首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomic spectroscopy of native yeast inorganic pyrophosphatase (pyrophosphate phosphohydrolase, EC 3.6.1.1) after gel filtration showed that it only binds activating Mg2% in an easily dissociable manner. Formation of a covalent intermediate between the enzyme and an entire substrate molecular in the presence of fluoride, however, dramatically strengthened the binding of two Mg2+ per subunit and eliminated at neutral pH the effect of added metals on protein fluorescence but not on the absorption spectrum, suggesting that different mental binding sites influence the two spectra. This conclusion was confirmed by spectra studied on native enzyme. A third, low-affinity site for Mg2+ was found on the enzyme pH greater than 8. A model of enzyme-substrate-metal interactions was proposed, according to which the fluorescence-controlling site belongs to the active center and substrate can only be bound to it as a 1 : 1 complex with metals.  相似文献   

2.
ATP-sulfurylase (ATP:sulfate adenylyltransferase, EC 2.7.7.4), purified about 200-fold from sea urchin embryos, was free of ATPase and inorganic pyrophosphatase. The molecular weight of the enzyme was approx. 280 000 measured by gel filtration. The enzyme was activated by Mg2+, Ca2+ or Zn2+; EDTA and p-chloromercuriphenylsulfonate inhibited the enzyme activity. The inhibition was reversed by addition of Mg2+ and dithiothreitol, respectively. The enzyme activity increased continuously as the pH was raised from 5.6 to 10.6. The Km values for the enzyme were calculated to be 13 microM for adenosine 5'-phosphosulfate and 23 microM for pyrophosphate.  相似文献   

3.
Purification and some properties of a neutral muscle pyrophosphatase.   总被引:2,自引:0,他引:2  
In the water-soluble fraction of rabbit skeletal muscle, at least two types of inorganic pyro phosphatase (PPase) are distinguishable on ion exchange column chromatography. One of them, pyrophosphatase-A (PPase-A), was isolated in an electrophoretically homogeneous form. This enzyme catalyzed the hydrolysis of PPi but not that of other phosphate esters. Only Mg2+ was required for activity and stability. Other cations such as Ca2+, Co2+, Mn2+, and Zn2+ had no activating effect. The activity of this PPase was optimum at pH 7.4. ATP, ADP, sodium imidodiphosphate (PNP), p-chloromercuribenzoate, and Ca2+ inhibited its enzymic activity. The enzyme was protected by dithiothreitol (DTT) against heat denaturation. The molecular weight was estimated to be 67,000 by gel filtration and the molecular size of the subunit was found to be 35,000 by gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme probably consists of two identical subunits of 35,000 daltons.  相似文献   

4.
J R Carias  R Julien 《Biochimie》1976,58(3):253-259
From wheat germ, a phenylalanyl-tRNA synthetase (E.C.6.1.1.20) has been isolated and purified 187 fold by means of ammonium sulfate fractionation (40-50 per cent) followed by Sephadex G-200 gel filtration, chromatographies on DEAE-cellulose and hydroxyapatite. The enzyme appears to be homogeneous on Sephadex G-200 molecular filtration and polyacrylamide gel electrophoresis. Molecular weight determinations by sucrose gradient centrifugation, gel filtration and gel electrophoresis give an average of 250 00 daltons. The enzyme is dissociated in 1 per cent sodium dodecyl sulfate into two different equimolar components of 80 000 and 50 000 daltons ; this result suggests that the phenylalanyl-tRNA synthetase has a subunit structure : alpha2 beta2. Dissociation with sodium dodecyl sulfate and dithiothreitol gives four other components, probably resulting from the breakdown of the subunits. Optima values of pH, Mg2+ and K+ concentrations, effect of SH-compnents, kinetic parameters have been determined in the aminoacylation reaction. Physical and catalytic properties of wheat germ phenylalanyl-tRNA synthetase appear very similar to those of the yeast and E. coli enzymes.  相似文献   

