首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deacetoxycephalosporin/deacetylcephalosporin C synthase (DAOC/DACS) is an iron(II) and 2-oxoglutarate-dependent oxygenase involved in the biosynthesis of cephalosporin C in Cephalosporium acremonium. It catalyzes two oxidative reactions, oxidative ring-expansion of penicillin N to deacetoxycephalosporin C, and hydroxylation of the latter to give deacetylcephalosporin C. The enzyme is closely related to deacetoxycephalosporin C synthase (DAOCS) and DACS from Streptomyces clavuligerus, which selectively catalyze ring-expansion or hydroxylation reactions, respectively. In this study, structural models based on DAOCS coupled with site-directed mutagenesis were used to identify residues within DAOC/DACS that are responsible for controlling substrate and reaction selectivity. The M306I mutation abolished hydroxylation of deacetylcephalosporin C, whereas the W82A mutant reduced ring-expansion of penicillin G (an "unnatural" substrate). Truncation of the C terminus of DAOC/DACS to residue 310 (Delta310 mutant) enhanced ring-expansion of penicillin G by approximately 2-fold. A double mutant, Delta310/M306I, selectively catalyzed the ring-expansion reaction and had similar kinetic parameters to the wild-type DAOC/DACS. The Delta310/N305L/M306I triple mutant selectively catalyzed ring-expansion of penicillin G and had improved kinetic parameters (K(m) = 2.00 +/- 0.47 compared with 6.02 +/- 0.97 mm for the wild-type enzyme). This work demonstrates that a single amino acid residue side chain within the DAOC/DACS active site can control whether the enzyme catalyzes ring-expansion, hydroxylation, or both reactions. The catalytic efficiency of mutant enzymes can be improved by combining active site mutations with other modifications including C-terminal truncation and modification of Asn-305.  相似文献   

2.
Deacetoxy/deacetylcephalosporin C synthase (acDAOC/DACS) from Acremonium chrysogenum is a bifunctional enzyme that catalyzes both the ring-expansion of penicillin N to deacetoxycephalosporin C (DAOC) and the hydroxylation of the latter to deacetylcephalosporin C (DAC). Three residues N305, R307 and R308 located in close proximity to the C-terminus of acDAOC/DACS were each mutated to leucine. The N305L and R308L mutant acDAOC/DACSs showed significant improvement in their ability to convert penicillin analogs. R308 was identified for the first time as a critical residue for DAOC/DACS activity. Kinetic analyses of purified R308L enzyme indicated its improved catalytic efficiency is due to combined improvements of K(m) and k(cat). Comparative modeling of acDAOC/DACS supports the involvement of R308 in the formation of substrate-binding pocket.  相似文献   

3.
We have successfully expressed and observed secretion of the Streptomyces clavuligerus deacetoxycephalosporin C synthase (DAOCS) using the Pichia pastoris expression system. Two clones having multiple copies of the expression cassette were selected and used for protein-expression analysis. SDS-PAGE showed efficient expression and secretion of the bacterial recombinant DAOCS. The highest yield (120 microg/mL) was obtained when expression was induced with 2% methanol. Free and immobilized protein were assayed for biological activity and found to expand penicillin N (its natural substrate) and penicillin G to deacetoxycephalosporin C (DAOC) and deacetoxycephalosporin G (DAOG), respectively.  相似文献   

4.
Deacetoxycephalosporin C synthase (DAOCS) is an iron(II) and 2-oxoglutarate-dependent oxygenase that catalyzes the conversion of penicillin N to deacetoxycephalosporin C, the committed step in the biosynthesis of cephalosporin antibiotics. The crystal structure of DAOCS revealed that the C terminus of one molecule is inserted into the active site of its neighbor in a cyclical fashion within a trimeric unit. This arrangement has hindered the generation of crystalline enzyme-substrate complexes. Therefore, we constructed a series of DAOCS mutants with modified C termini. Oxidation of 2-oxoglutarate was significantly uncoupled from oxidation of the penicillin substrate in certain truncated mutants. The extent of uncoupling varied with the number of residues deleted and the penicillin substrate used. Crystal structures were determined for the DeltaR306 mutant complexed with iron(II) and 2-oxoglutarate (to 2.10 A) and the DeltaR306A mutant complexed with iron(II), succinate and unhydrated carbon dioxide (to 1.96 A). The latter may mimic a product complex, and supports proposals for a metal-bound CO(2) intermediate during catalysis.  相似文献   

