首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pre-dispersal seed predators can have important effects on population dynamics and trait selection in their host plants. However, the factors determining spatial variation in predation intensity are poorly known. We assessed the relative importance of host plant distribution, alternative hosts and environmental factors for among-population variation in predation in a system with three host plants, a specialist and a generalist pre-dispersal seed predator.
Effects of host plant population size were relatively more important in the specialist than in the generalist seed predator. The specialist seed predator Apion opeticum , utilizing only Lathyrus vernus occurred in less than half of the patches, and specialist seed predation was influenced only by host plant population size. The generalist Bruchus atomarius was present in nearly all patches, and generalist predation was influenced by environmental factors and availability of alternative hosts. Predation on alternative hosts was not affected by L. vernus presence.
The results suggest that a wide range of factors influences the strength of plant–seed–predator interactions, and that the relative importance of different factors depend on the degree of specialization. This will result in highly complex selection mosaics and coevolutionary trajectories.  相似文献   

2.
Guyader S  Burch CL 《PloS one》2008,3(4):e1946
We explore the ability of optimal foraging theory to explain the observation among marine bacteriophages that host range appears to be negatively correlated with host abundance in the local marine environment. We modified Charnov's classic diet composition model to describe the ecological dynamics of the related generalist and specialist bacteriophages phiX174 and G4, and confirmed that specialist phages are ecologically favored only at high host densities. Our modified model accurately predicted the ecological dynamics of phage populations in laboratory microcosms, but had only limited success predicting evolutionary dynamics. We monitored evolution of attachment rate, the phenotype that governs diet breadth, in phage populations adapting to both low and high host density microcosms. Although generalist phiX174 populations evolved even broader diets at low host density, they did not show a tendency to evolve the predicted specialist foraging strategy at high host density. Similarly, specialist G4 populations were unable to evolve the predicted generalist foraging strategy at low host density. These results demonstrate that optimal foraging models developed to explain the behaviorally determined diets of predators may have only limited success predicting the genetically determined diets of bacteriophage, and that optimal foraging probably plays a smaller role than genetic constraints in the evolution of host specialization in bacteriophages.  相似文献   

3.
Decision-making during host selection by phytophagous insects has proved to be related to host range, with specialists taking faster decisions than generalists; however, this pattern fails to materialize in some host selection studies performed with aphids. Differences found in testing designs point to rearing effects on aphid host selection. To test whether specialization patterns derive from the nature of the aphid or as a consequence of rearing environment, host selection behaviours were compared between the generalist Myzus persicae (Sulzer) s.s. and its subspecies specialized on tobacco when reared on a common host and offered the choice of an alternative host and a non-host plant. Pre-alighting (host finding and attraction towards host volatiles) and post-alighting (leaf surface exploration and probing) behaviours did not differ between the generalist and the tobacco-specialist, except in the allocation of time to probing behaviour; furthermore, all specialists chose the host on which they performed best. Thus, although the specialist was not faster than the generalist, it showed a higher level of commitment to its preferred host plant.  相似文献   

4.
Summary The potential role of generalist natural enemies is presented as one of the important ecological pressures that select for narrow host range in phytophagous insects, and dominant relative to physiological bases for specialization. Experiments are described in three completely different systems indicating that generalist herbivores are more vulnerable to predation than specialist herbivores. The three predators were (a) the vespid waspMischocyttarus flavitarsus, (b) the Argentine antIridomyrmex humilis and (c) the coccinellid beetleHippodamia convergens. It is concluded the predators may provide strong selection pressure for maintenance and perhaps evolution of narrow host range in insect herbivores.  相似文献   

