首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Bone is a dynamic environment where cells sense and adapt to changes in nutrient and oxygen availability. Conditions associated with hypoxia in bone are also associated with bone loss. In vitro hypoxia (2% oxygen) alters gene expression in osteoblasts and osteocytes and induces cellular changes including the upregulation of hypoxia inducible factor (HIF) levels. Our studies show that osteoblasts respond to hypoxia (2% oxygen) by enhancing expression of genes associated with adipocyte/lipogenesis phenotype (C/EBPbeta, PPARgamma2, and aP2) and by suppressing expression of genes associated with osteoblast differentiation (alkaline phosphatase, AP). Hypoxia increased HIF protein levels, hypoxic response element (HRE) binding, and HRE-reporter activity. We also demonstrate that prolyl-hydroxylases 2 and 3 (PHD2, PHD3), one of the major factors coordinating HIF degradation under normoxic but not hypoxic conditions, are induced in osteoblasts under hypoxic conditions. To further determine the contribution of PHDs and upregulated HIF activity in modulating osteoblast phenotype, we treated osteoblasts with a PHD inhibitor, dimethyloxaloylglycine (DMOG), and maintained cells under normoxic conditions. Similar to hypoxic conditions, HRE reporter activity was increased and adipogenic gene expression was increased while osteoblastic genes were suppressed. Taken together, our findings indicate a role for PHDs and HIFs in the regulation of osteoblast phenotype.  相似文献   

16.
HIF1 (hypoxia-inducible factor 1α) is considered a central oxygen-threshold sensor in mammalian cells. In the presence of oxygen, HIF1 is marked by prolyl hydroxylases (PHDs) at the oxygen-dependent degradation (ODD) domain for ubiquitination followed by rapid proteasomal degradation. However, the actual mechanisms of oxygen sensing by HIF1 are still controversial. Thus, HIF1 expression correlates poorly with tissue oxygen levels, and PHDs are themselves target genes of HIF1 considered to readjust to new oxygen thresholds. In contrast to hypoxia chambers, we here establish an enzymatic model that allows both the rapid induction of stable hypoxia and independent control of H2O2. Rapid enzymatic hypoxia only transiently induced HIF1 in various cell types and the HIF1 was completely degraded within 8–12 h despite sustained hypoxia. HIF1 degradation under sustained hypoxia could be blocked by a competitive ODD–GFP construct and PHD siRNA, but also by cobalt chloride and micromolar H2O2 levels. Concomitant induction of PHDs further confirmed their role in degrading HIF1 under enzymatic hypoxia. The rapid and complete degradation of HIF1 under enzymatic hypoxia suggests that, in addition to hypoxia sensing, the HIF1/PHD loop may rather compensate for fluctuations of tissue oxygen staying tuned to other, e.g., metabolic, signals. In addition to hypoxia chambers, enzymatic hypoxia provides a valuable tool for independently studying the regulatory functions of hypoxia and oxidative stress in vitro.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号