首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Exclusion of sodium ions from cells is one of the key salinity tolerance mechanisms in plants. The high-affinity cation transporter (HKT1;5) is located in the plasma membrane of the xylem, excluding Na+ from the parenchyma cells to reduce Na+ concentration. The regulatory mechanism and exact functions of HKT genes from different genotypic backgrounds are relatively obscure. In this study, the expression patterns of HKT1;5 in A and D genomes of wheat were investigated in root and leaf tissues of wild and domesticated genotypes using real-time PCR. In parallel, the K+/Na+ ratio was measured in salt-tolerant and salt-sensitive cultivars. Promoter analysis were applied to shed light on underlying regulatory mechanism of the HKT1;5 expression. Gene isolation and qPCR confirmed the expression of HKT1;5 in the A and D genomes of wheat ancestors (Triticum boeoticum, AbAb and Aegilops crassa, MMDD, respectively). Interestingly, earlier expression of HKT1;5 was detected in leaves compared with roots in response to salt stress. In addition, the salt-tolerant genotypes expressed HKT1;5 before salt-sensitive genotypes. Our results suggest that HKT1;5 expression follows a tissue- and genotype-specific pattern. The highest level of HKT1;5 expression was observed in the leaves of Aegilops, 6 h after being subjected to high salt stress (200 mM). Overall, the D genome allele (HKT1;5-D) showed higher expression than the A genome (HKT1;5-A) allele when subjected to a high NaCl level. We suggest that the D genome is more effective regarding Na+ exclusion. Furthermore, in silico promoter analysis showed that TaHKT1;5 genes harbor jasmonic acid response elements.  相似文献   

2.
Transgenic Arabidopsis plants overexpressing the wheat vacuolarNa+/H+ antiporter TNHX1 and H+-PPase TVP1 are much more resistantto high concentrations of NaCl and to water deprivation thanthe wild-type strains. These transgenic plants grow well inthe presence of 200 mM NaCl and also under a water-deprivationregime, while wild-type plants exhibit chlorosis and growthinhibition. Leaf area decreased much more in wild-type thanin transgenic plants subjected to salt or drought stress. Theleaf water potential was less negative for wild-type than fortransgenic plants. This could be due to an enhanced osmoticadjustment in the transgenic plants. Moreover, these transgenicplants accumulate more Na+ and K+ in their leaf tissue thanthe wild-type plants. The toxic effect of Na+ accumulation inthe cytosol is reduced by its sequestration into the vacuole.The rate of water loss under drought or salt stress was higherin wild-type than transgenic plants. Increased vacuolar soluteaccumulation and water retention could confer the phenotypeof salt and drought tolerance of the transgenic plants. Overexpressionof the isolated genes from wheat in Arabidopsis thaliana plantsis worthwhile to elucidate the contribution of these proteinsto the tolerance mechanism to salt and drought. Adopting a similarstrategy could be one way of developing transgenic staple cropswith improved tolerance to these important abiotic stresses. Key words: H+-pyrophosphatase, Na+/H+ antiporter, salt and drought tolerance, sodium sequestration, transgenic Arabidopsis plants  相似文献   