5.
The specific activity of the Mg2+-ATPase and the (Ca2+ + Mg2+)-ATPase has been measured in a microsomal fraction from pig antral smooth muscle with the phosphate-release assay and the NADH-coupled enzyme assay, and the release of inorganic phosphate as a function of time is compared with the concomitant production of ADP. Both assays are found to overestimate the true Mg2+-ATPase activity. The adenylate kinase inhibitor P1,P5-di(adenosine-5'-)pentaphosphate (Ap5A) reduces the specific activity of the Mg2+-ATPase measured in the NADH-coupled enzyme assay to about half of its original value; however, it does not affect the specific activity of the Mg2+-ATPase in the Pi-release assay. The considerable overestimation of the Mg2+-ATPase activity in the NADH-coupled enzyme assay results from a combined action of an ATP pyrophosphatase (ATP in equilibrium AMP + PPi) and adenylate kinase activity contaminating the microsomes. The adenylate kinase activity in the microsomes catalyses the conversion of AMP formed by the ATP pyrophosphatase together with ATP into two ADP's. Also the phosphate-release assay is prone to an overestimation artefact because an inorganic pyrophosphatase will degrade the pyrophosphate and thus lead to additional Pi-production. Measurements of AMP and NAD+ production by HPLC confirmed our proposed reaction scheme. The same (Ca2+ + Mg2+)-ATPase activity is found in both assays, because the (Ca2+ + Mg2+)-ATPase activity is calculated from the difference in ATPase activity in the presence and absence of Ca2+, so that as a consequence the interfering activities are automatically subtracted.  相似文献   

6.
The kinetic data of magnesium and inorganic phosphate inhibition of the (Na+,K+)-dependent ATP hydrolysis are consistent with a model where both ligands act independently and their release in the ATPase cycle is an ordered process where inorganic phosphate is released first. The effects of magnesium on the stimulation of the ATPase activity by Na+, K+ and ATP, and the inhibition of that activity by inorganic phosphate, are consistent with Mg2+ acting both as a 'product' and as a dead-end inhibitor. The dead-end Mg-enzyme complex would be produced with an enzyme form located downstream in the reaction sequence from the point where Mg2+ acts as a 'product' inhibitor. In the absence of K+, Mg2+ inhibition was reduced when either Na+ or ATP concentrations were increased well beyond those concentrations needed to saturate their high-affinity sites. This ATP effect suggests that the dead-end Mg-enzyme complex formation is affected by the speed of the E2-E1 conformational change. The present model is consistent with the formation of an Mg-phosphoenzyme complex insensitive to K+ which could become K+-sensitive in the presence of high Na+ concentrations. These Mg-enzyme complexes appear as intermediaries in the Na+-ATPase activity found in the absence of external Na+ and K+. These results can be interpreted on the basis of Mg2+ binding to a single site in the enzyme molecule. In addition, these experiments provide kinetic evidence indicating that the stimulation by external Na+ of the ATPase activity in the absence of K+ is due to a K+-like action of Na+ on the external K+ sites.  相似文献   

7.
A method is described for purification of (Na+, K+)-ATPase which yielded approximately 60 mg of enzyme from 800 g of cardiac muscle with specific activities ranging from 340 to 400 mumol inorganic phosphate/mg protein per h (units/mg). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of a major 94 000 dalton polypeptide and four or five lesser components, one of which was a glycoprotein with an apparent molecular weight of 58 000. The enzyme preparation bound 600-700 pmol of [3H]ouabain/mg protein when incubated in the presence of either Mg2+ plus Pi, or Mg2+ plus ATP plus Na+, and incorporated more than 600 pmol 32P/mg protein when incubated with gamma-32P-labelled ATP in the presence of Mg2+ and Na+. The preparation is approximately 35% pure.  相似文献   

