similar (1.84 and 2.67days). One hundred percent weevil mortality (all weevil stages) occurred 3days after exposure to 100IJs per weevil. Invasion efficiency rankings for nematode concentration were inconsistent and changed with weevil stage from 15 to 100% when weevils were exposed to 100 and 1IJs/weevil, respectively. However, there was a consistent relationship between male:female nematode sex ratio (1:1.6) and nematode concentration in all infected weevil stages. Nematode production per weevil cadaver increased with increased nematode concentrations. The overall mean yield of nematodes per weevil was 7680IJs. In potted soil experiments (30 degrees C), nematode concentration and soil moisture greatly influenced the nematode efficacy. At the most effective concentrations of 200,000 and 400,000IJs/m(2) in buried bolls or squares, higher insect mortalities resulted in pots with 20% soil moisture either in bolls (94 and 97% parasitism) or squares (92 and 100% parasitism) than those of 10% soil moisture in bolls (44 and 58% parasitism) or squares (0 and 13% parasitism). Similar results were obtained when nematodes were sprayed on the bolls and squares on the soil surface. This paper presents the first data on the efficacy of S. riobrave against the boll weevil, establishes the potential of EN to control the BW inside abscised squares and bolls that lay on the ground or buried in the soil.  相似文献   

5.
Galleria mellonella L. larvae were infected with three species (seven strains) of Steinernema spp. or three species (three strains) of Heterorhabditis spp. Infected larvae were incubated at 22, 27, and 32 degrees C. Larvae were dorsally dissected every 6h over a 48-h period. Hemolymph was collected and streaked on tryptic soy agar plates. Several non-symbiotic bacterial species were identified from infected insect cadavers: Enterobacter gergoviae, Vibrio spp., Pseudomonas fluorescens type C, Serratia marcescens, Citrobacter freundii, and Serratia proteomaculans. At 18-24 h incubation, the nematode-associated symbiont occurred almost exclusively. Bacterial associates generally appeared outside the 18-24 h window. Infective juveniles of Steinernema feltiae (Filipjev) (27), Steinernema riobrave Cabanillas, Poinar, and Raulston (Oscar), or Steinernema carpocapsae (Weiser) (Kapow) were left untreated, or surface sterilized using thimerosal, then pipetted under sterile conditions onto tryptic soy agar plates. Several additional species of associated bacteria were identified using this method compared with the less extensive range of species isolated from infected G. mellonella. There was no difference in bacterial species identified from non-sterile or surface sterilized nematodes, suggesting that the bacteria identified originated from either inside the nematode or between second and third stage juvenile cuticles. Infective juveniles of S. feltiae (Cowles), S. carpocapsae (Cowles), and H. bacteriophora Poinar (Cowles) were isolated from field samples. Nematodes were surface-sterilized using sodium hypochlorite, mixed with G. mellonella hemolymph, and pipetted onto Biolog BUG (with blood) agar. Only the relevant symbionts were isolated from the limited number of samples available. The nematodes were then cultured in the laboratory for 14 months (sub-cultured in G. mellonella 7-times). Other Enterobacteriaceae could then be isolated from the steinernematid nematodes including S. marcescens, Salmonella sp., and E. gergoviae, indicating the ability of the nematodes to associate with other bacteria in laboratory culture.  相似文献   

6.
The entomopathogenic nematodes Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema glaseri, and Steinernema feltiae were exposed to freezing while inside their hosts. Survival was assessed by observing live and dead nematodes inside cadavers and by counting the infective juveniles (IJs) that emerged after freezing. We (1) measured the effects of 24h of freezing at different times throughout the course of an infection, (2) determined the duration of freezing entomopathogenic nematodes could survive, (3) determined species differences in freezing survival. Highest stage-specific survival was IJs for S. carpocapsae, and adults for H. bacteriophora. When cadavers were frozen two or three days after infection, few IJs emerged from them. Freezing between five and seven days after infection had no negative effect on IJ production. No decrease in IJ production was measured for H. bacteriophora after freezing. H. bacteriophora also showed improved survival inside versus outside their host when exposed to freezing.  相似文献   

7.
Steinernematid nematodes are parasites that are important natural regulating agents of insect populations. The infective juvenile nematodes respond to a variety of stimuli that aid in survival and host finding. Host finding strategies among steinernematids differ along a continuum from ambush (sit & wait) to cruiser (search & destroy). In this paper we describe directional movement in response to an electrical current, which was generated on agar plates. Specifically, Steinernema glaseri (a cruiser) moved to a higher electric potential, whereas Steinernema carpocapsae, an ambusher, moved to a lower electric potential. Thus, we hypothesize that steinernematids may detect electrical currents or electromagnetic fields in nature, and these stimuli may be used differentially among species for host finding or enhancing other fitness characters.  相似文献   

