首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To investigate associations between retinal microvascular changes and cognitive impairment in newly diagnosed type 2 diabetes mellitus.

Design

Case control study.

Setting

A primary care cohort with newly diagnosed type 2 diabetes mellitus.

Methods

For this analysis, we compared 69 cases with lowest decile scores (for the cohort) on the Modified Telephone Interview for Cognitive Status and 68 controls randomly selected from the remainder of the cohort. Retinal images were rated and the following measures compared between cases and controls: retinal vessel calibre, arterio-venous ratio, retinal fractal dimension, and simple and curvature retinal vessel tortuosity.

Results

Total and venular (but not arteriolar) simple retinal vessel tortuosity levels were significantly higher in cases than controls (t = 2.45, p = 0.015; t = 2.53, p = 0.013 respectively). The associations persisted after adjustment for demographic factors, retinopathy, neuropathy, obesity and blood pressure. There were no other significant differences between cases and controls in retinal measures.

Conclusions

A novel association was found between higher venular tortuosity and cognitive impairment in newly diagnosed type 2 diabetes mellitus. This might be accounted for by factors such as hypoxia, thrombus formation, increased vasoendothelial growth factor release and inflammation affecting both the visible retinal and the unobserved cerebral microvasculature.  相似文献   

2.

Objective

The influence of hematological indices such as complete blood count on microcirculation is poorly understood. Retinal microvasculature can be directly visualized and vessel calibers are associated with a range of ocular and systemic diseases. We examined the association of complete blood count with retinal vessel calibers.

Methods

Cross-sectional population-based Blue Mountains Eye Study, n = 3009, aged 49+ years. Complete blood count was measured from fasting blood samples taken at baseline examination, 1992–4. Retinal arteriolar and venular calibers were measured from digitized retinal photographs using a validated semi-automated computer program.

Results

All analyses adjusted for age, sex, systolic blood pressure, diabetes, smoking and fellow vessel caliber. Higher hematocrit, white cell count and platelet count were associated with narrower arteriolar caliber (p = 0.02, 0.03 and 0.001 respectively), while higher hemoglobin, hematocrit, red cell count, white cell count and platelet count were associated with wider venular caliber (p<0.0001 for all). Each quintile increase in hematocrit, white cell count and platelet count was associated with approximately 0.5 µm narrower arteriolar caliber; whereas each quintile increase in all of the complete blood count components was associated with approximately 1–2 µm wider venular caliber.

Conclusions

These associations show that elevated levels of hematological indices can have adverse effects on the microcirculation.  相似文献   

3.
Objective: Obesity is linked with large vessel atherosclerosis and diabetes. Its association with microvascular changes is less clear. We investigated the associations among retinal vessel diameters, vessel wall signs, and BMI in an older population. Research Methods and Procedures: Retinal photographs were taken on 3654 persons aged 49+ years at baseline of the Blue Mountains Eye Study in Australia. Arteriolar and venular diameters were measured from digitized retinal photographs of the right eyes. BMI was calculated as weight (kilograms)/height (meters2). Incident obesity was defined in persons with BMI ≤ 30 at baseline but >30 after 5 years. A significant weight gain was defined as an increase in BMI of 2+ SDs (4 or more units) over the 5‐year period. Results: At baseline, mean BMI was 26.1 (±4.6) in this population. At 5‐year examinations, 177 (10.0% of 1773 at risk) developed incident obesity, and 136 (6.4% of 2143 at risk) had significant weight gain. After adjusting for age, sex, smoking, triglyceride levels, and mean arterial blood pressure, persons with wider retinal venular diameters had a higher risk of incident obesity (odds ratio, 1.8; 95% confidence interval, 1.0 to 3.1, comparing the highest with lowest venular diameter quintiles) and significant weight gain (odds ratio, 1.7; 95% confidence interval, 0.9 to 3.2). These associations were attenuated with further adjustment for baseline BMI. Arteriolar diameter was unrelated with baseline or change in BMI. Discussion: Wider retinal venular diameter is associated with risk of obesity, independent of hypertension, diabetes, lipids, and cigarette smoking. These data may support a role for impaired microvascular function in the course of weight gain.  相似文献   