3.
Using excised low-salt roots of barley and Atriplex hortenslsthe transport of endogenous potassium through the xylem vesselswas studied It was enhanced by nitrate and additionally by sodiumions which apparently replaced vacuolar potassium which wasthen available in the symplasm of root cells for transport tothe shoot Vacuolar Na/K exchange also has been investigatedby measurements of longitudinal ion profiles in single rootsof both species. In Atriplex roots a change in the externalsolution from K+ to Na+ induced an exchange of vacuolar K+ forNa+, in particular in the subapical root tissues and led toincreased K+ transport and loss of K+ from the cortex. In inverseexperiments a change from Na+ to K+ did not induce an exchangeof vacuolar Na+; merely in meristematic tissues Na+—apparentlyfrom the cytoplasm—was extruded in exchange for K+. Inroots of barley seedlings without caryopsis, as in excised roots,a massive exchange of K+ for Na+ was observed in the continuouspresence of external 1.0 mM Na and 0.2 mM K. This exchange alsowas attributed to the vacuole and was most pronounced in theyoung subapical tissues. It did not occur, however, in the correspondingtissues in roots of fully intact barley seedlings. In these,the young tissues retained a relatively high K/Na ratio alsoin their vacuoles. Similarly, contrasting results were obtainedwith intact and excised roots of Zea mays L. Based on theseresults a scheme of the events that lead to selective cationuptake in intact barley roots is proposed. In this scheme acrucial factor of selectivity is sufficient phloem recirculationof K+ by the aid of which K+ rich cortical cells are formednear the root tip. When matured these cells are suggested tomaintain a high cytoplasmic K/Na ratio due to K+ dependent sodiumextrusion at the plasmalemma and due to recovery of vacuolarK+ by Na/K exchange across the tonoplast. Key words: Potassium/Sodium selectivity, Vacuolar exchange, Xylem transport, Hordeum, Zea, Atriplex  相似文献   

4.
5.
Na+/H+ Antiporter in Tonoplast Vesicles from Rice Roots   总被引:4,自引:0,他引:4  
The Na+/H + antiporter in vacuolar membranes transports Na+from the cytoplasm to vacuoles using a pH gradient generatedby proton pumps; it is considered to be related to salinitytolerance. Rice (Oryza sativa L.) is a salt-sensitive crop whosevacuolar antiporter is unknown. The vacuolar pH of rice roots,determined by 31P-nuclear magnetic resonance (NMR), increasedfrom 5.34 to 5.58 in response to 0.1 M NaCl treatment. Transportof protons into the tonoplast vesicles from rice roots was fluorometricallymeasured. Efflux of protons was accelerated by the additionof Na+. Furthermore, the influx of 22Na+ into the tonoplastvesicles was accelerated by a pH gradient generated by proton-translocatingadenosine 5'-triphosphatase (H+-ATPase) and proton-translocatinginorganic pyro-phosphatase (H+-PPase). We concluded that thisNa+/H+antiporter functioned as a Na+ transporter in the vacuolarmembranes. The antiporter had a Km of 10 mM for Na+ and wascompetitively inhibited by amiloride and its analogues. TheKi values for 5-(N-methyl-N-isobutyl)-amiloride (MIA), 5-(N-ethyl-N-isopropyI)-amiloride(EIPA), and 5-(N, N-hexamethylene)-amiloride (HMA) were 2.2,5.9, and 2.9 µ M, respectively. Unlike barley, a salt-tolerantcrop, NaCl treatment did not activate the antiporter in riceroots. The amount of antiporter in the vacuolar membranes maybe one of the most important factors determining salt tolerance. 1This work was supported by a grant from Bio-Media Project ofthe Japanese Ministry of Agriculture, Forestry and Fisheries(BMP96-III-1).  相似文献   

6.
We have clonedand functionally characterized the human Na+-dependenthigh-affinity dicarboxylate transporter (hNaDC3) from placenta. ThehNaDC3 cDNA codes for a protein of 602 amino acids with 12 transmembrane domains. When expressed in mammalian cells, the clonedtransporter mediates the transport of succinate in the presence ofNa+ [concentration of substrate necessary for half-maximaltransport (Kt) for succinate = 20 ± 1 µM]. Dimethylsuccinate also interacts with hNaDC3. TheNa+-to-succinate stoichiometry is 3:1 and concentration ofNa+ necessary for half-maximal transport(KNa+0.5) is 49 ± 1 mM as determined by uptake studies withradiolabeled succinate. When expressed in Xenopuslaevis oocytes, hNaDC3 induces Na+-dependent inwardcurrents in the presence of succinate and dimethylsuccinate. At amembrane potential of 50 mV,KSuc0.5 is 102 ± 20 µM andKNa+0.5 is 22 ± 4 mM as determined by the electrophysiological approach. Simultaneous measurements of succinate-evoked charge transfer andradiolabeled succinate uptake in hNaDC3-expressing oocytes indicate acharge-to-succinate ratio of 1:1 for the transport process, suggestinga Na+-to-succinate stoichiometry of 3:1. pH titration ofcitrate-induced currents shows that hNaDC3 accepts preferentially thedivalent anionic form of citrate as a substrate. Li+inhibits succinate-induced currents in the presence of Na+.Functional analysis of rat-human and human-rat NaDC3 chimeric transporters indicates that the catalytic domain of the transporter lies in the carboxy-terminal half of the protein. The humanNaDC3 gene is located on chromosome20q12-13.1, as evidenced by fluorescent in situ hybridization. Thegene is >80 kbp long and consists of 13 exons and 12 introns.

