首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light-dependent trans to cis isomerization of the retinal in halorhodopsin   总被引:2,自引:0,他引:2  
J K Lanyi 《FEBS letters》1984,175(2):337-342
Flash-induced absorption changes in the near UV were determined for bacteriorhodopsin and halorhodopsin on a millisecond time scale. The difference spectrum obtained for bacteriorhodopsin was comparable to model difference spectra of tyrosine (aromatic OH deprotonated vs protonated), as found by others. The flash-induced difference spectrum for halorhodopsin, in contrast, resembled a model spectrum obtained for trans to 13-cis isomerization of retinal in bacteriorhodopsin. A model for chloride translocation by halorhodopsin is presented, in which the retinal isomerization moves positive charges, which in turn modulate the affinity of a site to chloride.  相似文献   

2.
1. Retinal isomers extracted from the acid-hydrolysate of cetyltrimethylammonium bromide-treated dark-adapted bacteriorhodopsin (bRD) were analyzed in a high performance liquid chromatograph (HPLC) system. The extract from bRD contains almost equal molar amounts of both 13-cis retinal and all-trans retinal isomers. The extent of isomerization and the yield of both isomers during the isolation process were investigated by the application of the same extraction procedure to artificial bacteriorhodopsin reconstituted with 13-cis retinal isomer (13-cis bacteriorhodopsin) and also to light-adapted bacteriorhodopsin (bRL) which has been shown to contain only the all-trans isomer (all-trans bacteriorhodopsin). 2. A reconstituted bacteriorhodopsin, which had been prepared from apo-bacteriorhodopsin and an equimolar mixture of both 13-cis retinal and all-trans retinal isomers, showed an absorption spectrum having the same maximum wavelength as that of bRD even at the beginning of the reconstitution process. 3. Analysis of the photosteady states of bRD at -190 degrees C revealed that it was composed of two different species, one having 13-cis retinal and the other having all-trans retinal isomers in approximately equal molar amounts. These two also gave their respective photoproducts. 4. From these results it can be concluded that bRD contains both 13-cis retinal and all-trans retinal isomers in nearly equal molar amounts as its chromophore.  相似文献   

3.
The structure and the photocycle of bacteriorhodopsin (bR) containing 13-cis,15-syn retinal, so-called bR548, has been studied by means of molecular dynamics simulations performed on the complete protein. The simulated structure of bR548 was obtained through isomerization of in situ retinal around both its C13-C14 and its C15-N bond starting from the simulated structure of bR568 described previously, containing all-trans,15-anti retinal. After a 50-ps equilibration, the resulting structure of bR548 was examined by replacing retinal by analogues with modified beta-ionone rings and comparing with respective observations. The photocycle of bR548 was simulated by inducing a rapid 13-cis,15-anti-->all-trans,15-syn isomerization through a 1-ps application of a potential that destabilizes the 13-cis isomer. The simulation resulted in structures consistent with the J, K, and L intermediates observed in the photocycle of bR548. The results offer an explanation of why an unprotonated retinal Schiff base intermediate, i.e., an M state, is not formed in the bR548 photocycle. The Schiff base nitrogen after photoisomerization of bR548 points to the intracellular rather than to the extracellular site. The simulations suggest also that leakage from the bR548 to the bR568 cycle arises due to an initial 13-cis,15-anti-->all-trans,15-anti photoisomerization.  相似文献   

4.
Dioumaev AK  Brown LS  Needleman R  Lanyi JK 《Biochemistry》2001,40(38):11308-11317
In the N to O reaction of the bacteriorhodopsin photocycle, Asp-96 is protonated from the cytoplasmic surface, and coupled to this, the retinal isomerizes from 13-cis,15-anti back to the initial all-trans configuration. To dissect the two steps, and to better understand how and why they occur, we describe the properties of two groups of site-specific mutants in which the N intermediate has greatly increased lifetime. In the first group, with the mutations near the retinal, an unusual N state is produced in which the retinal is 13-cis,15-anti but Asp-96 has a protonated carboxyl group. The apparent pK(a) for the protonation is 7.5, as in the wild-type. It is likely that here the interference with N decay is the result of steric conflict of side-chains with the retinal or with the side-chain of Lys-216 connected to the retinal, which delays the reisomerization after protonation of Asp-96. In the second group, with the mutations located near Asp-96 or between Asp-96 and the cytoplasmic surface, reprotonation of Asp-96 is strongly perturbed. The reisomerization of the retinal occurs only after recovery from a long-living protein conformation in which reprotonation of Asp-96 is either entirely blocked or blocked at low pH.  相似文献   

