首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive and specific high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS) method has been developed at our center for the determination of glimepiride in human plasma. After the addition of the internal standard, plasma samples were extracted by liquid-liquid extraction technique using diethyl ether. The compounds were separated on a prepacked C18 column using a mixture of acetonitrile, methanol and ammonium acetate buffer as mobile phase. A Finnigan LCQDUO ion trap mass spectrometer connected to an Alliance Waters HPLC was used to develop and validate the method. The analytical method was validated according to the FDA bioanalytical method validation guidance. The results were within the accepted criteria as stated in the aforementioned guidance. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 5.0-500.0 ng/ml with a coefficient of determination (r2) of 0.9998. Accuracy for glimepiride ranged from 100.58 to 104.48% at low, mid and high levels. The intra-day precision was better than 12.24%. The lower limit of quantitation (LLOQ) was identifiable and reproducible at 5.0 ng/ml with a precision of 7.96%. The proposed method enables the unambiguous identification and quantitation of glimepiride for pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

2.
A sensitive and specific high-performance liquid chromatography (HPLC)-electrospray ionization tandem mass spectrometry (MS-MS) was developed for the determination of bulleyaconitine A (BLA) in human plasma. BLA and internal standard (I.S.) ketoconazole were extracted from the plasma by a liquid-liquid extraction. The supernatant was evaporated to complete dryness and reconstituted with acetonitrile containing 0.1% acetic acid before injecting into an ODS MS column. The gradient mobile phase was composed of a mixture of acetonitrile (containing 0.1% acetic acid, v/v) and 0.1% acetic acid aqueous solution eluted at 0.3 ml/min. BLA and I.S. were determined by multiple reaction monitoring using precursor-->product ion combinations at m/z 644.6-->584.3 and 531.2-->81.6, respectively. Linearity was established for the concentration range of 0.12-6 ng/ml. The recoveries of BLA ranged from 96.93 to 113.9% and the R.S.D. was within 20%. The method is rapid and applicable to the pharmacokinetic studies of BLA in human.  相似文献   

3.
Morphine (MOR) is an opioid analgesic used for the treatment of moderate to severe pain. MOR is extensively metabolized to morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). A rapid and sensitive method that was able to reliably detect at least 0.5 ng/ml of MOR and 1.0 ng/ml of M6G was required to define their pharmacokinetic profiles. An LC–MS–MS method was developed in our laboratory to quantify all three analytes with the required sensitivity and a rapid turnaround time. A solid-phase extraction (SPE) was used to isolate MOR, M3G, M6G, and their corresponding deuterated internal standards from heparinized plasma. The extract was injected on a LC tandem mass spectrometer with a turbo ion-spray interface. Baseline chromatographic separation among MOR, M3G, and M6G peaks was achieved on a silica column with an aqueous organic mobile phase consisting of formic acid, water, and acetonitrile. The total chromatographic run time was 3 min per injection, with retention times of 1.5, 1.9 and 2.4 min for MOR, M6G, and M3G, respectively. Chromatographic separation of M3G and M6G from MOR was paramount in establishing the LC–MS–MS method selectivity because of fragmentation of M3G and M6G to MOR at the LC–MS interface. The standard curve range in plasma was 0.5–50 ng/ml for MOR, 1.0–100 ng/ml for M6G, and 10–1000 ng/ml for M3G. The inter-day precision and accuracy of the quality control (QC) samples were <7% relative standard deviation (RSD) and <6% relative error (R.E.) for MOR, <9% RSD and <5% R.E. for M6G, and <3% RSD and <6% R.E. for M3G. Analyte stability during sample processing and storage were established. Method ruggedness was demonstrated by the reproducible performance from multiple analysts using several LC–MS–MS systems to analyze over one thousand samples from clinical trials.  相似文献   

4.
A highly sensitive method for quantitation of tamsulosin in human plasma using 1-(2,6-dimethyl-3-hydroxylphenoxy)-2-(3,4-methoxyphenylethylamino)-propane hydrochloride as the internal standard (I.S.) was established using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). After alkalization with saturated sodium bicarbonate, plasma were extracted by ethyl acetate and separated by HPLC on a C18 reversed-phase column using a mobile phase of methanol-water-acetic acid-triethylamine (620:380:1.5:1.5, v/v). Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. LC-ESI-MS was performed in the selected ion monitoring (SIM) mode using target ions at m/z 228 for tamsulosin and m/z 222 for the I.S. Calibration curves, which were linear over the range 0.2-30 ng/ml, were analyzed contemporaneously with each batch of samples, along with low (0.5 ng/ml), medium (3 ng/ml) and high (30 ng/ml) quality control samples. The intra- and inter-assay variability ranged from 2.14 to 8.87% for the low, medium and high quality control samples. The extraction recovery of tamsulosin from plasma was in the range of 84.2-94.5%. The method has been used successfully to study tamsulosin pharmacokinetics in adult humans.  相似文献   