  相似文献   

7.
Worldwide, dryland salinity is a major limitation to crop production. Breeding for salinity tolerance could be an effective way of improving yield and yield stability on saline-sodic soils of dryland agriculture. However, this requires a good understanding of inheritance of this quantitative trait. In the present study, a doubled-haploid bread wheat population (Berkut/Krichauff) was grown in supported hydroponics to identify quantitative trait loci (QTL) associated with salinity tolerance traits commonly reported in the literature (leaf symptoms, tiller number, seedling biomass, chlorophyll content, and shoot Na+ and K+ concentrations), understand the relationships amongst these traits, and determine their genetic value for marker-assisted selection. There was considerable segregation within the population for all traits measured. With a genetic map of 527 SSR-, DArT- and gene-based markers, a total of 40 QTL were detected for all seven traits. For the first time in a cereal species, a QTL interval for Na+ exclusion (wPt-3114-wmc170) was associated with an increase (10%) in seedling biomass. Of the five QTL identified for Na+ exclusion, two were co-located with seedling biomass (2A and 6A). The 2A QTL appears to coincide with the previously reported Na+ exclusion locus in durum wheat that hosts one active HKT1;4 (Nax1) and one inactive HKT1;4 gene. Using these sequences as template for primer design enabled mapping of at least three HKT1;4 genes onto chromosome 2AL in bread wheat, suggesting that bread wheat carries more HKT1;4 gene family members than durum wheat. However, the combined effects of all Na+ exclusion loci only accounted for 18% of the variation in seedling biomass under salinity stress indicating that there were other mechanisms of salinity tolerance operative at the seedling stage in this population. Na+ and K+ accumulation appear under separate genetic control. The molecular markers wmc170 (2A) and cfd080 (6A) are expected to facilitate breeding for salinity tolerance in bread wheat, the latter being associated with seedling vigour.  相似文献   

8.
9.
Interaction of Salinity and Anaerobiosis in Barley and Rice   总被引:3,自引:0,他引:3  
Barley and rice at the early tillering stage were exposed simultaneouslyto anaerobiosis and high [NaCl]. Barley was grown at 0.5, 70,and 125 mol m–3 NaCl, and rice at 2, 20, 40, and 80 molm–3 NaCl. Surprisingly, anaerobiosis only slightly aggravatedthe adverse effects of high [NaCl] on root and shoot growthof both species. For rice and barley grown under aerobic conditions, high [NaCl]increased [Na+] and [Cl] and decreased [K+] in both rootsand shoots. However, the changes in ion concentrations in theshoots were smaller for rice than for barley. For roots of barley, anaerobiosis decreased [Na+], [Cl],and [K+] at both low and high [NaCl], possibly as a result ofinhibition of active ion accumulation. For barley shoots, anaerobiosisincreased [Na+] and [Cl], but only at high salinity;in contrast, [K+] was reduced by anaerobiosis at both low andhigh [NaCl]. These results indicate that anaerobiosis slightlyincreased the permeability of the barley root system to Na+and Cl. For rice, the most important interaction between salinity andanaerobiosis occurred in the shoots, where anaerobiosis increased[Na+] and decreased [K+], particularly at 40 and 80 mol m–3NaCl, while there was no interaction between anaerobiosis andsalinity for Cl uptake. It is therefore suggested thatanaerobic treatment of rice decreased the selectivity for K+over Na+ of cation transport to the shoots, at least for plantsgrown at high salinities.  相似文献   