5.
Biosynthesis of cephalosporin antibiotics involves an expansion of the five-membered thiazolidine ring of penicillin N to the six-membered dihydrothiazine ring of deacetoxycephalosporin C by a deacetoxycephalosporin C synthetase (DAOCS) enzyme activity. Hydroxylation of deacetoxycephalosporin C to form deacetylcephalosporin C by a deacetylcephalosporin C synthetase (DACS) activity is the next step in biosynthesis of cephalosporins. In Cephalosporium acremonium, both of these catalytic activities are exhibited by a bifunctional enzyme, DAOCS-DACS, encoded by a single gene, cefEF. In Streptomyces clavuligerus, separable enzymes, DAOCS (expandase) and DACS (hydroxylase), catalyze these respective reactions. We have cloned, sequenced, and expressed in E. coli an S. clavuligerus gene, designated cefE, which encodes DAOCS but not DACS. The deduced amino acid sequence of DAOCS from S. clavuligerus (calculated Mr of 34,519) shows marked similarity (approximately 57%) to the deduced sequence of DAOCS-DACS from C. acremonium; however, the latter sequence is longer by 21 amino acid residues.  相似文献   

6.
The biosynthesis of cephalosporins involving a thiozolidine ring expansion is catalyzed by deacetoxycephalosporin C synthase (DAOCS). In this study, three DAOCS isozymes were cloned and expressed as active enzymes together with Streptomyces jumonjinensis DAOCS that was newly isolated and partially characterized. The enzymes showed excellent substrate conversion for penicillin G, phenethicillin, ampicillin and carbenicillin, but they were less effective in the ring expansion of penicillin V, amoxicillin and metampicillin. Streptomyces clavuligerus DAOCS was the most active among the recombinant enzymes. The results also showed that truncation of 20 amino acids at the C-terminus of the Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase polypeptide did not affect penicillin ring expansion.  相似文献   

7.
The Fe(II) and 2-oxoglutarate-dependent dioxygenase deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus was expressed at ca 25 % of total soluble protein in Escherichia coli and purified by an efficient large-scale procedure. Purified protein catalysed the conversions of penicillins N and G to deacetoxycephems. Gel filtration and light scattering studies showed that in solution monomeric apo-DAOCS is in equilibrium with a trimeric form from which it crystallizes. DAOCS was crystallized +/-Fe(II) and/or 2-oxoglutarate using the hanging drop method. Crystals diffracted to beyond 1.3 A resolution and belonged to the R3 space group (unit cell dimensions: a=b=106.4 A, c=71.2 A; alpha=beta=90 degrees, gamma=120 degrees (in the hexagonal setting)). Despite the structure revealing that Met180 is located close to the reactive oxidizing centre of DAOCS, there was no functional difference between the wild-type and selenomethionine derivatives. X-ray absorption spectroscopic studies in solution generally supported the iron co-ordination chemistry defined by the crystal structures. The Fe K-edge positions of 7121.2 and 7121.4 eV for DAOCS alone and with 2-oxoglutarate were both consistent with the presence of Fe(II). For Fe(II) in DAOCS the best fit to the Extended X-ray Absorption Fine Structure (EXAFS) associated with the Fe K-edge was found with two His imidazolate groups at 1.96 A, three nitrogen or oxygen atoms at 2.11 A and one other light atom at 2.04 A. For the Fe(II) in the DAOCS-2-oxoglutarate complex the EXAFS spectrum was successfully interpreted by backscattering from two His residues (Fe-N at 1.99 A), a bidentate O,O-co-ordinated 2-oxoglutarate with Fe-O distances of 2.08 A, another O atom at 2.08 A and one at 2.03 A. Analysis of the X-ray crystal structural data suggests a binding mode for the penicillin N substrate and possible roles for the C terminus in stabilising the enzyme and ordering the reaction mechanism.  相似文献   