5.
A method for the sensitive and specific determination of eight green tea catechins, consisting of catechin (C), epicatechin (EC), gallocatechin (GC), epigallocatechin (EGC), catechin-3-gallate (CG), epicatechin-3-gallate (ECG), gallocatechin-3-gallate (GCG) and epigallocatechin-3-gallate (EGCG), in human plasma was established. For optimization of conditions for LC-ESIMS, the separation of the eight catechins was achieved chromatographically using Inertsil ODS-2 column combined with a gradient elution system of 0.1M aqueous acetic acid and 0.1M acetic acid in acetonitrile. Detection using a mass spectrometer was performed with selected ion monitoring at m/z=289 for E and EC, 305 for GC and EGC, 441 for CG and ECG, and 457 for GCG and EGCG under negative ESI. A preparative procedure, consisting of the addition of perchloric acid and acetonitrile to the plasma for deproteinizing and the subsequent addition of potassium carbonate solution to remove excess acid, was developed. In six different plasma with the eight catechins spiked at two different concentrations, the average recoveries were in the range between 72.7 and 84.1%, which resulted from the matrix effect and preparative loss, with coefficients of variance being 8.2-19.8% among individuals. The levels of the catechins in prepared plasma solutions that were kept at 5 degrees C within 24h were stable, which allows us to simply analyze many prepared plasma solutions using an autosampler overnight. When using this method to analyze the eight catechins in human plasma after oral ingestion of a commercial green tea beverage, we detected all the catechins absorbed into human blood for the first time. This also suggested that extremely small amounts of the eight catechins orally ingested may be absorbed based on each absorptive property for the catechins. The method should enable pharmacokinetic studies of green tea catechins in humans.  相似文献   

6.
Three extraction procedures were developed for the quantitative determination of a carboxylic acid containing analyte (I) in human plasma by high-performance liquid chromatography (HPLC) with negative ion electrospray tandem mass spectrometry (MS–MS). The first procedure was based on the manual liquid–liquid extraction (LLE) of the acidified plasma samples with methyl tert.-butyl ether. The second procedure was based on the automation of the manual LLE procedure using 96-well collection plates and a robotic liquid handling system. The third approach was based on automated solid-phase extraction (SPE) using 96-well SPE plates and a robotic liquid handling system. A lower limit of quantitation of 50 pg/ml was achieved using all three extraction procedures. The total time required to prepare calibration curve standards, aliquot the standards and plasma samples, and process a total of 96 standards and samples by manual LLE was three-times longer than the time required for 96-well SPE or 96-well LLE (4 h, 50 min vs. 1 h, 43 min). Even more importantly, the time the bioanalyst physically spent on the 96-well LLE or 96-well SPE procedure was only a small fraction of the time spent on the manual LLE procedure (<10 min vs. 4 h, 10 min). It should be noted that the 96-well SPE procedure incorporated the two steps of evaporation of the eluates to dryness and subsequent reconstitution of the dried extract. The total time required for the 96-well SPE could be reduced by 50% if the eluates were injected directly, eliminating the drying and reconstitution steps, which is achievable when sensitivity is less of an issue.  相似文献   

7.
To evaluate the pharmacokinetics of digoxin in humans, a sensitive and specific LC/MS/MS method was developed and validated for the determination of digoxin concentrations in human plasma. The method was shown to be more sensitive, specific, accurate, and reproducible than common techniques such as RIA. For detection, a LC/MS/MS system with electro spray ionization tandem mass spectrometry in the positive ion-multiple reaction-monitoring (MRM) mode was used to monitor precursor to product ions of m/z 798.5-51.5 for digoxin and m/z 782.5-35.5 for the internal standard, digitoxin. The method was validated over a concentration range of 0.02-5 ng/mL and was found to have acceptable accuracy, precision, linearity, and selectivity. The mean extraction recovery from spiked plasma samples was above 80%. Imidafenacin, coadministered in a drug-drug interaction study, had no detectable influence on the determination of digoxin in human plasma. The novel method was applied to a drug-drug interaction study of digoxin and imidafenacin and the characterization of steady-state pharmacokinetics of digoxin in humans after oral administration at a dose of 0.25 mg on days 1 and 2 followed by 0.125 mg daily doses on days 3 through 8.  相似文献   