10.
H+-ATPase-rich (HR) cells in zebrafish gills/skin were found to carry out Na+ uptake and acid-base regulation through a mechanism similar to that which occurs in mammalian proximal tubular cells. However, the roles of carbonic anhydrases (CAs) in this mechanism in zebrafish HR cells are still unclear. The present study used a functional genomic approach to identify 20 CA isoforms in zebrafish. By screening with whole mount in situ hybridization, only zca2-like a and zca15a were found to be expressed in specific groups of cells in zebrafish gills/skin, and further analyses by triple in situ hybridization and immunocytochemistry demonstrated specific colocalizations of the two zca isoforms in HR cells. Knockdown of zca2-like a caused no change in and knockdown of zca15a caused an increase in H+ activity at the apical surface of HR cells at 24 h postfertilization (hpf). Later, at 96 hpf, both the zca2-like a and zca15a morphants showed decreased H+ activity and increased Na+ uptake, with concomitant upregulation of znhe3b and downregulation of zatp6v1a (H+-ATPase A-subunit) expressions. Acclimation to both acidic and low-Na+ fresh water caused upregulation of zca15a expression but did not change the zca2-like a mRNA level in zebrafish gills. These results provide molecular physiological evidence to support the roles of these two zCA isoforms in Na+ uptake and acid-base regulation mechanisms in zebrafish HR cells. ionocytes; Na+/H+ exchanger; skin; gill; embryo  相似文献   

11.
The growth of garden orache, A triplex hortensis was studiedunder conditions of mild NaCl or Na2SO4 salinity. Growth, drymatter production and leaf size were substantially stimulatedat 10 mM and 50 mM Na+ salts. Increased growth, however, appearedto be due to a K+-sparing effect of Na+ rather than to salinityper se. The distribution of K+ and Na+ in the plant revealeda remarkable preference for K+ in the roots and the hypocotyl.In the shoot the K/Na ratio decreased strongly with leaf age.However, the inverse changes in K+ and Na+ content with leafage were dependent on the presence of bladder hairs, which removedalmost all of the Na+ from the young leaf lamina. Measurementsof net fluxes of K+ and Na+ into roots and shoots of growingAtriplex plants showed a higher K/Na selectivity of the netion flux to the root compared to the shoot. With increasingsalinity the selectivity ratio SK, Na* of net ion fluxes tothe roots and to the shoots was increased. The data suggestthat recirculation of K+ from leaves to roots is an importantlink in establishing the K/Na selectivity in A. hortensis plants.The importance of K+ recirculation and phloem transport forsalt tolerance is discussed. Key words: Atriplex hortensis, Salinity, Potassium, Sodium, K+ retranslocation, Bladder hairs, Growth stimulation  相似文献   

12.
The active nitrate transport system of the cyanobacterium Synechococcussp. PCC7942 is encoded by the four genes nrtA, nrtB, nrtC andnrtD. It is essential for the growth of the cyanobacterium atphysiological concentrations of nitrate and has been shown tobe involved in the active transport of nitrite as well. Thededuced amino acid sequences of the NrtB, NrtC and NrtD proteinsindicate that the transporter is a member of the ABC (ATP-bindingcassette) superfamily of active transporters. Among the prokaryoticABC transporters, the cyanobacterial nitrate/nitrite transporteris unique in having a membrane-bound protein NrtA and an NrtA-likeextra domain linked to one of the ATP-binding subunits (C-terminaldomain of NrtC). Molecular biological, biochemical and physiologicalstudies suggest that NrtA is the substrate-binding protein requiredfor the transport of nitrate/nitrite and that the C-terminaldomain of NrtC has a regulatory role. Comparison of the structuresof nitrate transporters from eukaryotic and prokaryotic, photosyntheticand non-photosynthetic organisms indicate that the nrt nitrate/nitritetransporter represents a prokaryotic nitrate transporter distinctfrom the nitrate transporters of eukaryotes. 1Recipient of the JSPP Young Investigator Award, 1994.  相似文献   

