首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Cardiac myocyte contractility is initiated by Ca2+ entry through the voltage-dependent L-type Ca2+ channel (LTCC). To study the effect of Galpha q on the cardiac LTCC, we utilized two transgenic mouse lines that selectively express inducible Galpha q-estrogen receptor hormone-binding domain fusion proteins (Galpha qQ209L-hbER or Galpha qQ209L-AA-hbER) in cardiac myocytes. Both of these proteins inhibit phosphatidylinositol (PI) 3-kinase (PI3K) signaling, but Galpha qQ209L-AA-hbER cannot activate the canonical Galpha q effector phospholipase Cbeta (PLCbeta). L-type Ca2+ current (I(Ca,L)) density measured by whole-cell patch clamping was reduced by more than 50% in myocytes from both Galpha q animals as compared with wild-type cells, suggesting that inhibition of the LTCC by Galpha q does not require PLCbeta. To investigate the role of PI3K in this inhibitory effect, I(Ca,L) was measured in the presence of various phosphoinositides infused through the patch pipette. Infusion of PI 3,4,5-trisphosphate (PI(3,4,5)P3) into wild-type myocytes did not affect I(Ca,L), but it fully restored I(Ca,L) density in both Galpha q transgenic myocytes to wild-type levels. By contrast, PI 4,5-bisphosphate (PI(4,5)P2) or PI 3,5-bisphosphate had no effect. Infusion with p110beta/p85alpha or p110gamma PI3K in the presence of PI(4,5)P2 also restored I(Ca,L) density to wild-type levels. Last, infusion of either PTEN, a PI(3,4,5)P3 phosphatase, or the pleckstrin homology domain of Grp1, which sequesters PI(3,4,5)P3, reduced the peak I(Ca,L) density in wild-type myocytes by approximately 30%. Taken together, these results strongly suggest that the inhibitory effect of Galpha q on the cardiac LTCC is mediated by inhibition of PI3K.  相似文献   

2.
Phospholipase Cepsilon (PLCepsilon) is one of the newest members of the phosphatidylinositol-specific phospholipase C (PLC) family. Previous studies have suggested that G-protein-coupled receptors (GPCRs) stimulate phosphoinositide (PI) hydrolysis by activating PLCbeta isoforms through G(q) family G proteins and Gbetagamma subunits. Using RNA interference to knock down PLC isoforms, we demonstrate that the GPCR agonists endothelin (ET-1), lysophosphatidic acid (LPA), and thrombin, acting through endogenous receptors, couple to both endogenous PLCepsilon and the PLCbeta isoform, PLCbeta3, in Rat-1 fibroblasts. Examination of the temporal activation of these PLC isoforms, however, reveals agonist- and isoform-specific profiles. PLCbeta3 is activated acutely within the first minute of ET-1, LPA, or thrombin stimulation but does not contribute to sustained PI hydrolysis induced by LPA or thrombin and accounts for only part of ET-1 sustained stimulation. PLCepsilon, on the other hand, predominantly accounts for sustained PI hydrolysis. Consistent with this observation, reconstitution of PLCepsilon in knockdown cells dose-dependently increases sustained, but not acute, agonist-stimulated PI hydrolysis. Furthermore, combined knockdown of both PLCepsilon and PLCbeta3 additively inhibits PI hydrolysis, suggesting independent regulation of each isoform. Importantly, ubiquitination of inositol 1,4,5-trisphosphate receptors correlates with sustained, but not acute, activation of PLCepsilon or PLCbeta3. In conclusion, GPCR agonists ET-1, LPA, and thrombin activate endogenous PLCepsilon and PLCbeta3 in Rat-1 fibroblasts. Activation of these PLC isoforms displays agonist-specific temporal profiles; however, PLCbeta3 is predominantly involved in acute and PLCepsilon in sustained PI hydrolysis.  相似文献   