8.
A method for the determination of tetrabromobisphenol A (TBBPA) in human serum utilizing solid-phase extractions (SPEs) and liquid chromatography (LC) with electrospray ionization tandem MS (MS/MS) has been developed. After purification and concentration of TBBPA using consecutive SPEs on reversed-phase and normal-phase cartridges, the serum sample was subjected to LC. TBBPA was separated on a C18 reversed-phase column by gradient elution with a mixture of water, methanol, and acetonitrile as the mobile phase, and then detected with electrospray ionization MS/MS in negative ion mode. 13C12-TBBPA was suitable as an internal standard for the reproducible determination of TBBPA in human serum samples (5 g). The method has been validated in TBBPA concentration range of 5-100 pg per g serum, and the recoveries in the concentration range were higher than 83.3%. The repeatabilities of the proposed method of non-spiked control serum (6.3 pg per g serum) and spiked serum (added 5-100 pg per g serum) were within 10.0% as relative standard deviations. The limit of quantification (LOQ) for TBBPA was 4.1 pg per g serum, which was corresponded to 0.63 fmol on column.  相似文献   

9.
A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of zolmitriptan in human plasma. After the addition of the internal standard (IS) and 1.0 M sodium hydroxide solution, plasma samples were extracted with methylene chloride:ethyl acetate mixture (20:80, v/v). The organic layer was evaporated under a stream of nitrogen at 40 degrees C. The residue was reconstituted with 100 microl mobile phase. The compounds were separated on a prepacked Lichrospher CN (5 microm, 150 mm x 2.0 mm) column using a mixture of methanol:water (10 mM NH(4)AC, pH 4.0) = 78:22 as mobile phase. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 0.30-16.0 ng/ml with a coefficient of determination (r) of 0.9998 and good back-calculated accuracy and precision. The intra- and inter-day precision (R.S.D.%) were lower than 15% and accuracy ranged from 85 to 115%. The lower limit of quantification was identifiable and reproducible at 0.30 ng/ml. The proposed method enables the unambiguous identification and quantification of zolmitriptan for pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

10.
Dextropropoxyphene and nordextropropoxyphene were extracted from urine samples with mixed mode solid-phase extraction cartridges. After elution and evaporation to dryness, the eluate was dissolved in mobile phase and each sample was injected in a LC-ESI-MS system. Quantification was carried out in the selected ion monitoring mode. This article shows the possibility to analyse drugs of abuse substances in urine with a single quadrupole mass spectrometer if only a thorough work-up procedure and a sufficient chromatographic separation is accomplished. In order to enhance the fragmentation of the analytes, in-source fragmentation was carried out. One fragment and the pseudomolecular ion per analyte together with chromatographic retention times were sufficient to verify that the sought compound was found in the samples. In- and between day variation was lower than 10% and the recovery was well above 90%. The analytes were quantified in the range 100-10000 ng/ml urine.  相似文献   

11.
A method based on liquid chromatography (LC) in combination with mass spectrometry (MS) for the analysis of alachlor (ALA) and its metabolites, 2-chloro-N-[2,6-diethylphenyl]acetamide (CDEPA) and 2,6-diethylaniline (DEA), in rat plasma and urine has been developed. 13C-labeled ALA was used as the internal standard for quantitation. The analyte in plasma or urine was isolated using a Waters Oasis HLB extraction plate. The mass spectrometer was operated in the ESI MS-SIM mode with a programming procedure. The retention times for ALA, CDEPA and DEA were 1.84, 3.11 and 4.12 min, respectively. The limits of quantification (LOQ) for ALA, CDEPA and DEA were 2.3, 0.8 and 0.8 ng per injection, respectively. The linear fit of analyte to mass response had an R2 of 0.99. Reproducibility of the sample handling and LC-MS analysis had a RSD of < or = 10%. The average recoveries for these analytes in rat plasma were better than 90%. Similar results were obtained with rat urine.  相似文献   

12.
An analytical method for the determination of benazepril and its active metabolite, benazeprilat, in human plasma by capillary gas chromatography-mass-selective detection, with their respective labelled internal standard, was developed and validated according to international regulatory requirements. After addition of the internal standards, the compounds were extracted from plasma by solid-phase extraction using automated 96-well plate technology. After elution, the compounds were converted into their methyl ester derivatives by means of a safe and stable diazomethane derivative. The methyl ester derivatives were determined by gas chromatography using a mass-selective detector at m/z 365 for benazepril and benazeprilat and m/z 370 for the internal standards. Intra- and inter-day accuracy and precision were found to be suitable over the range of concentrations between 2.50 and 1000 ng/mL.  相似文献   