13.
ATP-dependent transport of 22Na+ into liposomes reconstitutedfrom plasma membrane proteins of Heterosigma akashiwo was examined.The apparent Km values for transport of Na+ were 400 µMfor ATP and 7 mM for Na+. ATP-dependent transport of 22Na+ wasnot inhibited by a protonophore or a membrane-permeable cationbut was inhibited by an inhibitor of P-type ATPases. (Received October 2, 1995; Accepted February 1, 1996)  相似文献   

14.
Using the compartmental analysis the unidirectional Na+ fluxesin cortical cells of barley roots, the cytoplasmic and vacuolarNa+ contents Qc and Qv, and the trans-root Na+ transport R'have been studied as a function of the external Na+ concentration.Using the re-elution technique the effect of low K+ concentrationson the plasmalemma efflux co of Na+ (K+-Na+ exchange) and onR' was investigated at different Na+ concentrations and correspondinglydifferent values of the cytoplasmic sodium content Qc. The relationof the K+-dependent Na+ efflux coK+-dep to Qc or to the cytoplasmicNa+ concentration obeyed Michaelis-Menten kinetics. This isconsistent with a linkage of co, K+-dep to K+ influx by a K+-Na+exchange system. The apparent Km corresponded to a cytoplasmicNa+ concentration of 28 mM at 0·2 mM K+ and about 0·2mM Na+ in the external solution. 0·2 mM K+ stimulatedthe plasma-lemma efflux of Na+ and inhibited Na+ transport selectivelyeven in the presence of 10 mM Na+ in the external medium showingthe high efficiency of the K+-Na+ exchange system. However,co, K+-dep was inhibited at 10 mM Na1 compared to lower Na1concentrations suggesting some competition of Na1 with K1 atthe external site of the exchange system. The effect of theNa+ concentration on Na1 influx oc is discussed with respectto kinetic models of uuptake.  相似文献   

15.
The effect of elevated Na+ concentration on Na+ permeability(PNa) and Na+ influx in the presence of two levels of externaldivalent cations was determined in Chara corallina and freshwater-culturedChara buckellii. When Na+ in the medium was increased from 1.0to 70 mol m–3, Na+ influx increased in both species ifCa2+ was low (0.1 mol m–3). If Ca2+ was increased to 7.0mol m–3 when Na+ was increased, Na+ influx remained atthe low control level in C. corallina, and showed only a temporaryincrease in C. buckellii. Mg2+ was a better substitute for Ca2+in C. buckellii than in C. corallina. Na+ permeability data suggest that when the external Ca2+ concentrationis low, PNa does not increase in the presence of elevated NaCl;the increase in Na+ influx appears to be due to the increasein external Na+ concentration alone. Ca2 + supplementation appearsto decrease PNa whereas supplemental Mg2+ has no effect. Na+ effluxes were computed from previously determined net fluxesand the influxes. It was found that for both species, fluxesin both directions were stimulated in response to all experimentaltreatments, but Na+ influx always exceeded efflux. This resultedin net Na+ accumulation in the vacuoles of both species. The results are discussed with reference to net flux and electrophysiologicaldata obtained previously under identical conditions, as wellas the comparative salinity tolerance of both species and theNa+/divalent cation ratio. Key words: Na+ influx, Na+ tolerance, membrane potential, permeability, Chara  相似文献   

16.
Bread wheat (Triticum aestivum) has a greater ability to exclude Na+ from its leaves and is more salt tolerant than durum wheat (Triticum turgidum L. subsp. durum [Desf.]). A novel durum wheat, Line 149, was found to contain a major gene for Na+ exclusion, Nax2, which removes Na+ from the xylem in the roots and leads to a high K+-to-Na+ ratio in the leaves. Nax2 was mapped to the distal region on chromosome 5AL based on linkage to microsatellite markers. The Nax2 locus on 5AL coincides with the locus for a putative Na+ transporter, HKT1;5 (HKT8). The Nax2 region on 5AL is homoeologous to the region on chromosome 4DL containing the major Na+ exclusion locus in bread wheat, Kna1. A gene member of the HKT1;5 family colocates to the deletion bin containing Kna1 on chromosome 4DL. This work provides evidence that Nax2 and Kna1 are strongly associated with HKT1;5 genes.  相似文献   

