共查询到15条相似文献,搜索用时 15 毫秒
1.
Stability and reconstitution of pyruvate oxidase from Lactobacillus plantarum: dissection of the stabilizing effects of coenzyme binding and subunit interaction. 下载免费PDF全文
B. Risse G. Stempfer R. Rudolph H. Mllering R. Jaenicke 《Protein science : a publication of the Protein Society》1992,1(12):1699-1709
Pyruvate oxidase from Lactobacillus plantarum is a homotetrameric flavoprotein with strong binding sites for FAD, TPP, and a divalent cation. Treatment with acid ammonium sulfate in the presence of 1.5 M KBr leads to the release of the cofactors, yielding the stable apoenzyme. In the present study, the effects of FAD, TPP, and Mn2+ on the structural properties of the apoenzyme and the reconstitution of the active holoenzyme from its constituents have been investigated. As shown by circular dichroism and fluorescence emission, as well as by Nile red binding, the secondary and tertiary structures of the apoenzyme and the holoenzyme do not exhibit marked differences. The quaternary structure is stabilized significantly in the presence of the cofactors. Size-exclusion high-performance liquid chromatography and analytical ultracentrifugation demonstrate that the holoenzyme retains its tetrameric state down to 20 micrograms/mL, whereas the apoenzyme shows stepwise tetramer-dimer-monomer dissociation, with the monomer as the major component, at a protein concentration of < 20 micrograms/mL. In the presence of divalent cations, the coenzymes FAD and TPP bind to the apoenzyme, forming the inactive binary FAD or TPP complexes. Both FAD and TPP affect the quaternary structure by shifting the equilibrium of association toward the dimer or tetramer. High FAD concentrations exert significant stabilization against urea and heat denaturation, whereas excess TPP has no effect. Reconstitution of the holoenzyme from its components yields full reactivation. The kinetic analysis reveals a compulsory sequential mechanism of cofactor binding and quaternary structure formation, with TPP binding as the first step. The binary TPP complex (in the presence of 1 mM Mn2+/TPP) is characterized by a dimer-tetramer equilibrium transition with an association constant of Ka = 2 x 10(7) M-1. The apoenzyme TPP complex dimer associates with the tetrameric holoenzyme in the presence of 10 microM FAD. This association step obeys second-order kinetics with an association rate constant k = 7.4 x 10(3) M-1 s-1 at 20 degrees C. FAD binding to the tetrameric binary TPP complex is too fast to be resolved by manual mixing. 相似文献
2.
Enhancement of coenzyme binding by a single point mutation at the coenzyme binding domain of E. coli lactaldehyde dehydrogenase 总被引:1,自引:0,他引:1
Rodríguez-Zavala JS 《Protein science : a publication of the Protein Society》2008,17(3):563-570
Phenylacetaldehyde dehydrogenase (PAD) and lactaldehyde dehydrogenase (ALD) share some structural and kinetic properties. One difference is that PAD can use NAD+ and NADP+, whereas ALD only uses NAD+. An acidic residue has been involved in the exclusion of NADP+ from the active site in pyridine nucleotide-dependent dehydrogenases. However, other factors may participate in NADP+ exclusion. In the present work, analysis of the sequence of the region involved in coenzyme binding showed that residue F180 of ALD might participate in coenzyme specificity. Interestingly, F180T mutation rendered an enzyme (ALD-F180T) with the ability to use NADP+. This enzyme showed an activity of 0.87 micromol/(min * mg) and K(m) for NADP+ of 78 microM. Furthermore, ALD-F180T exhibited a 16-fold increase in the V(m) /K(m) ratio with NAD+ as the coenzyme, from 12.8 to 211. This increase in catalytic efficiency was due to a diminution in K(m) for NAD+ from 47 to 7 microM and a higher V(m) from 0.51 to 1.48 micromol/(min * mg). In addition, an increased K(d) for NADH from 175 (wild-type) to 460 microM (mutant) indicates a faster product release and possibly a change in the rate-limiting step. For wild-type ALD it is described that the rate-limiting step is shared between deacylation and coenzyme dissociation. In contrast, in the present report the rate-limiting step in ALD-F180T was determined to be exclusively deacylation. In conclusion, residue F180 participates in the exclusion of NADP+ from the coenzyme binding site and disturbs the binding of NAD+. 相似文献
3.
Sulfate anion stabilization of native ribonuclease A both by anion binding and by the Hofmeister effect 下载免费PDF全文
Data are reported for T(m), the temperature midpoint of the thermal unfolding curve, of ribonuclease A, versus pH (range 2-9) and salt concentration (range 0-1 M) for two salts, Na(2)SO(4) and NaCl. The results show stabilization by sulfate via anion-specific binding in the concentration range 0-0.1 M and via the Hofmeister effect in the concentration range 0.1-1.0 M. The increase in T(m) caused by anion binding at 0.1 M sulfate is 20 degrees at pH 2 but only 1 degree at pH 9, where the net proton charge on the protein is near 0. The 10 degrees increase in T(m) between 0.1 and 1.0 M Na(2)SO(4), caused by the Hofmeister effect, is independent of pH. A striking property of the NaCl results is the absence of any significant stabilization by 0.1 M NaCl, which indicates that any Debye screening is small. pH-dependent stabilization is produced by 1 M NaCl: the increase in T(m) between 0 and 1.0 M is 14 degrees at pH 2 but only 1 degree at pH 9. The 14 degree increase at pH 2 may result from anion binding or from both binding and Debye screening. Taken together, the results for Na(2)SO(4) and NaCl show that native ribonuclease A is stabilized at low pH in the same manner as molten globule forms of cytochrome c and apomyoglobin, which are stabilized at low pH by low concentrations of sulfate but only by high concentrations of chloride. 相似文献
4.