3.
Activation of protein kinase C (PKC) can result from stimulation of the receptor-G protein-phospholipase C (PLCbeta) pathway. In turn, phosphorylation of PLCbeta by PKC may play a role in the regulation of receptor-mediated phosphatidylinositide (PI) turnover and intracellular Ca(2+) release. Activation of endogenous PKC by phorbol 12-myristate 13-acetate inhibited both Galpha(q)-coupled (oxytocin and M1 muscarinic) and Galpha(i)-coupled (formyl-Met-Leu-Phe) receptor-stimulated PI turnover by 50-100% in PHM1, HeLa, COSM6, and RBL-2H3 cells expressing PLCbeta(3). Activation of conventional PKCs with thymeleatoxin similarly inhibited oxytocin or formyl-Met-Leu-Phe receptor-stimulated PI turnover. The PKC inhibitory effect was also observed when PLCbeta(3) was stimulated directly by Galpha(q) or Gbetagamma in overexpression assays. PKC phosphorylated PLCbeta(3) at the same predominant site in vivo and in vitro. Peptide sequencing of in vitro phosphorylated recombinant PLCbeta(3) and site-directed mutagenesis identified Ser(1105) as the predominant phosphorylation site. Ser(1105) is also phosphorylated by protein kinase A (PKA; Yue, C., Dodge, K. L., Weber, G., and Sanborn, B. M. (1998) J. Biol. Chem. 273, 18023-18027). Similar to PKA, the inhibition by PKC of Galpha(q)-stimulated PLCbeta(3) activity was completely abolished by mutation of Ser(1105) to Ala. In contrast, mutation of Ser(1105) or Ser(26), another putative phosphorylation target, to Ala had no effect on inhibition of Gbetagamma-stimulated PLCbeta(3) activity by PKC or PKA. These data indicate that PKC and PKA act similarly in that they inhibit Galpha(q)-stimulated PLCbeta(3) as a result of phosphorylation of Ser(1105). Moreover, PKC and PKA both inhibit Gbetagamma-stimulated activity by mechanisms that do not involve Ser(1105).  相似文献   

4.
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that regulates physiological processes including Ca(2+) metabolism, Na(+), Cl(-), K(+), and H(2)0 balance, and the growth of some epithelial cells through diverse signaling pathways. Although many effects of CaR are mediated by the heterotrimeric G proteins Galpha(q) and Galpha(i), not all signaling pathways regulated by CaR have been identified. We used human embryonic kidney (HEK)-293 cells that stably express human CaR to study the regulation of inositol lipid metabolism by CaR. The nonfunctional mutant CaR(R796W) was used as a negative control. We found that CaR regulates phosphatidylinositol (PI) 4-kinase, the first step in inositol lipid biosynthesis. In cells pretreated with to inhibit phospholipase C activation and to block the degradation of PI 4,5-bisphosphate to form [(3)H]inositol trisphosphate (IP(3)), CaR stimulated the accumulation of [(3)H]PI monophosphate (PIP). Additionally, wortmannin, an inhibitor of both PI 3-kinase and type III PI 4-kinase, blocked CaR-stimulated accumulation of [(3)H]PIP and inhibited [(3)H]IP(3) production. CaR-stimulated inositol lipid synthesis was attributable to PI 4-kinase and not PI 3-kinase because CaR did not activate Akt, a downstream target of PI 3-kinase. CaR associates with PI 4-kinase based on the findings that CaR and the 110-kDa PI 4-kinase beta can be co-immunoprecipitated with antibodies against either CaR or PI 4-kinase. The PI-4 kinase in co-immunoprecipitates with anti-CaR antibody was activated in Ca(2+)-stimulated HEK-293 cells, which stably express the wild type CaR. Pertussis toxin did not affect the formation of [(3)H]IP(3) or the rise in intracellular Ca(2+) (Handlogten, M. E., Huang, C. F., Shiraishi, N., Awata, H., and Miller, R. T. (2001) J. Biol. Chem. 276, 13941-13948). RGS4, an accelerator of GTPase activity of members of the Galpha(i) and Galpha(q) families, attenuated the CaR-stimulated PLC activation and IP(3) accumulation, which is mediated by Galpha(q), but did not inhibit CaR-stimulated [(3)H]PIP formation. In HEK-293 cells, which express wild type CaR, Rho was enriched in immune complexes co-immunoprecipitated with the anti-CaR antibody. C(3) toxin, an inhibitor of Rho, also inhibited the CaR-stimulated [(3)H]IP(3) production but did not lead to CaR-stimulated [(3)H]PIP formation, reflecting inhibition of PI 4-kinase. Taken together, our data demonstrate that CaR stimulates PI 4-kinase, the first step in inositol lipid biosynthesis conversion of PI to PI 4-P by Rho-dependent and Galpha(q)- and Galpha(i)-independent pathways.  相似文献   