8.
The potential of entomopathogenic nematodes, Heterorhabditis bacteriophora, Heterorhabditis zealandica and Steinernema khoisanae, to infect pupariating larvae, pupae and adults of Ceratitis capitata and Ceratitis rosa was investigated in laboratory bioassays. Pupariating larvae and adult flies were susceptible to nematode infection, with no infection recorded for the pupae. Pupariating larvae of C. capitata were generally more susceptible to infection than those of C. rosa. Significantly more larvae of C. capitata were infected by H. bacteriophora. For C. rosa, highest infectivity of larvae was obtained with H. zealandica. In contrast, adults of both species were highly infected by S. khoisanae.  相似文献   

9.
The free-living stage of entomopathogenic nematodes occurs in soil, and is an environmental-friendly alternative for biological control. However, their dispersal capability is limited. Earthworms improve soil characteristics, changing soil structure and influencing many edaphic organisms. Thus, earthworms could be used as vectors to introduce/disperse beneficial organisms. Nevertheless this interaction has not been studied in detail. This study presents the infectivity results of Steinernema feltiae after passing through the Eisenia fetida gut. Although entomopathogenic nematodes have no deleterious effects on earthworms, their passage through E. fetida gut seriously affected their mobility and virulence.  相似文献   

10.
The guava weevil, Conotrachelus psidii, is a major pest of guava in Brazil and causes severe reduction in fruit quality. This weevil is difficult to control with insecticides because adults emerge over a long period, and larvae develop to the fourth-instar inside the fruit and move to the soil for pupation. We assessed the virulence of entomopathogenic nematodes to fourth-instar larvae in soil by comparing their susceptibility to nine species or strains: Heterorhabditis bacteriophora HP88, H. baujardi LPP7, and LPP1, H. indica Hom1, Steinernema carpocapsae All and Mexican, S. feltiae SN, S. glaseri NC, and S. riobrave 355. In petri dish assays with sterile sand at a concentration of 100 infective juveniles (IJs) of a given nematode species/strain, larval mortality ranged from 33.5 to 84.5%, with the heterorhabditids being the most virulent. In sand column assays with H. baujardi LPP7, H. indica Hom1, or S. riobrave 355 at concentrations of 100, 200, and 500 IJs, mortality was greater than the control only for H. baujardi (62.7%) and H. indica (68.3%) at the highest concentration. For H. baujardi LPP7 in a petri dish assay, the time required to kill 50 and 90% of the larvae (LT50 and LT90) for 100 IJs was 6.3 and 9.9 days, whereas the lethal concentration required to kill 50 and 90% of the larvae (LC50 and LC90) over 7 days was 52 and 122.2 IJs. In a greenhouse study with guava trees in 20-L pots, 10 weevil larvae per pot, and concentrations of 500, 1000 or 2000 IJs, H. baujardi LPP7 caused 30 and 58% mortality at the two highest concentrations. These results show that H. baujardi is virulent to fourth-instar larvae and has potential as a biological control agent in IPM programs.  相似文献   

11.
Entomopathogenic nematodes are widespread in nature and commonly used in the biological control of insect pests. However, we understand little about how these organisms disperse. We show in a laboratory setting that the entomopathogenic nematode Heterorhabditis marelatus is phoretically dispersed by a non-host organism, the isopod Porcellio scaber. These species both inhabit tunnels excavated in the roots and lower stems of bush lupine (Lupinus arboreus) by the nematodes' primary prey, larvae of the ghost moth Hepialus californicus. Phoretic dispersal via P. scaber may play a role in the metapopulation dynamics of this nematode.  相似文献   

12.
Biological control potential of nine entomopathogenic nematodes, Heterorhabditis bacteriophora CLO51 strain (HbCLO51), H. megidis VBM30 strain (HmVBM30), H. indica, Steinernema scarabaei, S. feltiae, S. arenarium, S. carpocapsae Belgian strain (ScBE), S. glaseri Belgian strain (SgBE) and S. glaseri NC strain (SgNC), was tested against second-, and third-instar larvae and pupae of Hoplia philanthus in laboratory and greenhouse experiments. The susceptibility of the developmental stages of H. philanthus differed greatly among tested nematode species/strains. In the laboratory experiments, SgBE, SgNC, HbCLO51 and HmVBM30 were highly virulent to third-instar larvae and pupae while SgBE was only virulent to second-instar larvae. Pupae were highly susceptible to HbCLO51, HmVBM30, SgBE and SgNC (57–100%) followed by H. indica and S. scarabaei (57–76%). In pot experiments, HbCLO51, SgBE and S. scarabaei were highly virulent to the third-instar larvae compared to the second-instar larvae. Our observations, combined with those of previous studies on other nematode and white grub species, show that nematode virulence against white grub developmental stages varies with white grub and nematode species.  相似文献   