13.
A rapid, sensitive and specific method to determination of ambroxol in human plasma using high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-MS/ESI) was described. Ambroxol and the internal standard (I.S.), fentanyl, were extracted from plasma by N-hexane-diethyl ether (1:1, v/v) after alkalinized with ammonia water. A centrifuged upper layer was then evaporated and reconstituted with 100 microl mobile phase. Chromatographic separation was performed on a BDS HYPERSIL C18 column (250 mmx4.6 mm, 5.0 microm, Thermo electron corporation, USA) with the mobile phase consisting of 30 mM ammonium acetate (0.4% formic acid)-acetonitrile (64:36, v/v) at a flow-rate of 1.2 mL min(-1). The total run time was 5.8 min for each sample. Detection and quantitation was performed by the mass spectrometer using selected ion monitoring at m/z 261.9, 263.8 and 265.9 for ambroxol and m/z 337.3 for fentanyl. The calibration curve was linear within the concentration range of 1.0-100.0 ng mL(-1) (r=0.9996). The limit of quantification was 1.0 ng mL(-1). The extraction recovery was above 83.3%. The methodology recovery was higher than 93.8%. The intra- and inter-day precisions were less than 6.0%. The method is accurate, sensitive and simple for the study of the pharmacokinetics and metabolism of ambroxol.  相似文献   

14.
To support clinical development, a liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method was developed and validated for the determination of desloratadine (descarboethoxyloratadine) and 3-OH desloratadine (3-hydroxydescarboethoxyloratadine) concentrations in human plasma. The method consisted of automated 96-well solid-phase extraction for sample preparation and liquid chromatography/turbo ionspray tandem mass spectrometry for analysis. [2H(4)]Desloratadine and [2H(4)]3-OH desloratadine were used as internal standards (I.S.). A quadratic regression (weighted 1/concentration(2)) gave the best fit for calibration curves over the concentration range of 25-10000 pg/ml for both desloratadine and 3-OH desloratadine. There was no interference from endogenous components in the blank plasma tested. The accuracy (%bias) at the lower limit of quantitation (LLOQ) was -12.8 and +3.4% for desloratadine and 3-OH desloratadine, respectively. The precision (%CV) for samples at the LLOQ was 15.1 and 10.9% for desloratadine and 3-OH desloratadine, respectively. For quality control samples at 75, 1000 and 7500 pg/ml, the between run %CV was 相似文献   

15.
A rapid and sensitive method for determination and screening in human plasma of talinolol is described using propranolol as the internal standard. The analytes in plasma were extracted by liquid-liquid extraction using methyl t-butyl ether. After removed and dried the upper organic phase, the extracts were reconstituted with a fixed volume of buffer of ammonium acetate and acetonitrile (60:40, v/v). The extracts were analyzed by a HPLC coupled to electrospray ionization mass spectrometry (HPLC-MS/ESI). The HPLC separation of the analytes was performed on a Phenomenex C18 (250 mmx4.6 mm, 5 microm, USA) column, with a flow rate of 0.85 mL/min. The complete elution was obtained within 5.5 min. The calibration curve was linear in the 1.0-400.0 ng/mL range for talinolol, with a coefficient of determination of 0.9996. The average extraction recovery was above 83%. The methodology recovery was between 101% and 102%. The limit of detection (LOD) was 0.3 ng/mL for talinolol. The intraday and inter-day coefficients of variation were less than 6%. This HPLC-MS/ESI procedure was used to assess the pharmacokinetics of talinolol. A single oral 50 mg dose of talinolol tablet was administered to 12 healthy Chinese volunteers, the main pharmacokinetic data are as follows: Cmax was 147.8+/-63.8 ng/mL; tmax was 2.0+/-0.7 h; t1/2 was 12.0+/-2.6 h. The method is accurate, sensitive and simple for the pharmacokinetic study of talinolol.  相似文献   

16.
A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) is described for quantitation of salbutamol in human urine using nadolol as the internal standard (I.S.). Urine samples were hydrolyzed with beta-glucuronidase followed by a solid-phase extraction procedure using Bond Elut-Certify cartridges. The HPLC column was an Agilent Zorbax SB-C(18) column. A mixture of 0.01 M ammonium formate buffer (pH 3.5)-acetonitrile (85:15, v/v) was used as the mobile phase. Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. Selected ion monitoring (SIM) mode was used to monitor m/z 166 for salbutamol and m/z 310 for I.S. Good linearity was obtained in the range of 10.0-2000.0 ng/ml. The limit of quantification was 10.0 ng/ml. The intra- and inter-run precision, calculated from quality control (QC) samples was less than 7.3%. The accuracy as determined from QC samples was within +/-2.6%. The method was applied for determining excretion curves of salbutamol.  相似文献   