5.
Although lysophosphatidic acid (LPA) is known to increase intracellularfree calcium concentration ([Ca(2+)](i)) in different cell types, the effect of LPA on the skeletal muscle cells is not known. The present study was therefore undertaken to examine the effect of LPA on the [Ca(2+)](i) in C2C12 cells. LPA induced a concentration and time dependent increase in [Ca(2+)](i), which was inhibited by VPC12249, VPC 32183 and dioctanoyl glycerol pyrophosphate, LPA1/3 receptor antagonists. Pertussis toxin, a G(i) protein inhibitor, also inhibited the LPA-induced increase in [Ca(2+)](i). Inhibition of tyrosine kinase activities with tyrphostin A9 and genistein also prevented the increase in [Ca(2+)](i) due to LPA. Likewise, wortmannin and LY 294002, phosphatidylinositol 3-kinase (PI3-K) inhibitors, inhibited [Ca(2+)](i) response to LPA. The LPA effect was also attenuated by ethylene glycolbis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), an extracellular Ca(2+) chelator, Ni(2+) and KB-R7943, inhibitors of the Na(+)-Ca(2+) exchanger; the receptor operated Ca(2+) channel (ROC) blockers, 2-aminoethoxydiphenyl borate and SK&F 96365. However, the L-type Ca(2+) channel blockers, verapamil and diltiazem; the store operated Ca(2+) channel blockers, La(3+) and Gd(3+); a sarcoplasmic reticulum calcium pump inhibitor, thapsigargin; an inositol trisphosphate receptor antagonist, xestospongin and a phospholipase C inhibitor, U73122, did not prevent the increase [Ca(2+)](i) due to LPA. Our data suggest that the LPA-induced increase in [Ca(2+)](i) might occur through G(i)-protein coupled LPA(1/3) receptors that may be linked to tyrosine kinase and PI3-K, and may also involve the Na(+)-Ca(2+) exchanger as well as the ROC. In addition, LPA stimulated C2C12 cell proliferation via PI3-K. Thus, LPA may be an important phospholipid in the regulation of [Ca(2+)](i) and growth of skeletal muscle cells.  相似文献   

6.
Activation of phospholipase Cbeta (PLCbeta) by G-proteins results in increased intracellular Ca(2+) and activation of protein kinase C. We have previously found that activated PLCbeta-Gbetagamma complex can be rapidly deactivated by Galpha(GDP) subunits without dissociation, which led to the suggestion that Galpha(GDP) binds to PLCbeta-Gbeta gamma and perturbs the activating interaction without significantly affecting the PLCbeta-Gbeta gamma binding energy. Here, we have used high pressure fluorescence spectroscopy to determine the volume change associated with this interaction. Since PLCbeta and G-protein subunits associate on membrane surfaces, we worked under conditions where the membrane surface properties are not expected to change. We also determined the pressure range in which the proteins remain membrane bound: PLCbeta binding was stable throughout the 1-2000 bars range, Gbeta gamma binding was stable only at high membrane concentrations, whereas Galpha(s)(GDP) dissociated from membranes above 1 kbar. High pressure dissociated PLCbeta-Gbeta gamma with a DeltaV = 34 +/- 5 ml/mol. This same volume change is obtained for a peptide derived from Gbeta which also activates PLCbeta. In the presence of Galpha(s)(GDP), the volume change associated with PLCbeta-Gbeta gamma interaction is reduced to 25 +/- 1 ml/mol. These results suggest that activation of PLCbeta by Gbeta gamma is conferred by a small (i.e., 3-15 ml/mol) volume element.  相似文献   