5.
Chad E. Brassil 《Oikos》2007,116(3):524-532
This work details theory in which selection favors generalists in a more variable environment. Specifically, in a two-host-one-parasitoid model, temporal variation in host abundances alters the optimal searching strategy and leads to the evolution of more generalist parasitoid strategies. Consistent with empirical observations, parasitoids learn host/plant odors, and use them as a cue to search for oviposition sites. The amount of unsuccessful search time required before a parasitoid alters its searching cues (the "giving-up time") is modeled in order to understand the evolutionarily optimal giving-up times under a variety of conditions. When host abundances vary across time, a generalist parasitoid strategy evolves with short giving-up times as it is likely that the host initially favored by a parasitoid will now have a low abundance. In contrast, when populations reach stable dynamics across time, giving-up times typically evolve to longer times, i.e. parasitoids remain specialized longer. The effect of temporal fluctuations is consistent across variation caused by endogenous population interactions and, to some degree, by environmental stochasticity. The conclusions are robust in that there is a strong degree of concordance between the results of a stochastic, individual-based model and a deterministic, numerical model. As an extension, spatial variation in hosts that leads to unequal tradeoffs between generalist parasitoids and specialist parasitoids may also result in the evolution of reduced giving-up times.  相似文献   

6.
The evolutionary ecology of multihost parasites is predicted to depend upon patterns of host quality and the dynamics of transmission networks. Depending upon the differences in host quality and transmission asymmetries, as well as the balance between intra‐ and interspecific transmission, the evolution of specialist or generalist strategies is predicted. Using a trypanosome parasite of bumblebees, we ask how host quality and transmission networks relate to parasite population structure across host species, and thus the potential for the evolution of specialist strains adapted to different host species. Host species differed in quality, with parasite growth varying across host species. Highly asymmetric transmission networks, together with differences in host quality, likely explain local population structure of the parasite across host species. However, parasite population structure across years was highly dynamic, with parasite populations varying significantly from one year to the next within individual species at a given site. This suggests that, while host quality and transmission may provide the opportunity for short‐term host specialization by the parasite, repeated bottlenecking of the parasite, in combination with its own reproductive biology, overrides these smaller scale effects, resulting in the evolution of a generalist parasite.  相似文献   

7.
It is widely assumed that high resource specificity predisposes lineages toward greater likelihood of extinction and lower likelihood of diversification than more generalized lineages. This suggests that host range evolution in parasitic organisms should proceed from generalist to specialist, and specialist lineages should be found at the 'tips' of phylogenies. To test these hypotheses, parsimony and maximum likelihood methods were used to reconstruct the evolution of host range on a phylogeny of parasitoid flies in the family Tachinidae. In contrast to predictions, most reconstructions indicated that generalists were repeatedly derived from specialist lineages and tended to occupy terminal branches of the phylogeny. These results are critically examined with respect to hypotheses concerning the evolution of specialization, the inherent difficulties in inferring host ranges, our knowledge of tachinid-host associations, and the methodological problems associated with ancestral character state reconstruction. Both parsimony and likelihood reconstructions are shown to provide misleading results and it is argued that independent evidence, in addition to phylogenetic trees, is needed to inform models of the evolution of host range and the evolutionary consequences of specialization.  相似文献   

8.
Williams NM 《Oecologia》2003,134(2):228-237
If trade-offs between flexibility to use a range of host species and efficiency on a limited set underlie the evolution of diet breadth, one resulting prediction is that specialists ought to be more restricted than generalists in their ability to use novel resource species. I used foraging tests and feeding trials to compare the ability of a generalist and a specialist solitary mason bee species to collect and develop on two pollen species that are not normally used in natural populations (novel pollens). Osmia lignaria (Hymenoptera: Megachilidae) is a generalist pollen feeder; O. californica, is more specialized. Adults of the specialist were more limited in use of novel hosts, but only in some contexts. Both bee species refused to collect one novel pollen. The specialist accepted a second novel pollen only when it was presented along with its normal pollen, whereas the generalist collected novel pollen whether presented alone or with normal pollen. Surprisingly, larvae of the specialist were more flexible than were generalists. The specialist grew well on mixtures of normal and novel pollen species, in some cases better than on its normal host alone. Larvae of the generalist grew more poorly on all diets containing novel pollens than on their normal host. Data on these two species of bees suggest that specialization by itself need not reduce flexibility on novel hosts. The findings also provide information about mechanisms of specialization in bees. Similar to some folivores, specific cues of the pollen host and the bee's interpretation of these contribute, along with foraging economics, to pollen choice by adults. The ability of the larvae to cope with specific components of one pollen species need not interfere with its ability to use others.  相似文献   