8.
The deacetoxycephalosporin C (DAOC) synthase (expandase) of Streptomyces lactamdurans was highly purified, as shown by SDS-PAGE and isoelectric focusing. The enzyme catalysed the oxidative ring expansion that converts penicillin N into DAOC. The enzyme was very unstable but could be partially stabilized in 25 mM-Tris/HCl, pH 9.0, in the presence of DTT (0.1 mM). The enzyme required 2-oxoglutarate, oxygen and Fe2+, but did not need ATP, ascorbic acid, Mg2+ or K+. The optimum temperature was between 25 and 30 degrees C. The DAOC synthase showed a high specificity for the penicillin substrate. Only penicillin N but not isopenicillin N, penicillin G or 6-aminopenicillanic acid served as substrates. 2-Oxoglutarate analogues were not used as substrates although 2-oxobutyrate and 3-oxoadipate inhibited the enzyme by 100% and 56% respectively. The enzyme was strongly inhibited by Cu2+, Co2+ and Zn2+. The apparent Km values for penicillin N, 2-oxoglutarate and Fe2+ were 52 microM, 3 microM and 71 microM respectively. The enzyme was a monomer with a molecular mass of 27,000 Da +/- 1,000.  相似文献   

9.
The deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus was engineered with the aim of enhancing the conversion of penicillin G into phenylacetyl-7-aminodeacetoxycephalosporanic acid, a precursor of 7-aminodeacetoxycephalosporanic acid, for industrial application. A single round of random mutagenesis followed by the screening of 5,500 clones identified three mutants, G79E, V275I, and C281Y, that showed a two- to sixfold increase in the k(cat)/K(m) ratio compared to the wild-type enzyme. Site-directed mutagenesis to modify residues surrounding the substrate resulted in three mutants, N304K, I305L, and I305M, with 6- to 14-fold-increased k(cat)/K(m) values. When mutants containing all possible combinations of these six sites were generated to optimize the ring expansion activity for penicillin G, the double mutant, YS67 (V275I, I305M), showed a significant 32-fold increase in the k(cat)/K(m) ratio and a 5-fold increase in relative activity for penicillin G, while the triple mutant, YS81 (V275I, C281Y, I305M), showed an even greater 13-fold increase in relative activity toward penicillin G. Our results demonstrate that this is a robust approach to the modification of DAOCS for an optimized DAOCS-penicillin G reaction.  相似文献   

10.
Deacetoxy/deacetylcephalosporin C synthase (acDAOC/DACS) from Acremonium chrysogenum is a bifunctional enzyme that catalyzes both the ring-expansion of penicillin N to deacetoxycephalosporin C and the hydroxylation of the latter to deacetylcephalosporin C. The R308 residue located in close proximity to the C-terminus of acDAOC/DACS was mutated to the other 19 amino acids. In the resulting mutant pool, R308L, R308I, R308T and R308V showed significant improvement in their ability to convert penicillin analogs, thus confirming the role of R308 in controlling substrate selectivity, the four amino acids all possess short aliphatic sidechains that may improve hydrophobic interactions with the substrates. The mutant R308I showed the highest reactivity for penicillin G, with 3-fold increase in kcat/Km ratio and 7-fold increase in relative activity.  相似文献   