17.
A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of lipoic acid (LA) in human plasma. LA and the internal standard, naproxen, were extracted from a 500 microl plasma sample by one-step deproteination using acetonitrile. Chromatographic separation was performed on a Zorbax SB-C(18) Column (100 mmx3.0mm i.d. with 3.5 microm particle size) with the mobile phase consisting of acetonitrile and 0.1% acetic acid (pH 4, adjusted with ammonia solution) (65:35, v/v), and the flow rate was set at 0.3 ml/min. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The method was linear over the concentration range of 5-10,000 ng/ml for LA. The intra- and inter-day precisions were less than 7% and accuracy ranged from -7.87 to 9.74% at the LA concentrations tested. The present method provides a relatively simple and sensitive assay with short turn-around time. The method has been successfully applied to a clinical pharmacokinetic study of LA in 10 healthy subjects.  相似文献   

18.
A sensitive and specific high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) method has been developed and validated for the determination of palmatine in canine plasma. Palmatine and jatrorrhizine (internal standard, I.S.) were extracted from plasma samples by solid-phase extraction (SPE) using Oasis HLB cartridges. The chromatographic separation was performed on a Waters XTerra MS C(18) reversed-phase column at 30 degrees C. The gradient mobile phase, delivered at 0.25 mL/min, was composed of a mixture of acetonitrile -0.1% (v/v) acetic acid aqueous solution adjusted to pH 2.8 with triethylamine. Positive electrospray ionization was utilized as the ionization source. Palmatine and the internal standard (I.S.) were determined using multiple reaction monitoring (MRM) of precursor-->product ion transitions at m/z 352-->336 and m/z 338-->322, respectively. The lower limit of quantification (LLOQ) was 0.1 ng/mL using 100 microL plasma samples and the linear calibration range was from 0.1 to 500 ng/mL. The inter-day and intra-day RSDs were lower than 9.9% and the recoveries of palmatine ranged from 87.3 to 100.9%. The mean extraction recoveries of palmatine and the I.S. were 99.2 and 96.8%, respectively. The method has been successfully applied to the pharmacokinetic studies of palmatine in beagle dogs after oral administration and intramuscular injection of palmatine.  相似文献   

19.
A method has been developed to determine the substrate preference in phosphatidylserine decarboxylation (PSD), the process by which phosphatidylserine is converted to phosphatidylethanolamine (PE) in the mitochondria. The in vitro assay utilized liposomes containing deuterium-labeled PS molecular species incubated with liver and brain cortex mitochondria, and the conversion of PS to the corresponding PE species was monitored by electrospray ionization mass spectrometry in conjunction with reversed-phase liquid chromatography. Employing this approach we were able to establish for the first time that there exists a substrate preference in PSD in liver (18:0,18:1 > or = 18:0,22:6 > 18:0,20:4-PS) and brain cortex (18:0,22:6 > 18:0,18:1 > 18:0,20:4-PS). The observed PSD molecular species preference, however, did not reflect the mitochondrial PE profile, suggesting that selectivity in other processes such as de novo PE synthesis, intracellular transport of phospholipid molecules, or remodeling by deacylation-reacylation may be important contributors in maintaining a specific lipid profile in mitochondria.  相似文献   

20.
An LC-ESI-MS-MS method for the analysis of metabolites of four nitrofurans (furazolidone, furaltadone, nitrofurazone and nitrofurantoin) in raw milk has been developed. The samples were achieved by hydrolysis of the protein-bound drug metabolites, derivatization with 2-nitrobenzaldehyd (2-NBA) and clean-up extraction liquid-liquid with ethyl acetate. LC separation was achieved by using a Phenomenex Luna C-18 column. The mass spectrometer operated in multiple reaction monitoring mode (MRM) with positive electro-spray interface (ESI). The method validation was done according to the criteria laid down in Commission Decision No. 2002/657 EC. The validation includes the determination of linearity, repeatability, within-laboratory reproducibility, accuracy, decision limit (CCalpha) and detection capability (CCbeta). The calibration curves were linear, with typical (R(2)) values higher than 0.991. The coefficient of variation (CV, %) was lower than 9.3% and the accuracy (RE, %) ranged from -9.0% to 7.0%. CV within-laboratory reproducibility was lower than 13%. The limits of decision (CCalpha) and detection capability (CCbeta) were 0.12-0.29 microg/kg and 0.15-0.37 microg/kg, thus below the minimum required performance limit (MRPL) set at 1 microg/kg by the UE. This validated method was successfully applied for the determination of nitrofuran metabolites in a large number of milk samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号