9.
One idea to explain the high incidence of specialisation in phytophagous insects is that their nervous systems are simple and unable to efficiently recognise multiple host plants. Here this 'neural limitations' hypothesis is tested using a generalist (the summer winged virginopara) and specialist (the autumn gynopara) morph of a single clone of the black bean aphid, Aphis fabae, that are almost identical morphologically and have the same genotype. Electrical monitoring of stylet behaviour and non-invasive behavioural observations are used to compare initial plant recognition, first reproduction, 'first registered phloem contact' and 'phloem acceptance' of the generalist and specialist on their specific host plants (generalist--herbaceous hosts, Beta vulgaris, Papaver dubium, Rumex obtusifolius, Vicia faba; specialist--woody host, Euonymus europaeus) and on the same host (E. europaeus). Additional analyses of behaviour over the first few minutes of plant contact are carried out for three mutual non-host plants: Euonymus alatus, Prunus padus and Brassica pekinensis. Few examples are found where the host-selection behaviour of the specialist on its host plant is more efficient than the generalist across its hosts and there is little difference in the behaviour of the different forms on the same host. Indeed there are several instances where the generalist is behaviourally more efficient than the specialist. These include absolute time to first reproduction by the generalist on various herbaceous hosts and the same host, E. europaeus, absolute time to first registered phloem contact by the generalist on P. dubium, and incidence of phloem acceptance by the generalist on several of its herbaceous hosts. Rejection of non-hosts is carried out more efficiently by the specialist gynopara on P. padus and B. pekinensis but not on E. alatus. For generalist and specialist morphs of the same A. fabae genotype, therefore, broad host range does not appear to be associated with a reduced ability to make plant-use decisions.  相似文献   

10.
1. Phytochemical coevolution theory, a long-standing paradigm in plant–insect interactions, predicts that specialist herbivores are less negatively affected by the allelochemicals of their host plants than are generalist herbivores. Although this theory is prevalent in plant–insect science, it is not always supported by empirical studies measuring the performance of specialist and generalist insects in response to allelochemicals. 2. The present study aimed to investigate: (i) whether there a difference between specialist and generalist performance in response to allelochemicals and (ii) whether the effect of allelochemicals on specialists and generalists depend upon allelochemical class or insect order. 3. A meta-analysis was conducted incorporating 76 effect sizes drawn from studies that directly compared the performance of specialist and generalist insects in response to treatment and control diets. Most of the effect sizes were related to the performance metric growth, the insect order Lepidoptera, and the allelochemical class nitrogen-containing compounds. 4. As predicted by phytochemical coevolution theory, specialist insects responded less negatively to allelochemicals of their hosts than generalist insects in terms of growth. There were no significant differences in terms of fecundity or survival, or among allelochemical classes or insect orders. 5. These results support the prediction of phytochemical coevolution theory that specialist insects respond less negatively to allelochemicals of their hosts than generalists, although only in terms of growth.  相似文献   

11.
Selection exerted by herbivores is a major force driving the evolution of plant defensive characters such as leaf trichomes or secondary metabolites. However, plant defense expression is highly variable among populations and identifying the sources of this variation remains a major challenge. Plant populations are often distributed across broad geographic ranges and are exposed to different herbivore communities, ranging from generalists (that feed on diverse plant species) to specialists (that feed on a restricted group of plants). We studied eight populations of the plant Datura stramonium usually eaten by specialist or generalist herbivores, in order to examine whether the pattern of phenotypic selection on secondary compounds (atropine and scopolamine) and a physical defense (trichome density) can explain geographic variation in these traits. Following co-evolutionary theory, we evaluated whether a more derived alkaloid (scopolamine) confers higher fitness benefits than its precursor (atropine), and whether this effect differs between specialist and generalist herbivores. Our results showed consistent directional selection in almost all populations and herbivores to reduce the concentration of atropine. The most derived alkaloid (scopolamine) was favored in only one of the populations, which is dominated by a generalist herbivore. In general, the patterns of selection support the existence of a selection mosaic and accounts for the positive correlation observed between atropine concentration and plant damage by herbivores recorded in previous studies.  相似文献   