11.
本文对青霉素扩环酶(Penicillin expandase,也称Deacetoxycephalosporin C synthase,DAOCS)在高浓度青霉素G下的底物抑制现象进行初步评价与表征,筛选适合工业应用条件的高活力突变体。我们通过HPLC对已报道的几个DAOCS高活力突变体在青霉素G浓度5.6至500 mmol/L间的比活力进行定量测定,并与不同催化反应动力学模型的理论推测变化趋势比较,发现DAOCS野生型酶及高活力突变体H4、H5、H6与H7在高浓度青霉素G条件下均表现出明显的底物抑制现象,但是变化趋势不同。野生型酶与突变体H4的比活力先上升后下降,与竞争性抑制模型预测不符。突变体H5、H6与H7的比活力变化呈现更复杂的变化趋势。在所有测试的突变体中,H6的活性显著高于其他突变体酶。青霉素G对野生型DAOCS的底物抑制现象符合非竞争性抑制模型的预测。而部分突变体表现出复杂的底物抑制行为,表明其具有更复杂的作用机制。在高底物浓度下筛选具有较强催化活性的青霉素扩环酶突变体对于推动其在工业生产中的应用具有重要指导作用。  相似文献   

12.
Deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus catalyses the oxidative ring expansion of the penicillin nucleus into the nucleus of cephalosporins. The reaction requires dioxygen and 2-oxoglutarate as co-substrates to create a reactive iron-oxygen intermediate from a ferrous iron in the active site. The active enzyme is monomeric in solution. The structure of DAOCS was determined earlier from merohedrally twinned crystals where the last four C-terminal residues (308-311) of one molecule penetrate the active site of a neighbouring molecule, creating a cyclic trimeric structure in the crystal. Shortening the polypeptide chain from the C terminus by more than four residues diminishes activity. Here, we describe a new crystal form of DAOCS in which trimer formation is broken and the C-terminal arm is free. These crystals show no signs of twinning, and were obtained from DAOCS labelled with an N-terminal His-tag. The modified DAOCS is catalytically active. The free C-terminal arm protrudes into the solvent, and the C-terminal domain (residues 268-299) is rotated by about 16 degrees towards the active site. The last 12 residues (300-311) are disordered. Structures for various enzyme-substrate and enzyme-product complexes in the new crystal form confirm overlapping binding sites for penicillin and 2-oxoglutarate. The results support the notion that 2-oxoglutarate and dioxygen need to react first to produce an oxidizing iron species, followed by reaction with the penicillin substrate. The position of the penicillin nucleus is topologically similar in the two crystal forms, but the penicillin side-chain in the new non-twinned crystals overlaps with the position of residues 304-306 of the C-terminal arm in the twinned crystals. An analysis of the interactions between the C-terminal region and residues in the active site indicates that DAOCS could also accept polypeptide chains as ligands, and these could bind near the iron.  相似文献   

13.
Deacetoxycephalosporin C synthetase (expandase), which catalyzes ring expansion of penicillin N to deacetoxycephalosporin C (DAOC), has been stabilized in vitro and purified to near homogeneity from the industrially important fungus Cephalosporium acremonium. Throughout the purification, the expandase activity remained physically associated with and in a constant ratio of 7:1 to DAOC hydroxylase activity. The latter activity mediates hydroxylation of DAOC to deacetylcephalosporin C (DAC). The copurified expandase/hydroxylase appeared to be monomeric, with a molecular weight of 41,000 +/- 2,000 and an isoelectric point of 6.3 +/- 0.3. Both catalytic activities required alpha-ketoglutarate, Fe2+, and O2 and were stimulated by ascorbate, dithiothreitol, and ATP. The Fe2+ requirement was specific, and sulfhydryl groups in the purified protein were apparently essential for both ring expansion and hydroxylation. The kinetics and stoichiometry of DAOC/DAC formation from the expandase/hydroxylase-catalyzed reactions suggested that ring expansion of penicillin N preceded hydroxylation of DAOC.  相似文献   