8.
Catalysis by Escherichia coli inorganic pyrophosphatase (E-PPase) was found to be strongly modulated by Tris and similar aminoalcoholic buffers used in previous studies of this enzyme. By measuring ligand-binding and catalytic properties of E-PPase in zwitterionic buffers, we found that the previous data markedly underestimate Mg(2+)-binding affinity for two of the three sites present in E-PPase (3.5- to 16-fold) and the rate constant for substrate (dimagnesium pyrophosphate) binding to monomagnesium enzyme (20- to 40-fold). By contrast, Mg(2+)-binding and substrate conversion in the enzyme-substrate complex are unaffected by buffer. These data indicate that E-PPase requires in total only three Mg2+ ions per active site for best performance, rather than four, as previously believed. As measured by equilibrium dialysis, Mg2+ binds to 2.5 sites per monomer, supporting the notion that one of the tightly binding sites is located at the trimer-trimer interface. Mg2+ binding to the subunit interface site results in increased hexamer stability with only minor consequences for catalytic activity measured in the zwitterionic buffers, whereas Mg2+ binding to this site accelerates substrate binding up to 16-fold in the presence of Tris. Structural considerations favor the notion that the aminoalcohols bind to the E-PPase active site.  相似文献   

9.
A Mg2+-dependent phosphatase has been purified to apparent homogeneity from turkey gizzard smooth muscle. The enzyme has a Mr = 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 44,500 as determined by sedimentation equilibrium centrifugation under nondenaturing conditions. Using polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate all of the phosphatase activity was found to migrate as a single band, subsequently shown to have an Mr = 43,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is inactive in the absence of Mg2+ and maximum activity is reached at a free concentration of 12 mM Mg2+. Mn2+ can replace Mg2+, but the activity is only about one-fifth of that found with 12 mM Mg2+. NaF and the nucleotides ATP, ADP, and AMP inhibit phosphatase activity. This inhibition appears to be independent of their ability to bind Mg2+. The phosphatase purified from turkey smooth muscle appears to be identical with that purified from canine heart (Binstock, J. F., and Li, H. C. (1979) Biochem. Biophys. Res. Commun. 87, 1226-1234) and rat liver (Hiraga, A., Kikuchi, K., Tamura, S., and Tsuiki, S. (1981) Eur. J. Biochem. 119, 503-510).  相似文献   

10.
Uridine diphosphate N-acetylglucosamine pyrophosphorylase (EC. 2.7.7.23) of Neurospora crassa has been purified approximately 210-fold with dithiothreitol as the stabilizing agent by use of chromatographic techniques. The enzyme preparation appeared to be homogeneous when subjected to electrophoresis. The molecular weight was estimated as approximately 37 000 by gel filtration. The enzyme had an isoelectric point around pH 4.4. Maximum activity of the enzyme was observed at pH 7.5. The enzyme required Mg2+, which may be replaced by other divalent cations such as Mn2+ and Co2+ for lesser degrees of effectiveness. The enzyme was strictly specific for UDP-N-acetylglucosamine as the substrate. The estimated values of Km were 2.2 mM for UDP-N-acetylglucosamine and 5.4 mM for inorganic pyrophosphate. The enzyme activity was highly stimulated by the addition of dithiothreitol or dithioerythritol but was lost by sulfhydryl inhibitory reagents.  相似文献   