17.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

18.
The halophyte Salicornia bigelovii Torr. shows optimal growthand Na+ accumulation in 200 mM NaCl and reduced growth underlower salinity conditions. The ability to accumulate and compartmentalizeNa+ may result, in part, from stimulation of the H+ -ATPaseson the plasma membrane (PM-ATPase) and vacuolar membranes (V-ATPase).To determine if these two primary transport systems are involvedin salt tolerance, shoot fresh weight (FW) and activity of thePM- and V-ATPases from shoots in Salicornia grown in 5 and 200mM NaCI were compared. Higher PM-ATPase activity (60%) and FW(60%) were observed in plants grown in 200 mM NaCI and thesestimulations in growth and enzyme activity were specific forNa+ and not observed with Na+ added in vitro. V-ATPase activitywas significantly stimulated in vivo and in vitro (26% and 46%,respectively) after exposure to 200 mM NaCl, and stimulationwas Na+ -specific. Immunoblots indicated that the increasesin activity of the H+ -ATPases from plants grown in 200 mM NaCIwas not due to increases in protein expression. These studiessuggest that the H+-ATPases in Salicornia are important in salttolerance and provide a biochemical framework for understandingmechanisms of salt tolerance in plants. Key words: Salicornia, H+-ATPases, salt tolerance  相似文献   

19.
The general phosphate need in mammalian cells is accommodated by members of the Pi transport (PiT) family (SLC20), which use either Na+ or H+ to mediate inorganic phosphate (Pi) symport. The mammalian PiT paralogs PiT1 and PiT2 are Na+-dependent Pi (NaPi) transporters and are exploited by a group of retroviruses for cell entry. Human PiT1 and PiT2 were characterized by expression in Xenopus laevis oocytes with 32Pi as a traceable Pi source. For PiT1, the Michaelis-Menten constant for Pi was determined as 322.5 ± 124.5 µM. PiT2 was analyzed for the first time and showed positive cooperativity in Pi uptake with a half-maximal activity constant for Pi of 163.5 ± 39.8 µM. PiT1- and PiT2-mediated Na+-dependent Pi uptake functions were not significantly affected by acidic and alkaline pH and displayed similar Na+ dependency patterns. However, only PiT2 was capable of Na+-independent Pi transport at acidic pH. Study of the impact of divalent cations Ca2+ and Mg2+ revealed that Ca2+ was important, but not critical, for NaPi transport function of PiT proteins. To gain insight into the NaPi cotransport function, we analyzed PiT2 and a PiT2 Pi transport knockout mutant using 22Na+ as a traceable Na+ source. Na+ was transported by PiT2 even without Pi in the uptake medium and also when Pi transport function was knocked out. This is the first time decoupling of Pi from Na+ transport has been demonstrated for a PiT family member. Moreover, the results imply that putative transmembrane amino acids E55 and E575 are responsible for linking Pi import to Na+ transport in PiT2. inorganic phosphate transport; retroviral receptor; SLC20  相似文献   

20.
The uptake, transport and accumulation of sodium were comparedin two grasses: Pappophorum pappifervm (Lam.) O. Kuntze, a glycophyteand P. philippianum L. R. Parodi, a facultative halophyte. Atlow salinity levels, (50 mM NaCl) shoots of salt-treated P.pappiferum accumulated lower Na+ concentrations than the otherspecies. This difference does not seem to be related to Na+uptake, as in short-time experiments (< I h), whole plantsof both species showed similar rates of Na+ uptake and transport Sodium recirculation was assessed in split-root experiments.It was similar in control (previously non-salinized) plantsof both species, but in salt-treated plants it was more significantin P. pappiferum. This mechanism, along with increased lossof recently acquired Na+, could contribute to keep Na+ levelslower in shoots of P. pappiferum than in P. philippianum. Pappophorum, Gramineae, sodium recirculation, salinity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号