5.
Composition of retinal isomers in three proton pumps (bacteriorhodopsin, archaerhodopsin-1, and archaerhodopsin-2) was determined by high performance liquid chromatography in their light-adapted and dark-adapted states. In the light-adapted state, more than 95% of the retinal in all three proton pumps were in the all-trans configuration. In the dark-adapted state, there were only two retinal isomers, all-trans and 13-cis, in the ratio of all-trans: 13-cis = 1:2 for bacteriorhodopsin, 1:1 for archaerhodopsin-1, and 3:1 for archaerhodopsin-2. The difference in the final isomer ratios in the dark-adapted bacteriorhodopsin and archaerhodopsin-2 was ascribed to the methionine-145 in bacteriorhodopsin. This is the only amino acid in the retinal pocket that is substituted by phenylalanine in archaerhodopsin-2. The bacteriorhodopsin point-mutated at this position to phenylalanine dramatically altered the final isomer ratio from 1:2 to 3:1 in the dark-adapted state. This point mutation also caused a 10 nm blue-shift of the adsorption spectrum, which is similar to the shift of archaerhodopsin-2 relative to the spectra of bacteriorhodopsin and archaerhodopsin-1.  相似文献   

6.
Why 11-cis-Retinal?   总被引:1,自引:1,他引:0  
The C20 diterpenoid compound retinal is the chromophore of thevisual pigments the rhodopsins, and the pigments present inHalobacterium halobium, namely, bacteriorhodopsin (proton pump),halorhodopsin (chloride pump), and the sensory rhodopsins (phototaxisreceptor). In all cases, they are bound covalently to the receptorprotein by a protonated Schiff base. However, in rhodopsins,the retinal is the 11-cis isomer, whereas in H. halobium pigmentsit is the all-trans isomer. Why did Nature choose retinal asthe chromophore, and why 11-cis in some cases and all-transin other cases? Also why is the chromophore a protonated Schiffbase? These points are addressed after giving an outline ofthe current status of the various photoreceptor pigments  相似文献   

7.
By elevating the pH to 9.5 in 3 M KCl, the concentration of the N intermediate in the bacteriorhodopsin photocycle has been enhanced, and time-resolved resonance Raman spectra of this intermediate have been obtained. Kinetic Raman measurements show that N appears with a half-time of 4 +/- 2 ms, which agrees satisfactorily with our measured decay time of the M412 intermediate (2 +/- 1 ms). This argues that M412 decays directly to N in the light-adapted photocycle. The configuration of the chromophore about the C13 = C14 bond was examined by regenerating the protein with [12,14-2H]retinal. The coupled C12-2H + C14-2H rock at 946 cm-1 demonstrates that the chromophore in N is 13-cis. The shift of the 1642-cm-1 Schiff base stretching mode to 1618 cm-1 in D2O indicates that the Schiff base linkage to the protein is protonated. The insensitivity of the 1168-cm-1 C14-C15 stretching mode to N-deuteriation establishes a C = N anti (trans) Schiff base configuration. The high frequency of the C14-C15 stretching mode as well as the frequency of the 966-cm-1 C14-2H-C15-2H rocking mode shows that the chromophore is 14-s-trans. Thus, N contains a 13-cis, 14-s-trans, 15-anti protonated retinal Schiff base.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We illuminated bacteriorhodopsin crystals at 210K to produce, in a photostationary state with 60% occupancy, the earliest M intermediate (M1) of the photocycle. The crystal structure of this state was then determined from X-ray diffraction to 1.43 A resolution. When the refined model is placed after the recently determined structure for the K intermediate but before the reported structures for two later M states, a sequence of structural changes becomes evident in which movements of protein atoms and bound water are coordinated with relaxation of the initially strained photoisomerized 13-cis,15-anti retinal. In the K state only retinal atoms are displaced, but in M1 water 402 moves also, nearly 1A away from the unprotonated retinal Schiff base nitrogen. This breaks the hydrogen bond that bridges them, and initiates rearrangements of the hydrogen-bonded network of the extracellular region that develop more fully in the intermediates that follow. In the M1 to M2 transition, relaxation of the C14-C15 and C15=NZ torsion angles to near 180 degrees reorients the retinylidene nitrogen atom from the extracellular to the cytoplasmic direction, water 402 becomes undetectable, and the side-chain of Arg82 is displaced strongly toward Glu194 and Glu204. Finally, in the M2 to M2' transition, correlated with release of a proton to the extracellular surface, the retinal assumes a virtually fully relaxed bent shape, and the 13-methyl group thrusts against the indole ring of Trp182 which tilts in the cytoplasmic direction. Comparison of the structures of M1 and M2 reveals the principal switch in the photocycle: the change of the angle of the C15=NZ-CE plane breaks the connection of the unprotonated Schiff base to the extracellular side and establishes its connection to the cytoplasmic side.  相似文献   