4.
In contrast to acute preparations such as the exteriorized mesentery or the cremaster muscle, chronically instrumented chamber models allow one to study the microcirculation under "physiological" conditions, i.e., in the absence of trauma-induced leukocyte rolling along the venular endothelium. To underscore the importance of studying the naive microcirculation, we implanted titanium dorsal skinfold chambers in hamsters and used intravital fluorescence microscopy to study venular leukocyte rolling in response to ischemia-reperfusion injury or extracorporeal blood circulation. The experiments were performed in chambers that fulfilled all well-established criteria for a physiological microcirculation as well as in chambers that showed various extents of leukocyte rolling due to trauma, hemorrhage, or inflammation. In ideal chambers with a physiological microcirculation (<30 rolling leukocytes/mm vessel circumference in 30 s), ischemia-reperfusion injury and extracorporeal blood circulation significantly stimulated leukocyte rolling along the venular endothelium and, subsequently, firm leukocyte adhesion. In contrast, both stimuli failed to elicit leukocyte rolling in borderline chambers (30-100 leukocytes/mm), and in blatantly inflamed chambers with yet higher numbers of rolling leukocytes at baseline (>100 leukocytes/mm), we observed a paradoxical reduction of leukocyte rolling after ischemia-reperfusion injury or extracorporeal blood circulation. A similar effect was observed when we superfused leukotriene B4 (LTB4) onto the chamber tissue. The initial increase in leukocyte rolling in response to an LTB4 challenge was reversed by a second superfusion 90 min later. These observations underscore 1) the benefit of studying leukocyte-endothelial cell interaction in chronically instrumented chamber models and 2) the necessity to strictly adhere to well-established criteria of a physiological microcirculation.  相似文献   

5.
The aim of this study was to characterize the distribution of adherent leukocytes in branched venular convergences in vivo. Intravital microscopy was used to obtain video images of leukocyte adhesion in multiple branched sites in mouse cremaster muscle, during the mild inflammatory response induced by surgical preparation. The average number of cells/vessel length was obtained over several minutes for seven venular convergences with varying geometrical configurations. Results from this study demonstrate a strong tendency of leukocytes to adhere at junctional points between converging vessels. Different vessel configurations were studied and results were shown to be insensitive to precise vessel geometry. Thus, in post-capillary venules, leukocytes are most likely to adhere at points between converging vessels, regardless of the precise geometrical properties or configuration of the vessels. Hydrodynamic mechanisms due to flow behavior through convergences likely play a significant role in determining locations of cellular adhesion. Future work should concentrate on quantifying the relative contributions of hydrodynamic and biochemical mechanisms to aid in understanding disease processes and development of treatments or therapeutics.  相似文献   

6.

Objectives

HIV infection is associated with an increased risk of age-related morbidity mediated by immune dysfunction, atherosclerosis and inflammation. Changes in retinal vessel calibre may reflect cumulative structural damage arising from these mechanisms. The relationship of retinal vessel calibre with clinical and demographic characteristics was investigated in a population of HIV-infected individuals in South Africa.

Methods

Case-control study of 491 adults ≥30 years, composed of 242 HIV-infected adults and 249 age- and gender-matched HIV-negative controls. Retinal vessel calibre was measured using computer-assisted techniques to determine mean arteriolar and venular diameters of each eye.

Results

The median age was 40 years (IQR: 35–48 years). Among HIV-infected adults, 87.1% were receiving highly active antiretroviral therapy (HAART) (median duration, 58 months), their median CD4 count was 468 cells/µL, and 84.3% had undetectable plasma viral load. Unadjusted mean retinal arteriolar diameters were 163.67±17.69 µm in cases and 161.34±17.38 µm in controls (p = 0.15). Unadjusted mean venular diameters were 267.77±18.21 µm in cases and 270.81±18.98 µm in controls (p = 0.07). Age modified the effect of retinal arteriolar and venular diameters in relation to HIV status, with a tendency towards narrower retinal diameters in HIV cases but not in controls. Among cases, retinal arteriolar diameters narrowed with increasing duration of HAART, independently of age (167.83 µm <3 years of HAART vs. 158.89 µm >6 years, p-trend = 0.02), and with a HIV viral load >10,000 copies/mL while on HAART (p = 0.05). HIV-related venular changes were not detected.

Conclusions

Narrowing of retinal arteriolar diameters is associated with HAART duration and viral load, and may reflect heightened inflammatory and pro-atherogenic states of the systemic vasculature. Measurement of retinal vascular calibre could be an innovative non-invasive method of estimating vascular risk in HIV-infected individuals.  相似文献   

7.