13.
14.
The quality of an insect as a host to an entomopathogenic nematode infective juvenile depends in part on whether or not the insect is already infected and on the stage of that infection. Previous research has shown that nematode response to hosts can change after infection and that, for uninfected hosts, CO(2) can be an important cue used by infective stage juveniles during attraction. We hypothesized that CO(2) production from an insect changes after it is infected, and that these changes could influence nematode infection decisions. Changes in CO(2) released by two insect species (Galleria mellonella and Tenebrio molitor) after infection by one of four nematode species (Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri, or Steinernema riobrave) were measured. Measurements were taken every 2h from time of initial exposure to nematodes up to 224 h after infection. Dead (freeze-killed) and live uninfected insects were used as controls. Infected G. mellonella showed two distinct peaks of CO(2) production: one between 20 and 30 h and the other between 70 and 115 h after exposure to the nematodes. Peaks were up to two times higher than levels produced by uninfected insects. Infected T. molitor showed only one peak between 25 and 50h. We found differences in peak height and timing among nematode and insect species combinations. The influence of these changes in CO(2) production on IJ attraction and infection behavior remains to be determined.  相似文献   

15.
We tested for soil substrate effects on the movement and infectivity of naturally co-occurring entomopathogenic nematodes Steinernema feltiae and Heterorhabditis marelatus, alone and in combination. We manipulated the presence and bulk density of soil and added Galleria mellonella baits within capped and perforated 15mL centrifuge tubes. Sampling tubes were then deployed in situ into field and laboratory settings as experimental traps for infective juveniles. In comparisons with standard soil collections from Lupinus arboreus rhizospheres, sampling tubes were equally sensitive to the presence of H. marelatus and more sensitive to S. feltiae. In laboratory microcosms, both EPN species infected Galleria at high frequencies in tubes lacking soil and in the absence of heterospecifics. Infection frequency of S. feltiae was unaffected by the presence of H. marelatus, but it declined with higher soil bulk density inside tubes. In contrast, detectable infection frequency by H. marelatus was reduced only marginally by the presence of soil but severely by the presence of S. feltiae. Thus, the presence of soil in tubes reversed the identity of dominant species infecting Galleria in tubes, an effect magnified when soils were compacted. Moreover, S. feltiae rarely moved into tubes lacking Galleria baits, whereas H. marelatus colonized unbaited tubes 4- to 5-fold more frequently than S. feltiae. In situ, sampling tubes acted as filters to reduce interference and contamination by fungal pathogens common in field soils. The method allows precision sampling with minimal soil disturbance while protecting bait insects from scavengers. Manipulation of tube design may allow selective sampling of EPN species, depending on the abiotic characteristics of soils, and the biology, behavior, and interspecific interactions of coexisting species.  相似文献   

16.
Entomopathogenic nematodes were screened for efficacy against the cottonwood borer, Plectrodera scalator (Fabricius). Steinernema feltiae SN and S. carpocapsae All killed 58 and 50% of larvae, respectively, in filter paper bioassays but less than 10% in diet cup bioassays. S. glaseri NJ, S. riobrave TX, and H. indica MG-13 killed less than 10% of larvae in both assays. H. marelata IN was ineffective in the diet cup bioassay and killed 12.9% of larvae in a filter paper bioassay. The nematode isolates we tested are not suitable for use as biological control agents against P. scalator.  相似文献   

17.
We examined the influence of insect cadaver desiccation on the virulence and production of entomopathogenic nematodes (EPNs), common natural enemies of many soil-dwelling insects. EPNs are often used in biological control, and we investigated the feasibility of applying EPNs within desiccated insect cadavers. Desiccation studies were conducted using the factitious host, Galleria mellonella (Lepidoptera: Pyralidae, wax moth larvae) and three EPN species (Heterorhabditis bacteriophora ‘HB1’, Steinernema carpocapsae ‘All’, and Steinernema riobrave). Weights of individual insect cadavers were tracked daily during the desiccation process, and cohorts were placed into emergence traps when average mass losses reached 50%, 60%, and 70% levels. We tracked the proportion of insect cadavers producing infective juveniles (IJs), the number and virulence of IJs produced from desiccated insect cadavers, and the influence of soil water potentials on IJ production of desiccated insect cadavers. We observed apparent differences in the desiccation rate of the insect cadavers among the three species, as well as apparent differences among the three species in both the proportion of insect cadavers producing IJs and IJ production per insect cadaver. Exposure of desiccated insect cadavers to water potentials greater than −2.75 kPa stimulated IJ emergence. Among the nematode species examined, H. bacteriophora exhibited lower proportions of desiccated insect cadavers producing IJs than the other two species. Desiccation significantly reduced the number of IJs produced from insect cadavers. At the 60% mass loss level, however, desiccated insect cadavers from each of the three species successfully produced IJs when exposed to moist sand, suggesting that insect cadaver desiccation may be a useful approach for biological control of soil insect pests.  相似文献   