9.
The chromophore of octopus rhodopsin is 11-cis retinal, linked via a protonated Schiff base to the protein backbone. Its stable photoproduct, metarhodopsin, has all-trans retinal as its chromphore. The Schiff base of acid metarhodopsin (lambda max = 510 nm) is protonated, whereas that of alkaline metarhodopsin (lambda max = 376 nm) is unprotonated. Metarhodopsin in photoreceptor membranes was titrated and the apparent pK of the Schiff base was measured at different ionic strengths. From these salt-dependent pKs the surface charge density of the octopus photoreceptor membranes and the intrinsic Schiff base pK of metarhodopsin were obtained. The surface charge density is sigma = -1.6 +/- 0.1 electronic charges per 1,000 A2. Comparison of the measured surface charge density with values from octopus rhodopsin model structures suggests that the measured value is for the extracellular surface and so the Schiff base in metarhodopsin is freely accessible to protons from the extracellular side of the membrane. The intrinsic Schiff base pK of metarhodopsin is 8.44 +/- 0.12, whereas that of rhodopsin is found to be 10.65 +/- 0.10 in 4.0 M KCl. These pK values are significantly higher than the pK value around 7.0 for a retinal Schiff base in a polar solvent; we suggest that a plausible mechanism to increase the pK of the retinal pigments is the preorganization of their chromophore-binding sites. The preorganized site stabilizes the protonated Schiff base with respect to the unprotonated one. The difference in the pK for the octopus rhodopsin compared with metarhodopsin is attributed to the relative freedom of the latter's chromophore-binding site to rearrange itself after deprotonation of the Schiff base.  相似文献   

10.
We studied an analogue of bacteriorhodopsin whose chromophore is based on all-trans retinal. A five-membered ring was built around the 13-14 double bond so as to prohibit trans to 13-cis isomerization. No light-induced photochemical changes were seen, other than those due to a small amount (approximately 5%) of unbleached bacteriorhodopsin remaining in the apomembrane used for regeneration. The techniques used included flash photolysis at room and liquid nitrogen temperatures and Fourier-transform infrared difference spectroscopy. When the trans-fixed pigment was incorporated into phospholipid vesicles, no evidence of light-initiated proton pumping could be found. The results indicate that trans to 13-cis isomerization is essential for the photochemical transformation and function of bacteriorhodopsin.  相似文献   

11.
Absorption, circular dichroism and optical rotatory dispersion of the bacteriorhodopsin containing purple membrane form Halobacterium halobium were studied in regard to the structural stability of this membrane during the photoisomerization of the retinal of the bacteriorhodopsin from the 13-cis to the all-trans configuration. The following conclusions were reached: (a) the macromolecular structure (protein-protein interaction which may result in the possible exciton interaction of the retinal pi-pi* (NV1) transition moments and protein-lipid interaction) are not significantly altered, (b) possibilities of delocalized conformation changes of the apoprotein involving secondary and/or tertiary structure can be ruled out, (c) localized secondary structure conformation changes of the apoprotein must be limited to the involvement of no more than one or two amino acid residues and localized tertiary structure conformation changes of the apoprotein must be limited to a very short segment of the protein chain containing only a few aromatic amino acid residues, and (d) the interaction between the apoprotein and retinal seems to be relatively more pronounced when the retinal is in the all-trans form than the 13-cis from and also the apoprotein seems to impose a more pronounced dissymmetric constraint on the retinal in the all-trans form than in the 13-cis form.  相似文献   