7.
Calcium is a key mediator of hormone-induced enzyme secretion in pancreatic acinar cells. At the same time, abnormal Ca(2+) responses are associated with pancreatitis. We have recently shown that inhibition of phosphatidylinositol 3-kinase (PI3-kinase) by LY-294002 and wortmannin, as well as genetic deletion of PI3-kinase-gamma, regulates Ca(2+) responses and the Ca(2+)-sensitive trypsinogen activation in pancreatic acinar cells. The present study sought to determine the mechanisms of PI3-kinase involvement in Ca(2+) responses induced in these cells by CCK and carbachol. The PI3-kinase inhibitors inhibited both Ca(2+) influx and mobilization from intracellular stores induced by stimulation of acini with physiological and pathological concentrations of CCK, as well as with carbachol. PI3-kinase inhibition facilitated the decay of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) oscillations observed in individual acinar cells. The PI3-kinase inhibitors decreased neither CCK-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] production nor Ins(1,4,5)P(3)-induced Ca(2+) mobilization, suggesting that the effect of PI3-kinase inhibition is not through Ins(1,4,5)P(3) or Ins(1,4,5)P(3) receptors. PI3-kinase inhibition did not affect Ca(2+) mobilization induced by thapsigargin, a specific inhibitor of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). Moreover, SERCA blockade with thapsigargin abolished the effects of pharmacological and genetic PI3-kinase inhibition on [Ca(2+)](i) signals, suggesting SERCA as a downstream target of PI3-kinase. Both pharmacological PI3-kinase inhibition and genetic deletion of PI3-kinase-gamma increased the amount of Ca(2+) in intracellular stores during CCK stimulation. Finally, addition of the PI3-kinase product phosphatidylinositol 3,4,5-trisphosphate to permeabilized acini significantly attenuated Ca(2+) reloading into the endoplasmic reticulum. The results indicate that PI3-kinase regulates Ca(2+) signaling in pancreatic acinar cells through its inhibitory effect on SERCA.  相似文献   

8.
During thrombus formation, thrombin, which is abundantly present at sites of vascular injury, activates platelets in part via autocrine-produced ADP. We investigated the signaling pathways by which thrombin and ADP in synergy induced platelet Ca(2+) elevation and procoagulant activity, and we monitored the consequences for the coagulation process. Even at high thrombin concentration, autocrine and added ADP enhanced and prolonged Ca(2+) depletion from internal stores via stimulation of the P2Y(12) receptors. This P2Y(12)-dependent effect was mediated via two distinct signaling pathways. The first is enhanced Ca(2+) mobilization by the inositol 1,4,5-trisphosphate receptors due to inhibition of protein kinase A. The second pathway concerns prolonged activation of phosphoinositide 3-kinase (PI3-K) and phospholipase C. Experiments with phosphoinositide 3-kinase isoform-selective inhibitors and p110gamma deficient platelets demonstrated that the phosphoinositide 3-kinase beta and not the phosphoinositide 3-kinase gamma isoform is responsible for the prolonged Ca(2+) response and for the subsequent increases in procoagulant activity and coagulation. Taken together, these results demonstrate a dual P2Y(12)-dependent signaling mechanism, which increases the platelet-activating effect of thrombin by prolongation of Ca(2+) elevation, thereby facilitating the coagulation process.  相似文献   