11.
Diacylglycerol kinase (EC 2.7.1.-) was purified 1,650-fold from pig brain cytosol. The purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The molecular weight of the kinase was estimated to be 78,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A similar value (76,000) was obtained by Sephadex G-150 gel filtration. The activity of the purified enzyme was markedly enhanced by either deoxycholate or phospholipids. The extent of activation by phospholipids was in the order of phosphatidylcholine greater than lysophosphatidylcholine greater than phosphatidylethanolamine approximately equal to phosphatidylserine greater than sphingomyelin. Other phospholipids and unsaturated fatty acids were ineffective. Phosphatidylcholines from egg yolk and pig brain, and dioleoyl phosphatidylcholine were similarly effective. Saturated phosphatidylcholines with acyl chain lengths shorter than palmitate also gave a considerable activation. The activity with phosphatidylcholine was from 1.5- to 2.5-fold higher than that measured with deoxycholate. A very small amount of phosphatidylinositol or phosphatidylglycerol potently inhibited the phosphatidylcholine-dependent (but not deoxycholate-dependent) kinase activity. The inhibition by phosphatidylinositol was varied according to its molar ratio to phosphatidylcholine. As little as about 2.5 mol per cent of phosphatidylinositol resulted in 50% inhibition of the phosphatidylcholine-dependent kinase activity. The deoxycholate- and phosphatidylcholine-dependent kinase activities showed almost the same Km values for the substrates. In both cases, the apparent Km values for ATP and diacylglycerol were 300 microM and about 60 microM, respectively. The kinase required Mg2+ for its activity. When compared to deoxycholate, phosphatidylcholine was more effective at higher Mg2+ concentrations. The deoxycholate-dependent activity showed a broad pH optimum at around 8.0, whereas the phosphatidylcholine-dependent activity formed a clear peak at pH 7.4.  相似文献   

12.
A membrane-bound inorganic pyrophosphatase from Rhodopseudomonas palustris has been studied by kinetic analysis. The enzymatic activity was stimulated by Mg2+, and the (Mg-PPi) complex is regarded to be the functional substrate. Free Mg2+ revealed a significant influence on the membrane-bound PPiase activity. Kinetic data were determined at various fixed concentrations of free Mg2+. Mg2+ is proposed to act as an activator in two ways. It may interact with the enzyme directly, and may combine with PPi to yield the functional substrate Mg-PPi. Ca2+ revealed a non-competitive type of inhibition on the Mg2+-activated enzyme. The membrane-bound PPiase activity was firmly attached to the chromatophore membrane. To achieve an almost entire solubilization, both, Triton X-100 and high concentrations of Mg2+, had to be applied. An enrichment method along with stepwise lowering the concentrations of Triton X-100 and Mg2+ after the solubilization has been established. The solubilized and partially purified enzyme was stimulated by phospholipids while the influence of free Mg2+ was lost. Three different energies of activation as a function of temperature were derived from Arrhenius plots for the membrane-bound as well as for the solubilized PPiase activity.  相似文献   

13.
A synergistic activation of phosphorylase kinase by Ca2+ plus Mg2+ was found to be the primary cause of the hysteresis, or lag, in the phosphorylase kinase reaction. Preincubation of the enzyme for short times with Ca2+ plus Mg2+ resulted in an approximately 7-fold increase in the kinase activity in subsequent assays with phosphorylase b or phosphorylase kinase as substrates, whereas preincubation with each metal ion by itself had no effect. Maximal activation through preincubation with Ca2+ plus Mg2+ occurred in 1 min 45 s and was readily reversed by chelation of both metal ions. As a result of the activation, the progress curve of phosphorylase b conversion at pH 6.8 was found to be nearly linear. Activation by Ca2+ plus Mg2+ was not apparent when subsequent assays were carried out at pH 8.2, or when previously autophosphorylated enzyme was used. Furthermore, the synergistic activation was found to occur significantly slower and/or to decrease in the presence of ATP, phosphorylase b, beta-glycerophosphate, and inorganic phosphate. How the synergistic activation by Ca2+ plus Mg2+ relates to autophosphorylation and the lag in the phosphorylase kinase reaction is discussed.  相似文献   