Background

Retinal arterial narrowing is associated with higher office blood pressure (BP) and ambulatory blood pressure monitoring, and increased incidence of cardiovascular disease, but it is still unknown if the vessel caliber is associated with BP measured at the time of retinography acquisition.

Methods

Retinal arteriolar and venular calibers were measured by the microdensitometric method in 448 patients with hypertension. Participants underwent 24-hours ambulatory blood pressure (24-h ABP) monitoring simultaneously with the retinography acquisition. Association between arteriolar and venular calibers with increase of 10 mmHg in the mean 24-hours, daily, and nightly BP, and with BP measured at the time of retinography, was evaluated by ANOVA and multivariate analyses.

Results

Mean 24-hours, daytime and nighttime systolic and diastolic BP were inversely associated with the arteriolar caliber, but not with the venular caliber. Arteriolar caliber decreased -0.8 (95% CI -1.4 to -0.2) μm per 10-mmHg increase in 24-hours mean systolic BP, adjusted for age, gender, fellow vessel, and duration of hypertension (P = 0.01). The corresponding decreasing in arteriolar caliber by 10 mmHg of increasing in mean diastolic BP was -1.1 μm (-2.0 to -0.2, P = 0.02). The decrease of arteriolar caliber by the same increasing of BP measured at the time of retinography was lower and not statistically significant, particularly for mean diastolic BP and outer arterioles calibers: -1.0 (-1.8 to -0.2) μm in the daytime BP average versus -0.3 (-0.9 to 0.3) at the moment of retinography acquisition.

Conclusions

These findings suggest that the caliber of arteriolar retinal vessels in patients with uncontrolled hypertension are not significantly influenced by blood pressure measured at the time of retinography acquisition.  相似文献   

8.
Biomicroscopic studies of hamster pouches have shown that 1-24-hour immobilization and 3-hour electrical stimulation induced terminal blood flow slowing, erythrocyte aggregation, plasmatization and vessel stasis. 24-hour immobilization and 3-hour electrical stimulation enhanced globulin permeability of venular microvessels. All types of extremal stimulation increased mast cell degranulation. Preventive antioxidant (ionol) administration normalized vascular permeability and suppressed mast cell degranulation in stress-exposed animals.  相似文献   

9.
We have demonstrated that inhibition of NO synthase (NOS) in endothelial cells by either the NOS inhibitor N(omega)-monomethyl-l-arginine (l-NMMA) or the internalization of caveolin-1 scaffolding domain attenuated platelet-activating factor (PAF)-induced increases in microvessel permeability (Am J Physiol Heart Circ Physiol 286: H195-H201, 2004) indicating the involvement of an NO-dependent signaling pathway. To investigate whether an increase in endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) is the initiating event and Ca(2+)-dependent NO production is crucial for permeability increases, PAF (10 nM)-induced changes in endothelial [Ca(2+)](i) and NO production were measured in individually perfused rat mesenteric venular microvessels via fluorescence microscopy. When venular microvessels were exposed to PAF, endothelial [Ca(2+)](i) increased from 69 +/- 8 nM to a peak value of 374 +/- 26 nM within 3 min and then declined to a sustained level at 190 +/- 12 nM after 15 min. Inhibition of NOS did not modify PAF-induced increases in endothelial [Ca(2+)](i). PAF-induced NO production was visualized and quantified at cellular levels in individually perfused microvessels using 4,5-diaminofluorescein diacetate and fluorescence imaging. Increased fluorescence intensity (FI), which is an indication of increased NO production, occurred in 75 +/- 7% of endothelial cells in each vessel. The mean maximum FI increase was 140 +/- 7% of baseline value. This increased FI was abolished by pretreatment of the vessel with l-NMMA and attenuated in the absence of extracellular Ca(2+). These results provide direct evidence from intact microvessels that increased endothelial [Ca(2+)](i) is the initial signal that activates endothelial NOS, and the subsequent increased NO production contributes to PAF-induced increases in microvessel permeability.  相似文献   