9.
This study presents evidence that phosphoinositide (PI) 3-kinase is involved in T cell Ca(2+) signaling via a phosphatidylinositol 3,4, 5-trisphosphate PI(3,4,5)P(3)-sensitive Ca(2+) entry pathway. First, exogenous PI(3,4,5)P(3) at concentrations close to its physiological levels induces Ca(2+) influx in T cells, whereas PI(3,4)P(2), PI(4, 5)P(2), and PI(3)P have no effect on [Ca(2+)](i). This Ca(2+) entry mechanism is cell type-specific as B cells and a number of cell lines examined do not respond to PI(3,4,5)P(3) stimulation. Second, inhibition of PI 3-kinase by wortmannin and by overexpression of the dominant negative inhibitor Deltap85 suppresses anti-CD3-induced Ca(2+) response, which could be reversed by subsequent exposure to PI(3,4,5)P(3). Third, PI(3,4,5)P(3) is capable of stimulating Ca(2+) efflux from Ca(2+)-loaded plasma membrane vesicles prepared from Jurkat T cells, suggesting that PI(3,4,5)P(3) interacts with a Ca(2+) entry system directly or via a membrane-bound protein. Fourth, although D-myo-inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4, 5)P(4)) mimics PI(3,4,5)P(3) in many aspects of biochemical functions such as membrane binding and Ca(2+) transport, we raise evidence that Ins(1,3,4,5)P(4) does not play a role in anti-CD3- or PI(3,4,5)P(3)-mediated Ca(2+) entry. This PI(3,4,5)P(3)-stimulated Ca(2+) influx connotes physiological significance, considering the pivotal role of PI 3-kinase in the regulation of T cell function. Given that PI 3-kinase and phospholipase C-gamma form multifunctional complexes downstream of many receptor signaling pathways, we hypothesize that PI(3,4,5)P(3)-induced Ca(2+) entry acts concertedly with Ins(1,4,5)P(3)-induced Ca(2+) release in initiating T cell Ca(2+) signaling. By using a biotinylated analog of PI(3,4,5)P(3) as the affinity probe, we have detected several putative PI(3,4,5)P(3)-binding proteins in T cell plasma membranes.  相似文献   

10.
Intracellular calcium (Ca(2+)) homeostasis is very strictly regulated, and the activation of G-protein-coupled receptor (GPCR) can cause two different calcium changes, intracellular calcium release, and calcium influx. In this study, we investigated the possible role of lysophosphatidic acid (LPA) on GPCR-induced Ca(2+) signaling. The addition of exogenous LPA induced dramatic Ca(2+) influx but not intracellular Ca(2+) release in U937 cells. LPA-induced Ca(2+) influx was not affected by pertussis toxin and phospholipase C inhibitor (U73122), ruling out the involvement of pertussis toxin-sensitive G-proteins, and phospholipase C. Stimulation of U937 cells with Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), which binds to formyl peptide receptor like 1, enhanced phospholipase A(2) and phospholipase D activation, indicating LPA formation. The inhibition of LPA synthesis by phospholipase A(2)-specific inhibitor (MAFP) or n-butanol significantly inhibited WKYMVm-induced Ca(2+) influx, suggesting a crucial role for LPA in the process. Taken together, we suggest that LPA mediates WKYMVm-induced Ca(2+) influx.  相似文献   

11.
Ko HM  Kang JH  Choi JH  Park SJ  Bai S  Im SY 《FEBS letters》2005,579(28):6451-6458
Platelet-activating factor (PAF) augments angiogenesis by promoting the synthesis of a variety of angiogenic factors, via the nuclear factor (NF)-kappaB activation. Recently, we reported that PAF upregulates MMP-9 expression in a NF-kappaB-dependent manner. In this study, we investigated the signaling pathway involved in PAF-induced MMP-9 expression in ECV304 cells. Our current data indicate that the Ca(2+)- or phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathway is necessary for PAF-induced MMP-9 expression. Furthermore, PAF-induced NF-kappaB activation was blocked by selective inhibitors of Ca(2+), PI3K, or extracellular signal-regulated kinase (ERK). Our results suggest that PAF-induced MMP-9 expression, in a NF-kappaB-dependent manner, is regulated by Ca(2+), PI3K and ERK signaling pathways.  相似文献   

12.
Regulation of smooth muscle contraction involves a number of signaling mechanisms that include both kinase and phosphatase reactions. The goal of the present study was to determine the role of one such kinase, phosphatidylinositol (PI)3-kinase, in vascular smooth muscle excitation-contraction coupling. Using intact medial strips of the swine carotid artery, we found that inhibition of PI3-kinase by LY-294002 resulted in a concentration-dependent decrease in the contractile response to both agonist stimulation and membrane depolarization-dependent contractions and a decrease in Ca(2+)-dependent myosin light chain (MLC) phosphorylation, the primary step in the initiation of smooth muscle contraction. Inhibition of PI3-kinase also depressed phorbol dibutyrate-induced contractions, which are not dependent on either Ca(2+) or MLC phosphorylation but are dependent on protein kinase C. To determine the Ca(2+)-dependent site of action of PI3-kinase, we determined the effect of several inhibitors of calcium metabolism on LY-294002-dependent inhibition of contraction. These inhibitors included nifedipine, SK&F-96365, and caffeine. Only SK&F-96365 blocked the LY-294002-dependent inhibition of contraction. Interestingly, all compounds blocked the LY-294002-dependent inhibition of MLC phosphorylation. Our results suggest that activation of PI3-kinase is involved in a Ca(2+)- and MLC phosphorylation-independent pathway for contraction likely to involve protein kinase C. In addition, our results also suggest that activation of PI3-kinase is involved in Ca(2+)-dependent signaling at the level of receptor-operated calcium channels.  相似文献   