14.
A new fast assay procedure for increasing deoxyuridine triphosphate nucleotidohydrolase activity was developed. With this assay procedure, this enzyme derived from blast cells of patients with acute lymphocytic leukemia was purified at least 1218-fold. The molecular weight was estimated by gel filtration to be 43,000. The enzyme exhibited optimal activity over a pH range of 7 to 8 and the activation energy was estimated to be 6.5 kcal/mol at pH 7.5. While the enzyme had activity in the absence of added divalent cations, the activity could be inhibited by EDTA but not by phenanthroline. The inhibition caused by EDTA could be reversed by Mg2+ or Zn2+. The enzyme had maximal activity in the presence of Mg2+ (40 muM) and Mg2+ (4 mM) stabilized the enzyme at 37 degrees C. Cupric ion (0.5 mM) inhibited (50%) enzyme activity in the presence or absence of Mg2+. The substrate for the enzyme was dUTP and the apparent Km was 1 muM. No other deoxyribonucleoside or ribonucleoside triphosphate served as a substrate for the enzyme.  相似文献   

15.
DNA-dependent ATPases have been purified from logarithmically growing KB cells by chromatography on single-stranded DNA cellulose and phosphocellulose. Phosphocellulose resolved the DNA-dependent ATPases into three activities designated ATPase I, II and III, respectively. From gel filtration and sedimentation analysis ATPases II and III were found to be very similar, both with calculated molecular weights of 78,000. Due to the extreme lability these enzymes were not purified further. The molecular weight of ATPase I determined by gel filtration and sedimentation analysis was calculated to be 140,000. ATPase I was further purified by gradient elution on ATP-agarose, revealing two peaks of activity (IA and IB), and by sucrose gradient sedimentation. Analysis of the fractions from the sucrose gradient by sodium dodecylsulphate gel electrophoresis revealed only one broad polypeptide band co-sedimenting with both ATPase IA and ATPase IB. This band was composed of four closely spaced polypeptides with apparent molecular weights of 66,000, 68,000, 70,000 and 71,000. Comparison of the native molecule weight (140,000) with these results suggests that ATPase I is a dimer. ATPase IA and IB were indistinguishable in their structural and enzymatic properties and presumably represent the same enzyme. The purified enzyme has an apparent Km of 0.5 mM for ATP producing ADP + Pi. A maximum activity of 2,100 molecules of ATP hydrolyzed per enzyme molecular per minute was found. Hydrolysis of ATP requires the presence of divalent cations (Mg2+ greater than Ca2+ greater than Mn2+ greater than Co2+). A broad pH optimum (pH 6--8) was observed. The enzyme uses ATP or dATP preferentially as a substrate, while other deoxyribonucleoside or ribonucleoside triphosphates were inactive. ATPase I prefers denatured DNA as cofactor. The activity with native DNA is 40% of that with denatured DNA.  相似文献   

16.
Sulfoacetaldehyde sulfo-lyase, which decomposes sulfoacetaldehyde to sulfite and acetate, was extracted from a bacterium grown on taurine, and purified, and characterized. A method for assay of enzyme activity was devised on formation of a bisulfite adduct with benzaldehyde. The enzyme was purified 14-fold from an extract of cells grown on taurine and appeared homogeneous on disc-electrophoresis. The molecular weight of the enzyme was estimated to be 85,000 by gel filtration. The enzyme required thiamine pyrophosphate (TPP) and Mg2+ for activity and preincubation with TPP and Mg2+ was required for maximum activity. The optimum pH for activity was 7.5. The Km value for TPP was determined to be 2.7 muM and that for sulfoacetaldehyde to be 5.0mM. Sulfite was produced only from sulfoacetaldehyde among a variety of sulfonates tested. rho-Chloromercuribenzoate, EDTA, and sulfite, a reaction product, inhibited the enzyme reaction. The enzyme seemed to be inducible, since activity was found in extracts of cells grown on taurine but not on peptone.  相似文献   