10.
Elevated venous pressure can be associated with severe tissue injury. Few links, however, between venous hypertension and tissue damage have been established. We examined here the effects of micropressure elevation on the outcome of venular occlusion/reperfusion in the mesenteric microvasculature of male Wistar rats. One hour of venular occlusion (diameter approximately 50 microm) by micropipette occlusion followed by reperfusion were carried out with sham surgery without occlusion as control. Leukocyte rolling, adhesion, and migration, oxygen radicals detected by dichlorofluorescein (DCF), and parenchymal cell death detected by propidium iodide (PI) were recorded simultaneously in the same vessel at a location upstream of the occlusion site with elevated micropressure and at a downstream location with low micropressure. The number of rolling, adhering, and migrating leukocytes increased on the upstream side of the occlusion to a higher level than downstream of the occlusion site. During occlusion, DCF intensity on the venular endothelium was greater on the upstream side than in the downstream side, but there were no differences during reperfusion. The number of PI-positive cells adjacent to the venules increased significantly compared with controls, and it remained greater on the upstream higher-pressure side than the downstream side. Leukocyte adhesion and transvascular migration in postcapillary venules as well as parenchymal cell death could be significantly reduced by the hydroxyl radical scavenger dimethylthiourea. Microhemorrhages of blood cells into the mesentery interstitium were observed only on the upstream side of the occlusion. These results indicate that an elevation of the venular blood pressure during occlusion/reperfusion exacerbates the inflammatory cascade and tissue injury. Venous occlusion may constitute an important mechanism for tissue injury.  相似文献   

11.
Venomotion, spontaneous cyclic contractions of venules, was first observed in the bat wing 160 years ago. Of all the functional roles proposed since then, propulsion of blood by venomotion remains the most controversial. Common animal models that require anesthesia and surgery have failed to provide evidence for venular pumping of blood. To determine whether venomotion actively pumps blood in a minimally invasive, unanesthetized animal model, we reintroduced the batwing model. We evaluated the temporal and functional relationship between the venous contraction cycle and blood flow and luminal pressure. Furthermore, we determined the effect of inhibiting venomotion on blood flow. We found that the active venous contractions produced an increase in the blood flow and exhibited temporal vessel diameter-blood velocity and pressure relationships characteristic of a peristaltic pump. The presence of valves, a characteristic of reciprocating pumps, enhances the efficiency of the venular peristaltic pump by preventing retrograde flow. Instead of increasing blood flow by decreasing passive resistance, venular dilation with locally applied sodium nitroprusside decreased blood flow. Taken together, these observations provide evidence for active venular pumping of blood. Although strong venomotion may be unique to bats, venomotion has also been inferred from venous pressure oscillations in other animal models. The conventional paradigm of microvascular pressure and flow regulation assumes venules only act as passive resistors, a proposition that must be reevaluated in the presence of significant venomotion.  相似文献   

12.
Many studies have suggested that endothelial cells can act as "oxygen sensors" to large reductions in oxygen availability by increasing nitric oxide (NO) production. This study determined whether small reductions in oxygen availability enhanced NO production from in vivo intestinal arterioles, venules, and parenchymal cells. In vivo measurements of perivascular NO concentration ([NO]) were made with NO-sensitive microelectrodes during normoxic and reduced oxygen availability. During normoxia, intestinal first-order arteriolar [NO] was 397 +/- 26 nM (n = 5), paired venular [NO] was 298 +/- 34 nM (n = 5), and parenchymal cell [NO] was 138 +/- 36 nM (n = 3). During reduced oxygen availability, arteriolar and venular [NO] significantly increased to 695 +/- 79 nM (n = 5) and 534 +/- 66 nM (n = 5), respectively, whereas parenchymal [NO] remained unchanged at 144 +/- 34 nM (n = 4). During reduced oxygenation, arteriolar and venular diameters increased by 15 +/- 3% and 14 +/- 5%, respectively: NG-nitro-L-arginine methyl ester strongly suppressed the dilation to lower periarteriolar Po2. Micropipette injection of a CO2 embolus into arterioles significantly attenuated arteriolar dilation and suppressed NO release in response to reduced oxygen availability. These results indicated that in rat intestine, reduced oxygen availability increased both arteriolar and venular NO and that the main site of NO release under these conditions was from endothelial cells.  相似文献   