12.
Competition for resources is thought to play a critical role in both the origins and maintenance of biodiversity. Although numerous laboratory evolution experiments have confirmed that competition can be a key driver of adaptive diversification, few have demonstrated its role in the maintenance of the resulting diversity. We investigate the conditions that favour the origin and maintenance of alternative generalist and specialist resource-use phenotypes within the same population. Previously, we confirmed that competition for hosts among φ6 bacteriophage in a mixed novel (non-permissive) and ancestral (permissive) host microcosm triggered the evolution of a generalist phenotype capable of infecting both hosts. However, because the newly evolved generalists tended to competitively exclude the ancestral specialists, coexistence between the two phenotypes was rare. Here, we show that reducing the relative abundance of the novel host slowed the increase in frequency of the generalist phenotype, allowing sufficient time for the specialist to further adapt to the ancestral host. This adaptation resulted in ‘evolutionary rescue’ of the specialists, preventing their competitive exclusion by the generalists. Thus, our results suggest that competition promotes both the origin and maintenance of biodiversity when it is strong enough to favour a novel resource-use phenotype, but weak enough to allow adaptation of both the novel and ancestral phenotypes to their respective niches.  相似文献   

13.
Host‐plant selection is a key factor driving the ecology and evolution of insects. While the majority of phytophagous insects is highly host specific, generalist behavior is quite widespread among bees and presumably involves physiological adaptations that remain largely unexplored. However, floral visitation patterns suggest that generalist bees do not forage randomly on all available resources. While resource availability and accessibility as well as nectar composition have been widely explored, pollen chemistry could also have an impact on the range of suitable host‐plants. This study focuses on particular pollen nutrients that cannot be synthesized de novo by insects but are key compounds of cell membranes and the precursor for molting process: the sterols. We compared the sterol composition of pollen from the main host‐plants of three generalist bees: Anthophora plumipes, Colletes cunicularius, and Osmia cornuta, as well as one specialist bee Andrena vaga. We also analyzed the sterols of their brood cell provisions, the tissues of larvae and nonemerged females to determine which sterols are used by the different species. Our results show that sterols are not used accordingly to foraging strategy: Both the specialist species A. vaga and the generalist species C. cunicularius might metabolize a rare C27 sterol, while the two generalist species A. plumipes and O. cornuta might rather use a very common C28 sterol. Our results suggest that shared sterolic compounds among plant species could facilitate the exploitation of multiple host‐plants by A. plumipes and O. cornuta whereas the generalist C. cunicularius might be more constrained due to its physiological requirements of a more uncommon dietary sterol. Our findings suggest that a bee displaying a generalist foraging behavior may sometimes hide a sterol‐specialized species. This evidence challenges the hypothesis that all generalist free‐living bee species are all able to develop on a wide range of different pollen types.  相似文献   

14.
Population divergence can occur due to mechanisms associated with geographic isolation and/or due to selection associated with different ecological niches. Much of the evidence for selection‐driven speciation has come from studies of specialist insect herbivores that use different host plant species; however, the influence of host plant use on population divergence of generalist herbivores remains poorly understood. We tested how diet breadth, host plant species and geographic distance influence population divergence of the fall webworm (Hyphantria cunea; FW). FW is a broadly distributed, extreme generalist herbivore consisting of two morphotypes that have been argued to represent two different species: black‐headed and red‐headed. We characterized the differentiation of FW populations at two geographic scales. We first analysed the influence of host plant and geographic distance on genetic divergence across a broad continental scale for both colour types. We further analysed the influence of host plant, diet breadth and geographic distance on divergence at a finer geographic scale focusing on red‐headed FW in Colorado. We found clear genetic and morphological distinction between red‐ and black‐headed FW, and Colorado FW formed a genetic cluster distinct from other locations. Although both geographic distance and host plant use were correlated with genetic distance, geographic distance accounted for up to 3× more variation in genetic distance than did host plant use. As a rare study investigating the genetic structure of a widespread generalist herbivore over a broad geographic range (up to 3,000 km), our study supports a strong role for geographic isolation in divergence in this system.  相似文献   