17.
Cardiotoxin II of the Indian cobra(Naja naja) contains approximately four Mg2+ per mol. Complete demetallation of the toxin is achieved by three cycles of treatment with ethylenediamine tetraacetate and gel filtration. Reconstitution of toxin by treatment of the apo-protein with Mg2+ restores metal content and inorganic pyrophosphatase activity only to the extent of two atoms/mol and 65%, respectively. Use of Mg (II)-EDTA in the reconstitution experiment yields restoration of half the original enzyme activity. Mg2+ is required for the inorganic pyrophosphatase action of the toxin. A definitive statement on the non-essentiality of Mg2+ for the lethal toxicity of the toxin is not possible at present, although experimental observations indicate that demetallated toxin is as toxic as the native toxin. Based on this and the differing sensitivities of the enzyme and toxic activities of the toxin to heat, it is suggested that the reaction centres in the toxin for the two activities are different and that the pyrophosphatase activity is not causally connected with the lethal toxicity of the toxin  相似文献   

18.
Alkaline phosphatase was purified from bovine polymorphonuclear neutrophils by butanol extraction and a combination of ion exchange, gel filtration and affinity chromatography. The enzyme was partially purified 2300-fold with a 4.7% yield and a sp. act. of 206 units/mg of protein. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated a single activity band with the mol. wt of 165,000. The pH optima for the enzyme were 10.0 with p-nitrophenylphosphate and phenylphosphate and were 9.0 when beta-glycerophosphate, AMP and ADP were used. The enzyme was activated by Mg2+, Mn2+, Co2+ and Ni2+ but was inhibited by Zn2+. The enzyme was inhibited by EDTA and the EDTA-inactivated enzyme was reactivated by Mg2+, Mn2+ and Co2+ but not Zn2+.  相似文献   

19.
Thymidylate kinase derived from the blast cells of human chronic myelocytic leukemia was purified 2186-fold to near homogeneity by means of alcohol precipitation, alumina-Cgamma gel fractionation, calcium phosphate gel fraction, ultrafiltration, and affinity column chromatography. The molecular weight was estimated by glycerol gradient centrifugation to be 50,000. This enzyme had an optimal activity at pH 7.1 and required a divalent cation in order to catalyze the reaction. Mg2+ and Mn2+ were found to be the preferential divalent cations. The activation energy was estimated to be 19.1 kcal/mol at pH 7.2. Initial velocity study suggested that the reaction followed a sequential mechanism. Mg2+ ATP had a Km of 0.25 mM and dTMP had a Km of 40 micrometer. The enzyme was unstable even at 4 degrees. In the presence of ATP or dTMP the enzyme maintained its activity. Purine triphosphate nucleosides were found to be better phosphate donors than the pyrimidine triphosphate nucleosides. ATP and dATP had a lower Km and a higher Vmax than GTP and dGTP. dTMP was the only preferred phosphate receptor among all the monophosphate nucleotides tested dTTP and IdUTP competed with both substrates and inhibited the reaction with a Ki of 0.75 mM and 1.1 mM, respectively.  相似文献   

20.
A soluble inorganic pyrophosphatase from photolithoautotrophically grown Rhodopseudomonas palustris was purified to a state of apparent homogeneity applying high resolving liquid chromatography steps. Values of 65 500 and 64 500 were calculated for the relative molecular mass under non-dissociating conditions employing gel filtration and high-performance liquid chromatography, respectively. Dissociation sodium dodecyl sulfate gel electrophoresis resulted in a value of 32 000, indicating that the enzyme is composed of two subunits of equal molecular mass. Isoelectric focusing revealed a pI value of 4.7. The purified enzyme was specific for PPi and the activity was modified by divalent cations. Ca2+, Mn2+, Mg2+ and Co2+ were potent activators at a concentration ratio of [Me2+]/[PPi] less than 1. Ca2+ turned out to be the most potent activator. Free Me2+ was inhibitory on the PPiase activity. The (Me-PPi) complex is regarded as the functional substrate. Km and Ki values of the metal activation and inhibition were determined. An activation energy of Ea = 14.4 kJ/mol was derived from Arrhenius plots for the enzymatic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号