14.
Superimposition of deacetoxycephalosporin C synthase (DAOCS) and isopenicillin N synthase (IPNS) structures revealed that R74, R160, R266 and N304 are strategically located in the catalytic cavity of Streptomyces clavuligerus DAOCS (scDAOCS) and are crucial for orchestrating different substrates. Substitutions at these sites to a hydrophobic leucine residue were expected to stabilize the hydrophobic substrate bound state. Substantial improvements in the biotransformation of penicillin G, ampicillin and amoxicillin to their respective cephalosporin moieties were observed using the N304L mutant scDAOCS. Thus, our results have demonstrated the enhancement of scDAOCS activity via critical computational analysis and site-directed mutagenesis of endogenous ligands.  相似文献   

15.
When the level of dissolved oxygen was increased to saturation in defined media fermentations of Streptomyces clavuligerus, the total duration of activity of the penicillin ring cyclization enzyme, isopenicillin N synthase (IPNS), was extended by at least 20 h; however, no increase in the stability of the ring expansion enzyme, desacetoxycephalosporin C synthase (DAOCS), was observed. Consequently, the conversion of the excreted intermediate penicillin N to cephamycin C was 15-20% less efficient at this high oxygen concentration. The increased dissolved oxygen level also led to the complete loss of IPNS and DAOCS activities for 4 h during the period of fastest growth, and the rate of specific cephamycin C production fell to zero. A several hundred fold increase in the level of iron in the defined media resulted in a sixfold improvement in the rate of specific cephamycin C production after 60 h fermentation. This increased rate appeared to be due to an elevation in the in vivo activities of a number of the cephamycin biosynthetic enzymes, particularly those catalysing later pathway steps.  相似文献   

16.
Deacetoxycephalosporin C synthase (DAOCS) catalyses the oxidative ring expansion of penicillin N, the committed step in the biosynthesis of cephamycin C by Streptomyces clavuligerus. Site-directed mutagenesis was used to investigate the seven Arg residues for activity (74, 75, 160, 162, 266, 306 and 307), selected on the basis of the DAOCS crystal structure. Greater than 95% of activity was lost upon mutation of Arg-160 and Arg266 to glutamine or other residues. These results are consistent with the proposed roles for these residues in binding the carboxylate linked to the nucleus of penicillin N (Arg160 and Arg162) and the carboxylate of the alpha-aminoadipoyl side-chain (Arg266). The results for mutation of Arg74 and Arg75 indicate that these residues play a less important role in catalysis/binding. Together with previous work, the mutation results for Arg306 and Arg307 indicate that modification of the C-terminus may be profitable with respect to altering the penicillin side-chain selectivity of DAOCS.  相似文献   

17.
When dissolved oxygen (DO) was maintained at saturation level during batch fermentations of Streptomyces clavuligerus (NRRL 3585), the accumulation of the intermediate penicillin N was lowered while formation of the end product cephamycin C was increased relative to fermentations without DO control. The specific activity of the penicillin ring-expansion enzyme deacetoxycephalosporin C synthase (DAOCS) was increased 2.3-fold under oxygen saturated conditions, whereas the penicillin ring-cyclizing enzyme isopenicillin N synthase (IPNS) showed only a 1.3-fold increase. Thus oxygen derepression of DAOCS appears to be an important regulatory mechanism in the conversion of penicillin N to cephamycin C in S. clavuligerus. IPNS, an early acting enzyme in cephamycin C biosynthesis, and DAOCS, which acts late in the pathway, both disappeared from cell extracts at 60 h, just prior to cessation of cephamycin production.  相似文献   

18.
Deacetoxycephalosporin C (DAOC) is not only the precursor but also one of the by-products during cephalosporin C (CPC) biosynthesis. One enzyme (DAOC/DAC synthase) is responsible for the two-step conversion of penicillin N into deacetylcephalosporin C (DAC) in Acremonium chrysogenum, while two enzymes (DAOC synthase and DAOC hydroxylase) were involved in this reaction in Streptomyces clavuligerus and Amycolatopsis lactamdurans (Nocardia lactamdurans). In this study, the DAOC hydroxylase gene cefF was cloned from Streptomyces clavuligerus and introduced into Acremonium chrysogenum through Agrobacterium tumefaciens-mediated transformation. When cefF was expressed under the promoter of pcbC, the ratio of DAOC/CPC in the fermentation broth significantly decreased. These results suggested that introduction of cefF could function quite well in Acremonium chrysogenum and successfully reduce the content of DAOC in the CPC fermentation broth. This work offered a practical way to improve the CPC purification and reduce its production cost.  相似文献   