15.
Parasite specialization on one or a few host species leads to a reduction in the total number of available host individuals, which may decrease transmission. However, specialists are thought to be able to compensate by increased prevalence in the host population and increased success in each individual host. Here, we use variation in host breadth among a community of avian Haemosporida to investigate consequences of generalist and specialist strategies on prevalence across hosts. We show that specialist parasites are more prevalent than generalist parasites in host populations that are shared between them. Moreover, the total number of infections of generalist and specialist parasites within the study area did not vary significantly with host breadth. This suggests that specialists can infect a similar number of host individuals as generalists, thus compensating for a reduction in host availability by achieving higher prevalence in a single host species. Specialist parasites also tended to infect older hosts, whereas infections by generalists were biased towards younger hosts. We suggest that this reflects different abilities of generalists and specialists to persist in hosts following infection. Higher abundance and increased persistence in hosts suggest that specialists are more effective parasites than generalists, supporting the existence of a trade‐off between host breadth and average host use among these parasites.  相似文献   

16.
Pyrrolizidine alkaloids (PAs) are the major defense compounds of plants in the Senecio genus. Here I will review the effects of PAs in Senecio on the preference and performance of specialist and generalist insect herbivores. Specialist herbivores have evolved adaptation to PAs in their host plant. They can use the alkaloids as cue to find their host plant and often they sequester PAs for their own defense against predators. Generalists, on the other hand, can be deterred by PAs. PAs can also affect survival of generalist herbivores. Usually generalist insects avoid feeding on young Senecio leaves, which contain a high concentration of alkaloids. Structurally related PAs can differ in their effects on insect herbivores, some are more toxic than others. The differences in effects of PAs on specialist and generalists could lead to opposing selection on PAs, which may maintain the genetic diversity in PA concentration and composition in Senecio species.  相似文献   

17.
Prior studies on species‐specific responses to habitat alteration have demonstrated that niche breadth is positively associated with patch occupancy rates in landscapes fragmented by agriculture. However, these studies generally have focused on vertebrates and relied upon data collected at a single point in time, neglecting dynamic processes that could alter inferences. We studied the effects of host selection and forest fragmentation on population dynamics of acorn weevils Curculio, the primary insect seed predators of oaks in North America. Detection/non‐detection data were collected from 174 red and white oaks in 19 forested fragments from 2005–2008. We used dynamic multi‐season site‐occupancy models within a Bayesian framework to explore variation in patch (tree‐level) occupancy dynamics of three species of weevils that vary in their specialization, i.e. their relative selection of red and white oak as hosts: C. pardalis (white oak specialist), C. sulcatulus (generalist) and C. proboscideus (generalist). Contrary to expectations, the specialist exhibited greater estimated rates of occupancy than generalists. However, red oak trees occupied by the white oak specialist appeared to function as sink populations maintained by frequent colonization following local extinction. Specialists also exhibited greater relative variation in occupancy and relative abundance on their host trees among years. Generalists exhibited lower local extinction and colonization rates than the specialist. Occupancy and vital rates of weevils on a host tree increased with acorn production and were significantly influenced by neighborhood forest density. Our results suggest that across much of their range in the eastern United States acorn weevils exist in fragmented, temporally dynamic landscapes, with generalists occurring on a lower proportion of usable trees but buffered by access to more suitable patches and greater patch‐specific survival. More generally, our results demonstrate that estimates of specialization derived from occupancy data may be misleading in the absence of patch‐specific information on vital rates.  相似文献   