13.
It has long been recognized that understanding the rheological properties of blood is essential to a full understanding of the function of the circulatory system. Given the difficulty of obtaining carefully controlled measurements in vivo, most of our current concepts of the flow behavior of blood in vivo are based on its properties in vitro. Studies of blood rheology in rotational and tube viscometers have defined the basic properties of blood and pointed to certain features that may be especially significant for understanding in vivo function. At the same time, differences between in vivo and in vitro systems combined with the complex rheological properties of blood make it difficult to predict in vivo blood rheology from in vitro studies. We have investigated certain flow properties of blood in vivo, using the venular network of skeletal muscle as our model system. In the presence of red blood cell aggregation, venous velocity profiles become blunted from the parabolic as in Poiseuille flow, as pseudo-shear rate (= mean fluid velocity/vessel diameter) is decreased from approximately 100 s(-1) to 5 s(-1). At control flow rates, the short distance between venular junctions does not appear to permit significant axial migration and red cell depletion of the peripheral fluid layer before additional red cells and aggregates are infused from a feeding tributary. Formation of a cell-free plasma layer at the vessel wall and sedimentation in vivo are evident only at very low pseudo-shear rates (<5 s(-1)). These findings may explain in large part observations in whole organs of increased venous resistance with reduction of blood flow.  相似文献   

14.
The observation that leukocyte-endothelial cell (EC) interactions are localized to specific regions on the microvessel wall suggests that adhesion molecule distribution is not uniform. We investigated ICAM-1 distribution and leukocyte-EC interactions in blood-perfused microvessels (<80 mum) in cremaster muscle of anesthetized mice, using intravital confocal microscopy and immunofluorescent labeling. Variability of ICAM-1 expression directly determines leukocyte adhesion distribution within the venular microcirculation and contributes to leukocyte rolling in arterioles during inflammation. The number of rolling interactions increased with ICAM-1 intensity (r(2) = 0.69, P < 0.05), and rolling velocity was lower in regions of higher ICAM-1 intensity. In controls, venular ICAM-1 expression was approximately twofold higher than in arterioles. After TNF-alpha treatment, ICAM-1 expression was significantly increased, 2.8 +/- 0.2-fold in arterioles and 1.7 +/- 0.2-fold in venules (P < 0.05). ICAM-1 expression on activated arteriolar ECs only reached the level of control venular ICAM-1. Arteriolar but not venular ECs underwent redistribution of ICAM-1 among cells; some cells increased and some decreased ICAM-1 expression, magnifying the variability of ICAM-1. TNF-alpha treatment increased the length of bright fluorescent regions per unit vessel length (42%, control; 70%, TNF-alpha) along the arteriolar wall, whereas no significant change was observed in venules (60%, control; 63%, TNF-alpha). The spatial distribution and expression levels of adhesion molecules in the microcirculation determine the timing and placement of leukocyte interactions and hence significantly impact the inflammatory response. That arteriolar ECs respond to TNF-alpha by upregulation of ICAM-1, although in a different way compared with venules, suggests an explicit role for arterioles in inflammatory responses.  相似文献   

15.
Aggregate formation of red blood cells (RBCs) in a postcapillary venular bifurcation is investigated with three-dimensional computer simulations using the Chimera grid method. Interaction energy between the RBCs is modelled by a depletion interaction theory; RBCs are modelled as rigid oblate ellipsoids. The cell–cell interactions of RBCs are strongly dependent on vessel geometry and shear rates. The experimental data on vessel geometry, pseudoshear rates, and Dextran concentration obtained in our previous in vivo RBC aggregation study in postcapillary venules of the rat spinotrapezius muscle were used to simulate RBC aggregation. The computational results were compared to the experimental results from the in vivo study. The results show that cells have a larger tendency to form an aggregate under reduced flows. Aggregate formation also depends on the angle and location of the cells before they enter the bifurcation region. Comparisons with experimental data are discussed.  相似文献   

16.
Experiments utilized the open cremaster preparation to test the hypothesis that atrial natriuretic peptide (ANP)-induced volume changes result from microvascular resistance alterations. Atrial natriuretic peptide (25, 100, and 500 ng/kg/min, IV) or vehicle was infused into anesthetized rats. At the two highest ANP infusion rates, mean arterial pressure was significantly reduced from 104 ± 3 (control) to 87 ± 2 and 77 ± 2 mmHg, respectively. Hematocrit was 41.0 ± 0.8 and 45.6 ± 0.9% (p < 0.05) at the end of vehicle and ANP infusions, respectively. Despite these effects of ANP, there were no significant arteriolar or venular diameter alterations. Thirty μM nitroprusside significantly dilated all vessel segments except large venules. These observations suggest that resistance alterations in the skeletal muscle microvasculature are not the cause of ANP-induced fluid movement.  相似文献   