19.
The deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus was engineered with the aim of enhancing the conversion of penicillin G into phenylacetyl-7-aminodeacetoxycephalosporanic acid, a precursor of 7-aminodeacetoxycephalosporanic acid, for industrial application. A single round of random mutagenesis followed by the screening of 5,500 clones identified three mutants, G79E, V275I, and C281Y, that showed a two- to sixfold increase in the kcat/Km ratio compared to the wild-type enzyme. Site-directed mutagenesis to modify residues surrounding the substrate resulted in three mutants, N304K, I305L, and I305M, with 6- to 14-fold-increased kcat/Km values. When mutants containing all possible combinations of these six sites were generated to optimize the ring expansion activity for penicillin G, the double mutant, YS67 (V275I, I305M), showed a significant 32-fold increase in the kcat/Km ratio and a 5-fold increase in relative activity for penicillin G, while the triple mutant, YS81 (V275I, C281Y, I305M), showed an even greater 13-fold increase in relative activity toward penicillin G. Our results demonstrate that this is a robust approach to the modification of DAOCS for an optimized DAOCS-penicillin G reaction.  相似文献   

20.
The metabolism of cyclopentanol by Pseudomonas N.C.I.B. 9872   总被引:5,自引:1,他引:4  
1. Pseudomonas N.C.I.B. 9872 grown on cyclopentanol as carbon source oxidized it at a rate of 228mul of O(2)/h per mg dry wt. and the overall consumption of 5.9mumol of O(2)/mumol of substrate. Cyclopentanone was oxidized at a similar rate with the overall consumption of 5.2mumol of O(2)mumol of substrate. Cells grown with sodium acetate as sole source of carbon were incapable of significant immediate oxidation of these two substrates. 2. Disrupted cells catalysed the oxidation of cyclopentanol to cyclopentanone by the action of an NAD(+)-linked dehydrogenase with an alkaline pH optimum. 3. A cyclopentanolinduced cyclopentanone oxygenase (specific activity 0.11mumol of NADPH oxidized/min per mg of protein) catalysed the consumption of 1mumol of NADPH and 0.9mumol of O(2) in the presence of 1mumol of cyclopentanone. NADPH oxidation did not occur under anaerobic conditions. The only detectable reaction product with 100000g supernatant was 5-hydroxyvalerate. 4. Extracts of cyclopentanol-grown cells contained a lactone hydrolase (specific activity 7.0mumol hydrolysed/min per mg of protein) that converted 5-valerolactone into 5-hydroxyvalerate. 5. Cyclopentanone oxygenase fractions obtained from a DEAE-cellulose column were almost devoid of 5-valerolactone hydrolase and catalysed the formation of 5-valerolactone in high yield from cyclopentanone in the presence of NADPH. 6. Incubation of 5-hydroxyvalerate with the 100000g supernatant, NAD(+) and NADP(+) under aerobic conditions resulted in the consumption of O(2) and the conversion of 5-hydroxyvalerate into glutarate. 7. The high activity of isocitrate lyase in cyclopentanol-grown cells suggests that the further oxidation of glutarate proceeds through as yet uncharacterized reactions to acetyl-CoA. 8. The reaction sequence for the oxidation of cyclopentanol by Pseudomonas N.C.I.B. 9872 is: cyclopentanol --> cyclopentanone --> 5-valerolactone --> 5-hydroxyvalerate --> glutarate --> --> acetyl-CoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号