12.
The combination of absorption spectroscopy and extraction techniques was applied to study the effect of high pressure on the dark-adapted state of bacteriorhodopsin, 14-(12-,10-)fluoro-bacteriorhodopsin, a D96N bacteriorhodopsin mutant, and 14-(12-,10-)fluoro-D96N. Evidence is presented that, at high pressure, the isomers' equilibrium is shifted from all- trans isomers towards the 13-cis isomers. Two groups of values for calculated molar volume changes indicate that there are at least two different processes leading to a stable all-trans and 13-cis isomers' equilibrium called the dark-adapted bacteriorhodopsin. The first process may be attributed to changes in the distances and rearrangement of functionally important residues and a retinal Schiff base. It is suggested that the moved residues (probably Asp-212 with the contribution of Tyr-185 and/or Asp-85) closer to the chromophore could catalyse its trans-cis isomerization. These changes require smaller pressure changes and induce larger volume changes (large-volume-change process). The second process may be attributed to the formation of the three hydrogen bonds that additionally decrease the volume and strengthen further stabilization of the 13-cis isomer. To induce these changes, larger changes of pressure are required and the final molar volume changes are smaller (small-volume-change process). The total molar volume change between all-trans bacteriorhodopsin and 13-cis bacteriorhodopsin in the dark-adapted state of native bacteriorhodopsin was found to be about -28 mL/mol, which is much higher than the value of about -7 mL/mol obtained previously (Tsuda and Ebrey 1980, Schulte and Bradley 1995). The data provide a novel insight into factors leading to stable isomer equilibrium in dark-adapted bacteriorhodopsin.  相似文献   

13.
We have obtained Raman spectra of a series of all-trans retinal protonated Schiff-base isotopic derivatives. 13C-substitutions were made at the 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 positions while deuteration was performed at position 15. Based on the isotopic shifts, the observed C--C stretching vibrations in the 1,100-1,400 cm-1 fingerprint region are assigned. Normal mode calculations using a modified Urey-Bradley force field have been refined to reproduce the observed frequencies and isotopic shifts. Comparison with fingerprint assignments of all-trans retinal and its unprotonated Schiff base shows that the major effect of Schiff-base formation is a shift of the C14--C15 stretch from 1,111 cm-1 in the aldehyde to approximately 1,163 cm-1 in the Shiff base. This shift is attributed to the increased C14--C15 bond order that results from the reduced electronegativity of the Schiff-base nitrogen compared with the aldehyde oxygen. Protonation of the Schiff base increases pi-electron delocalization, causing a 6 to 16 cm-1 frequency increase of the normal modes involving the C8--C9, C10--C11, C12--C13, and C14--C15 stretches. Comparison of the protonated Schiff base Raman spectrum with that of light-adapted bacteriorhodopsin (BR568) shows that incorporation of the all-trans protonated Schiff base into bacterio-opsin produces an additional approximately 10 cm-1 increase of each C--C stretching frequency as a result of protein-induced pi-electron delocalization. Importantly, the frequency ordering and spacing of the C--C stretches in BR568 is the same as that found in the protonated Schiff base.  相似文献   

14.
Archaeal rhodopsins, e.g. bacteriorhodopsin, all have cyclic photoreactions. Such cycles are achieved by a light-induced isomerization step of their retinal chromophores, which thermally re-isomerize in the dark. Visual pigment rhodopsins, which contain in the dark state an 11-cis retinal Schiff base, do not share such a mechanism, and following light absorption, they experience a bleaching process and a subsequent release of the photo-isomerized all-trans chromophore from the binding pocket. The pigment is eventually regenerated by the rebinding of a new 11-cis retinal. In the artificial visual pigment, Rh(6.10), in which the retinal chromophore is locked in an 11-cis geometry by the introduction of a six-member ring structure, an activated receptor may be formed by light-induced isomerization around other double bonds. We have examined this activation of Rh(6.10) by UV-visible and FTIR spectroscopy and have revealed that Rh(6.10) is a nonbleachable pigment. We could further show that the activated receptor consists of two different subspecies corresponding to 9-trans and 9-cis isomers of the chromophore. Both subspecies relax in the dark via separate pathways back to their respective inactive states by thermal isomerization presumably around the C(13)=C(14) double bond. This nonbleachable pigment can be repeatedly photolyzed to undergo identical activation-relaxation cycles. The rate constants of these photocycles are pH-dependent, and the half-times vary between several hours at acidic pH and about 1.5 min at neutral to alkaline pH, which is several orders of magnitude longer than for bacteriorhodopsin.  相似文献   