13.
In this study, Gbeta specificity in the regulation of Gbetagamma-sensitive phosphoinositide 3-kinases (PI3Ks) and phospholipase Cbeta (PLCbeta) isozymes was examined. Recombinant mammalian Gbeta(1-3)gamma(2) complexes purified from Sf9 membranes stimulated PI3Kgamma lipid kinase activity with similar potency (10-30 nm) and efficacy, whereas transducin Gbetagamma was less potent. Functionally active Gbeta(5)gamma(2) dimers were purified from Sf9 cell membranes following coexpression of Gbeta(5) and Ggamma(2-His). This preparation as well as Gbeta(1)gamma(2-His) supported pertussis toxin-mediated ADP-ribosylation of Galpha(i1). Gbeta(1)gamma(2-His) stimulated PI3Kgamma lipid and protein kinase activities at nanomolar concentrations, whereas Gbeta(5)gamma(2-His) had no effect. Accordingly, Gbeta(1)gamma(2-His), but not Gbeta(5)gamma(2-His), significantly stimulated the lipid kinase activity of PI3Kbeta in the presence or absence of tyrosine-phosphorylated peptides derived from the p85-binding domain of the platelet derived-growth factor receptor. Conversely, both preparations were able to stimulate PLCbeta(2) and PLCbeta(1). However, Gbeta(1)gamma(2-His), but not Gbeta(5)gamma(2-His), activated PLCbeta(3). Experimental evidence suggests that the mechanism of Gbeta(5)-dependent effector selectivity may differ between PI3K and PLCbeta. In conclusion, these data indicate that Gbeta subunits are able to discriminate among effectors independently of Galpha due to selective protein-protein interaction.  相似文献   

14.
15.
Na(+)/H(+) exchanger 3 (NHE3) kinase A regulatory protein (E3KARP) has been implicated in cAMP- and Ca(2+)-dependent inhibition of NHE3. In the current study, a new role of E3KARP is demonstrated in the stimulation of NHE3 activity. Lysophosphatidic acid (LPA) is a mediator of the restitution phase of inflammation but has not been studied for effects on sodium absorption. LPA has no effect on NHE3 activity in opossum kidney (OK) proximal tubule cells, which lack expression of endogenous E3KARP. However, in OK cells exogenously expressing E3KARP, LPA stimulated NHE3 activity. Consistent with the stimulatory effect on NHE3 activity, LPA treatment increased the surface NHE3 amount, which occurred by accelerating exocytic trafficking (endocytic recycling) to the apical plasma membrane. These LPA effects only occurred in OK cells transfected with E3KARP. The LPA-induced increases of NHE3 activity, surface NHE3 amounts, and exocytosis were completely inhibited by pretreatment with the PI 3-kinase inhibitor, LY294002. LPA stimulation of the phosphorylation of Akt was used as an assay for PI 3-kinase activity. LY294002 completely prevented the LPA-induced increase in Akt phosphorylation, which is consistent with the inhibitory effect of LY294002 on the LPA stimulation of NHE3 activity. The LPA-induced phosphorylation of Akt was the same in OK cells with and without E3KARP. These results show that LPA stimulates NHE3 in the apical surface of OK cells by a mechanism that is dependent on both E3KARP and PI 3-kinase. This is the first demonstration that rapid stimulation of NHE3 activity is dependent on an apical membrane PDZ domain protein.  相似文献   