17.
For in vivo study of the phenomena observed in vitro, PMN (polymorphonuclear leukocyte) extravasation was analysed quantitatively in the microcirculation of the hamster cheek pouch using a video system. Topical application of leukotriene B(4) or N-formyl-methionylleucyl- phenylalanine increased dose dependently the number of PMNs adhering to the venules. Eighty to 90% of the adhering PMNs disappeared from the vascular lumen into the venular wall within 10-12 rain after the adhesion. After PMNs had passed through the endothelial cell layer, they remained in the venular wall for more than 30 min after application of the chemoattractants and appeared in the extravascular space. Thus, the process could be divided into five steps: (1) rolling and (2) adhesion to the endothelium, (3) passage through the endothelial layer (4) remaining in the venular wall, and (5) passage through the basement membrane.  相似文献   

18.
Because small pulmonary arteries are believed to be the major site of hypoxic pulmonary vasoconstriction (HPV), pulmonary venular responses to hypoxia have received little attention. Therefore the responses of isolated guinea pig pulmonary venules to hypoxia (bath PO2, 25 Torr) and anoxia (bath PO2, 0 Torr) were characterized. Pulmonary venules [effective lumen radius (ELR), 116 +/- 2 microns] with an adherent layer of parenchyma responded to hypoxia and anoxia with a graded sustained contraction (hypoxia, 0.03 +/- 0.01; anoxia, 0.26 +/- 0.03 mN/mm), whereas paired femoral venules (ELR, 184 +/- 7 microns) contracted to anoxia only (0.05 +/- 0.02 mN/mm). Repeated challenges with hypoxia and anoxia continued to elicit sustained pulmonary venular contractions; femoral venule contractions to anoxia were not repeatable. Hypoxia- and anoxia-induced pulmonary venular contractions were calcium and pH dependent. Dissection of the parenchyma from pulmonary venules did not alter contractions to decreased PO2. Anoxic contractions of pulmonary venules were variably reduced by replacement of the bath fluid; however, the release of a contractile mediator(s) from pulmonary venules during hypoxia or anoxia was not demonstrated. Pulmonary venular responses to hypoxia and anoxia are similar to those induced by hypoxia in vivo, and results obtained from this model may be useful in predicting mechanisms of HPV.  相似文献   

19.
The paper demonstrates that in spontaneously hypertensive rats (SHR) as compared with normotensive controls exudative processes at the sites of lesions are much more prominent. Such exudative processes include edema, fibrinous exudation as well as permeability of capillaries and venular walls for leukocytes. These effects prolong the phase of its inflammation and retard the regeneration phase in wound healing. Morphine and SP1-11 stimulate in a similar fashion repair during wound healing in the both rat strains. Their effect is similar to the effect of opioid peptides. SP1-4 does not affect vessel reactivity and wound healing in SHR, which is related to disturbed expression of receptors to SP fragments. Synergism in the effect of two functional antagonists i.e. opioids and SP on wound healing confirms our hypothesis about the role of pain as an inducer of a variety of mechanisms underlying repair regeneration.  相似文献   

20.
To quantitatively assess the arteriovenous distribution of hemodynamic parameters throughout the microvascular network of the human retina, we constructed a retinal microcirculatory model consisting of a dichotomous symmetric branching system. This system is characterized by a diameter exponent of 2.85, instead of 3 as dictated by Murray’s law, except for the capillary networks. The value of 2.85 was the sum of a fractal dimension (1.70) and a branch exponent (1.15) of the retinal vasculature. Following the feeding artery (central retinal artery), each bifurcation was recursively developed at a distance of an individual branch length [L(r) = 7.4r 1.15] by a centrifugal scheme. The venular tree was formed in the same way. Using this model, we evaluated hemodynamic parameters, including blood pressure, blood flow, blood velocity, shear rate, and shear stress, within the retinal microcirculatory network as a function of vessel diameter. The arteriovenous distributions of blood pressure and velocity in the simulation were consistent with in vivo measurements in the human retina and other vascular beds of small animals. We therefore conclude that the current theoretical model was useful for quantifying hemodynamics as a function of vessel diameter within the retinal microvascular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号