18.
Understanding the processes that shape the genetic structure of parasite populations and the functional consequences of different parasite genotypes is critical for our ability to predict how an infection can spread through a host population and for the design of effective vaccines to combat infection and disease. Here, we examine how the genetic structure of parasite populations responds to host genetic heterogeneity. We consider the well-characterized molecular specificity of major histocompatibility complex binding of antigenic peptides to derive deterministic and stochastic models. We use these models to ask, firstly, what conditions favour the evolution of generalist parasite genotypes versus specialist parasite genotypes? Secondly, can parasite genotypes coexist in a population? We find that intragenomic interactions between parasite loci encoding antigenic peptides are pivotal in determining the outcome of evolution. Where parasite loci interact synergistically (i.e. the recognition of additional antigenic peptides has a disproportionately large effect on parasite fitness), generalist parasite genotypes are favoured. Where parasite loci act multiplicatively (have independent effects on fitness) or antagonistically (have diminishing effects on parasite fitness), specialist parasite genotypes are favoured. A key finding is that polymorphism is not stable and that, with respect to functionally important antigenic peptides, parasite populations are dominated by a single genotype.  相似文献   

19.
Drosophila recens is parasitized in the wild by two nematodes, Howardula aoronymphium , a host generalist, and Parasitylenchus nearcticus , a host specialist known only from D .  recens . In order to understand how these two parasite species coexist, we compared their ability to infect and grow in D .  recens , their effects on host fecundity and survival, and whether one parasite species was competitively superior in double infections. The specialist nematode P. nearcticus had greater rates of infection and reproduction than the generalist H. aoronymphium , and completely sterilized females in single and mixed infections. The specialist was competitively superior in mixed infections, as generalist motherworms were significantly smaller than in single infections. These results suggest that P. nearcticus might competitively exclude H. aoronymphium if D. recens were the only host available. It is likely that H. aoronymphium persists in D. recens by transmission from other, more suitable host species.  相似文献   

20.
Thousands of plant species worldwide are dependent on birds for pollination. While the ecology and evolution of interactions between specialist nectarivorous birds and the plants they pollinate is relatively well understood, very little is known on pollination by generalist birds. The flower characters of this pollination syndrome are clearly defined but the geographical distribution patterns, habitat preferences and ecological factors driving the evolution of generalist‐bird‐pollinated plant species have never been analysed. Herein I provide an overview, compare the distribution of character states for plants growing on continents with those occurring on oceanic islands and discuss the environmental factors driving the evolution of both groups. The ecological niches of generalist‐bird‐pollinated plant species differ: on continents these plants mainly occur in habitats with pronounced climatic seasonality whereas on islands generalist‐bird‐pollinated plant species mainly occur in evergreen forests. Further, on continents generalist‐bird‐pollinated plant species are mostly shrubs and other large woody species producing numerous flowers with a self‐incompatible reproductive system, while on islands they are mostly small shrubs producing fewer flowers and are self‐compatible. This difference in character states indicates that diverging ecological factors are likely to have driven the evolution of these groups: on continents, plants that evolved generalist bird pollination escape from pollinator groups that tend to maintain self‐pollination by installing feeding territories in single flowering trees or shrubs, such as social bees or specialist nectarivorous birds. This pattern is more pronounced in the New compared to the Old World. By contrast, on islands, plants evolved generalist bird pollination as an adaptation to birds as a reliable pollinator group, a pattern previously known from plants pollinated by specialist nectarivorous birds in tropical mountain ranges. Additionally, I discuss the evolutionary origins of bird pollination systems in comparison to systems involving specialist nectarivorous birds and reconstruct the bird pollination system of Hawaii, which may represent an intermediate between a specialist and generalist bird pollination system. I also discuss the interesting case of Australia, where it is difficult to distinguish between specialist and generalist bird pollination systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号