16.
In 1321N1 astrocytoma cells, heterotrimeric G-protein-coupled receptors that activate phosphoinositide-specific phospholipase Cbeta (PLCbeta) isoforms via G(q), induced a prolonged activation of protein kinase B (PKB) after a short delay. For example, the effect of carbachol acting on M3 muscarinic receptors is blocked by wortmannin, suggesting it is mediated via a phosphoinositide 3-kinase (PI 3-kinase). In support of this, carbachol increased PI 3-kinase activity in PI 3-kinase (p85) immunoprecipitates. The pathway linking PLC-coupled receptors to PI 3-kinase was deduced to involve phosphoinositide hydrolysis and Ca2+-dependent ErbB3 transactivation but not protein kinase C on the basis of the following evidence: (i) inhibition of carbachol stimulated PLC by pretreatment with the phorbol ester phorbol 12-myristate 13-acetate concomitantly reduced PKB activity, whereas stimulation of other PLC-coupled receptors also activated PKB; (ii) Ca2+ ionophores and thapsigargin stimulated PKB activity in a wortmannin-sensitive manner, whereas bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocked carbachol-stimulated PKB activity; (iii) phorbol 12-myristate 13-acetate alone did not activate PKB, whereas a protein kinase C inhibitor did not prevent the activation of PKB by carbachol; and (iv) carbachol stimulated ErbB3-tyrosine phosphorylation and association with p85, and both these and PKB activity were blocked by tyrphostin AG1478, an epidermal growth factor receptor-tyrosine kinase inhibitor. These experiments define a novel pathway linking G(q)-coupled G-protein-coupled receptors to the activation of PI 3-kinase and PKB.  相似文献   

17.
Alpha-synuclein plays a key role in the pathogenesis of many neurodegenerative diseases. To date, its cellular role has yet to be determined, although it has been proposed to be connected to calcium and G protein-mediated dopamine signaling. Alpha-synuclein is known to bind strongly to model membrane surfaces where it may interact with other membrane-associated proteins. Here, we find that the membrane association of alpha-synuclein is enhanced by the presence of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] and Ca(2+). We also find that alpha-synuclein interacts with high affinity with the G protein-regulated enzyme phospholipase Cbeta(2) (PLCbeta(2)), which catalyzes the hydrolysis of PI(4,5)P(2). Binding of alpha-synuclein to PLCbeta(2) reduces its catalytic activity by 50%, but causes its level of activation by Gbetagamma subunits to increase from 4- to 24-fold. This effect is greatly reduced for A53T alpha-synuclein, which is a mutant associated with familial Parkinson's disease. PI(4,5)P(2) hydrolysis by PLCbeta(2) results in an increase in the intracellular Ca(2+) concentration, and we find that in cultured cells the presence of alpha-synuclein results in a 6-fold enhancement in the release of Ca(2+) from intracellular stores in response to agents that release Gbetagamma subunits relative to controls. Alpha-synuclein also enhances the increase in the level of inositol phosphates seen upon G protein stimulation, suggesting that it also may interact with PLCbeta(2) in cells. Given that Ca(2+) and dopamine regulation are mediated through PLCbeta and G protein signals, our results suggest that alpha-synuclein may play a role in inositol phospholipid signaling.  相似文献   

18.
Targeting the signaling pathway of acylation stimulating protein   总被引:5,自引:0,他引:5  
Acylation stimulating protein (ASP; C3adesArg) stimulates triglyceride synthesis (TGS) and glucose transport in preadipocytes/adipocytes through C5L2, a G-protein-coupled receptor. Here, ASP signaling is compared with insulin in 3T3-L1 cells. ASP stimulation is not Galpha(s) or Galpha(i) mediated (pertussis and cholera toxin insensitive), suggesting G(alphaq) as a candidate. Phospholipase C (PLC) is required, because the Ca(2+) chelator 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester and the PLC inhibitor U73122 decreased ASP stimulation of TGS by 93.1% (P < 0.0.001) and 86.1% (P < 0.004), respectively. Wortmannin and LY294002 blocked ASP effect by 69% (P < 0.001) and 116.1% (P < 0.003), respectively, supporting phosphatidylinositol 3-kinase (PI3K) involvement. ASP induced rapid, transient Akt phosphorylation (maximal, 5 min; basal, 45 min), which was blocked by Akt inhibition, resembling treatment by insulin. Downstream of PI3K, mamalian target of rapaycin (mTOR) is required for insulin but not ASP action. By contrast, both ASP and insulin activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK(1/2)) pathway, with rapid, pronounced increases in ERK(1/2) phosphorylation, effects partially blocked by PD98059 (64.7% and 65.9% inhibition, respectively; P < 0.001). Time-dependent (maximal, 30 min) transient calcium-dependent phospholipase A(2) (cPLA(2))(-Ser505) phosphorylation (by MAPK/ERK(1/2)) was demonstrated by Western blot analysis. ASP signaling involves sequential activation of PI3K and PLC, with downstream activation of protein kinase C, Akt, MAPK/ERK(1/2), and cPLA(2), all of which leads to an effective and prolonged stimulation of TGS.  相似文献   