18.
During a random survey of entomopathogenic nematodes in the provinces of Sichuan and Gansu (eastern Tibet) in 2004, soil samples from several sites were collected and tested for the incidence of entomopathogenic nematodes. A new species was collected in this survey and it is described herein as Steinernema cholashanense n. sp. Steinernema cholashanense n. sp. is characterized by morphology and morphometry of the IJ and male. For the IJ, the new species can be recognized by the average body length 843 microm, esophagus length 125 microm, H%=39% and E%=81%. The lateral field pattern is 2, 5, 7, 4, 2. The male of the first generation is characterized by spicule shape and length and especially with prominent velum and the presence of a mucron on both generations. The average body length of the IJ of S. cholashanense n. sp. (843 microm) is shorter than that of S. oregonense (980 microm), S. kraussei (951 microm) and S. litorale (909 microm), similar to that of S. feltiae (849 microm), but longer than that of S. weiseri (740 microm), S. jollietti (711 microm) and S. hebeiense (658 microm). Esophagus length of the new species (125 microm) is closer to that of S. jollieti (123 microm) but longer than that of S. weiseri (113 microm) and shorter than that of S. oregonense (132 microm), S. kraussei (134 microm) and S. feltiae (136 microm). E% of the new species (81) is similar to that of S. kraussei (80), but smaller than that of S. jollieti (88), S. weiseri (95), S. oregonense (100) and S. feltiae (119). Spicule head length of the new species is almost the same as its width, this character is similar to that of S. kraussei but it is different from this species by its prominent velum. The new species can be recognized further by characteristics of sequences of ITS and D2D3 regions and cross hybridization with closely related species, S. feltiae, S. kraussei and S. oregonense.  相似文献   

19.
Steinernema sichuanense n. sp. is characterized by male, female and IJ. For male, the spicules are robust with prominent rostrum; gubernaculum has blunt anterior end; cuneus is arrow-shaped, pointed posteriorly. Second-generation male has a prominent mucron. For female, tail usually has one to four papillae-like projections on tail tip; post anal swelling is absent. For IJ, body length is about 710 microm; lateral field has six ridges; the formula of lateral field is 2, 5, 6, 4, 2 with two prominent submarginal ridges; tail usually has a dorsal depression. In Steinernema affine/intermedium group, the IJ of S. sichuanense n. sp. differs from S. affine by its absence of the internal tail spine; differs from Steinernema beddingi by its six ridges in lateral field compared to 4 for S. beddingi. For male mucron is absent in both generations of S. affine, S. intermedium and S. beddingi, whereas it is present in the second-generation of S. sichuanense sp. n. Morphology and morphometrics of spicules and gubernacula of the four species in S. affine/intermedium group are quite different based on SEM photographs. For female, the postanal swelling is absent in the first-generation of S. sichuanense n. sp. whereas S. affine and S. intermedium have slight swelling and S. beddingi has conspicuous swelling. The new species is further recognized by characterization of sequences of ITS and D2/D3 regions of the ribosomal DNA. The symbiotic bacterium associated to S. sichuanense belongs to the species Xenorhabdus bovienii.  相似文献   

20.
The nematode Steinernema carpocapsae infects and kills many pest insects in agro-ecosystems and is commonly used in biocontrol of these pests. Growth of the nematodes prior to distribution for biocontrol commonly results in deterioration of traits that are essential for nematode persistence in field applications. To better understand the mechanisms underlying trait deterioration of the efficacy of natural parasitism in entomopathogenic nematodes, we explored the maintenance of fitness related traits including reproductive capacity, heat tolerance, virulence to insects and ‘tail standing’ (formerly called nictation) among laboratory-cultured lines derived from natural, randomly mating populations of S. carpocapsae. Laboratory cultured nematode lines with fitness-related trait values below wild-type levels regained wild-type levels of reproductive and heat tolerance traits when outcrossed with a non-deteriorated line, while virulence and ‘tail standing’ did not deteriorate in our experiments. Crossbreeding two trait-deteriorated lines with each other also resulted in restoration of trait means to wild-type levels in most crossbred lines. Our results implicate inbreeding depression as the primary cause of trait deterioration in the laboratory cultured S. carpocapsae. We further suggest the possibility of creating inbred lines purged of deleterious alleles as founders in commercial nematode growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号