15.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the "business end" of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the beta-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

16.
The resonance Raman spectrum of the dark-adapted form of the purple membrane protein (bacteriorhodopsin) has been obtained and is compared to the light-adapted pigment and model chromophore spectra. As in the light-adapted form, the chromophore-protein linkage is found to be a protonated Schiff base. Electron delocalization appears to play the dominant role in color regulation. The dark-adapted spectrum indicates a conformation closer to 13-cis than the light-adapted spectrum.  相似文献   

17.
Summary In this review the proton-pumping mechanism proposed recently for bacteriorhodopsin [Chou, K. C. (1993) Journal of Protein Chemistry, 12: 337–350] is illustrated in terms of a phenomenological model. According to the model, the-ionone of the retinal chromophore in bacteriorhodopsin can be phenomenologically imagined as a molecular piston. The photon capture by bacteriorhodopsin would pull it up while the spontaneous decrease in potential energy would push it down so that it would be up and down alternately during the photocycle process. When it is pulled up, the gate of pore is open and the water channel for the proton translocation is through; when it is pushed down, the gate of pore is closed and the water channel is shut up. Such a model not only is quite consistent with experimental observations, but also provides useful insights and a different view to elucidate the protonpumping mechanism of bacteriorhodopsin. The essence of the model might be useful in investigating the mechanism of ion-channels of other membrane proteins.Abbreviations bR bacteriorhodopsin - All-trans bR bacteriorhodopsin with all-trans retinal chromophore - 13-cis bR bacteriorhodopsin with 13-cis retinal chromophore - All-trans bundle the 7-helix bundle in the all-trans bR - 13-cis bundle the 7-helix bundle in the 13-cis bR - rms root-mean-square  相似文献   

18.
In visual pigments, opsin proteins regulate the spectral absorption of a retinal chromophore by mechanisms that change the energy level of the excited electronic state relative to the ground state. We have studied these mechanisms by using photocurrent recording to measure the spectral sensitivities of individual red rods and red (long-wavelength-sensitive) and blue (short-wavelength-sensitive) cones of salamander before and after replacing the native 3-dehydro 11-cis retinal chromophore with retinal analogs: 11-cis retinal, 3-dehydro 9-cis retinal, 9-cis retinal, and 5,6-dihydro 9-cis retinal. The protonated Schiff's bases of analogs with unsaturated bonds in the ring had broader spectra than the same chromophores bound to opsins. Saturation of the bonds in the ring reduced the spectral bandwidths of the protonated Schiff's bases and the opsin-bound chromophores and made them similar to each other. This indicates that torsion of the ring produces spectral broadening and that torsion is limited by opsin. Saturating the 5,6 double bond in retinal reduced the perturbation of the chromophore by opsin in red and in blue cones but not in red rods. Thus an interaction between opsin and the chromophoric ring shifts the spectral maxima of the red and blue cone pigments, but not that of the red rod pigment.  相似文献   

19.
Halobacterium halobium contains at least three retinal-containing pigments: bacteriorhodopsin, halorhodopsin, and a third rhodopsin-like pigment (tR) absorbing at approximately 590 nm, tR590. Illumination of tR590 gives rise to a very long-lived blue absorbing photoproduct, tR370. Using high-performance liquid chromatography we show that the chromophore of tR590 is primarily all-trans retinal and its conversion by light to tR370 causes the chromophore to isomerize primarily to the 13-cis conformation. Irradiation of the tR370 gives rise to a transient photoproduct absorbing at approximately 520 nm that decays back to the initial pigment tR590. In addition to all-trans retinal, the apomembrane of tR can also combine with 13-cis retinal but not with the 9- or 11-cis isomers.  相似文献   

20.
Protonation changes of the protein occur during the reconstitution of bacteriorhodopsin from bacterio-opsin and all-trans retinal in the purple membrane of Halobacterium halobium. The protonation changes are conveniently determined from measures of the pH changes after photoisomerisation of 9-cis retinal in apomembrane preparations, which induces the reconstitution. In addition, to the omega-amino group of the lysine which is involved in the condensation of retinal and bacterio-opsin, the dissociation equilibria of at least two other amino acid residues are changed during the reconstitution. The results are consistent with a proposed model of chromophore structure in which an interaction of the Schiff's base occurs with two protonable amino acid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号