19.
Endothelin-1 (ET-1) can stimulate insulin-responsive glucose transporter (GLUT4) translocation in 3T3-L1 adipocytes (Wu-Wong, J. R., Berg, C. E., Wang, J., Chiou, W. J., and Fissel, B. (1999) J. Biol. Chem. 274, 8103-8110), and in the current study, we have evaluated the signaling pathway leading to this response. First, we inhibited endogenous Galpha(q/11) function by single-cell microinjection using anti-Galpha(q/11) antibody or RGS2 protein (a GTPase activating protein for Galpha(q)) followed by immunostaining to quantitate GLUT4 translocation in 3T3-L1 adipocytes. ET-1-stimulated GLUT4 translocation was markedly decreased by 70 or 75% by microinjection of Galpha(q/11) antibody or RGS2 protein, respectively. Pretreatment of cells with the Galpha(i) inhibitor (pertussis toxin) or microinjection of a Gbetagamma inhibitor (glutathione S-transferase-beta-adrenergic receptor kinase (GST-BARK)) did not inhibit ET-1-induced GLUT4 translocation, indicating that Galpha(q/11 )mediates ET-1 signaling to GLUT4 translocation. Next, we found that ET-1-induced GLUT4 translocation was inhibited by the phosphatidylinositol (PI) 3-kinase inhibitors wortmannin or LY294002, but not by the phospholipase C inhibitor U-73122. ET-1 stimulated the PI 3-kinase activity of the p110alpha subunit (5.5-fold), and microinjection of anti-p110alpha or PKC-lambda antibodies inhibited ET-stimulated GLUT4 translocation. Finally, we found that Galpha(q/11) formed immunocomplexes with the type-A endothelin receptor and the 110alpha subunit of PI 3-kinase and that ET-1 stimulation enhances tyrosine phosphorylation of Galpha(q/11). These results indicate that: 1) ET-1 signaling to GLUT4 translocation is dependent upon Galpha(q/11) and PI 3-kinase; and 2) Galpha(q/11) can transmit signals from the ET(A) receptor to the p110alpha subunit of PI 3-kinase, as does insulin, subsequently leading to GLUT4 translocation.  相似文献   

20.
We have shown recently that phosphoinositide 3-kinase (PI 3-kinase) accelerates the hypoxia-induced necrotic cell death of H9c2, derived from rat cardiomyocytes, by enhancing metabolic acidosis. Here we show the downstream events of acidosis that cause hypoxic cell death. Hypoxia induces the proteolysis of fodrin, a substrate of calpain. Intracellular Ca(2+) chelation by BAPTA, and the addition of SJA6017, a specific peptide inhibitor of calpain, also reduces cell death and fodrin proteolysis, indicating that Ca(2+) influx and calpain activation might be involved in these events. The overexpression of wild type PI 3-kinase accelerates fodrin proteolysis, while dominant-negative PI 3-kinase reduces it. Both (N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of the Na(+)/H(+) exchanger, and KB-R7943, an inhibitor of the Na(+)/Ca(2+) exchanger, reduce hypoxic cell death and fodrin proteolysis. The depletion of intracellular Ca(2+ )stores by thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)-ATPase, also reduces cell death and fodrin proteolysis, indicating that Ca(2+ )release from intracellular Ca(2+ )stores might be also involved. These results indicate that PI 3-kinase might accelerate hypoxic cell death by enhancing the calpain-dependent proteolysis of fodrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号