Thanh T.N. Phan Matthew G. Hvasta Stephan T. Kudlacek Devina J. Thiono Ashutosh Tripathy Nathan I. Nicely Aravinda M. de Silva Brian Kuhlman 《The Journal of biological chemistry》2022,298(7)
Dengue viruses (DENV serotypes 1–4) and Zika virus (ZIKV) are related flaviviruses that continue to be a public health concern, infecting hundreds of millions of people annually. The traditional live-attenuated virus vaccine approach has been challenging for the four DENV serotypes because of the need to achieve balanced replication of four independent vaccine components. Subunit vaccines represent an alternative approach that may circumvent problems inherent with live-attenuated DENV vaccines. In mature virus particles, the envelope (E) protein forms a homodimer that covers the surface of the virus and is the major target of neutralizing antibodies. Many neutralizing antibodies bind to quaternary epitopes that span across both E proteins in the homodimer. For soluble E (sE) protein to be a viable subunit vaccine, the antigens should be easy to produce and retain quaternary epitopes recognized by neutralizing antibodies. However, WT sE proteins are primarily monomeric at conditions relevant for vaccination and exhibit low expression yields. Previously, we identified amino acid mutations that stabilize the sE homodimer from DENV2 and dramatically raise expression yields. Here, we tested whether these same mutations raise the stability of sE from other DENV serotypes and ZIKV. We show that the mutations raise thermostability for sE from all the viruses, increase production yields from 4-fold to 250-fold, stabilize the homodimer, and promote binding to dimer-specific neutralizing antibodies. Our findings suggest that these sE variants could be valuable resources in the efforts to develop effective subunit vaccines for DENV serotypes 1 to 4 and ZIKV. 相似文献
5.
Human pyruvate dehydrogenase (E1), a heterotetramer (alpha2beta2), is the first component of the pyruvate dehydrogenase complex (PDC). E1 catalyzes the thiamin pyrophosphate (TPP)-dependent decarboxylation of pyruvate and the reductive acetylation of the dihydrolipoamide acetyltransferase component. Site-directed mutagenesis was employed to recreate three point mutations in the alpha subunit identified in E1-deficient patients, M181V, R349H, and P188L (P188A mutant E1 was used because of the very low level of expression of P188L), to investigate the functional roles of these three amino acid residues. P188A mutant E1 was much less thermostable than the wild-type E1. The kcats of M181V and P188A mutant E1s determined in the PDC reaction were 38 and 24% of that of the wild-type enzyme, respectively. The apparent Km for TPP for M181V increased significantly (approx 250-fold when determined in the PDC assay), while the apparent Km for pyruvate increased by only about 3-fold. In contrast, P188A had similar Kms for the coenzyme and the substrate as the wild-type. Km values for R349H were not determined due to the extremely low activity of this mutant (1.2% of the wild-type E1-specific activity measured in the PDC assay). Wild-type E1 displayed a lag phase in the progress curve of the PDC reaction measured in the presence of low TPP concentrations (below 1 microM) only. All mutants had a lag phase that was not eliminated even at very high TPP concentrations, suggesting modifications in the conformation of the active site. Kinetic analysis indicated thiamin 2-thiothiazolone pyrophosphate (ThTTPP) to be an intermediate analog for wild-type human E1. M181V required a higher concentration of ThTTPP for inactivation than the wild-type and P188A E1s. The results of circular dichroism spectropolarimetry in the far UV region indicated that there were no major changes in the secondary structure of M181V, P188A, and R349H E1s. These mutant enzymes exhibited negative dichroic spectra at about 330 nm only in the presence of high TPP concentrations. This study suggests that arginine-349 is critical for E1's activity, methionine-181 is involved in the binding of TPP, and proline-188 is necessary for structural integrity of E1. 相似文献
6.
The tumor suppresser protein p53 has been called the “guardian of the genome.” DNA damage induces p53 to either halt the cell cycle, allowing for repair, or initiate apoptosis. P53 is mutated in over 50% of human tumors and it has been proposed that many tumorigenic mutations are deleterious to p53 because they induce local unfolding. To explore this hypothesis, peptide models have been developed to study tumorigenic mutations in the H2 helix of the p53 core domain. This helix is rich with charged residues and is a key component of the DNA binding region. A 16‐residue peptide corresponding to the H2 wild‐type sequence extended with an Ala‐rich C‐terminus was synthesized and studied by 1H‐nmr (500 MHz) and CD. The nmr studies demonstrate that this peptide adopts helical structure in solution. Six additional peptides corresponding to subtle tumorigenic mutations were synthesized and CD was used to assess the relative stability of these “mutant analogues.” All six mutations studied are destabilizing relative to the wild type, with ΔΔG values in the range of 0.26 to 1.35 kcal mol−1. Surprisingly, substitution of Asp 281 with Ala resulted in a peptide with the greatest destabilization even though Ala possesses the largest helix propensity of the common 20 amino acids. Because this helix appears to be stabilized mainly by local electrostatics, we conclude that its structure is susceptible to even the most conservative mutations. These results provide support for the hypothesis that tumorigenic mutations induce local unfolding of p53. © 1999 John Wiley & Sons, Inc. Biopoly 49: 215–224, 1999 相似文献
7.
We have theoretically and experimentally studied the binding of two different ligands to wild-type ribonuclease T1 (RNT1) and to a mutant of RNT1 with Glu-46 replaced by Gln. The binding of the natural substrate 3′-GMP has been compared with the binding of a fluorescent probe, 2-aminopurine 3′-monophosphate (2AP), and relative free energies of binding of these ligands to the mutant and the wild-type (wt) enzyme have been calculated by free energy perturbation methods. The free energy perturbations predict that the mutant RNT1-Gln-46 binds 2AP better than 3′GMP, in agreement with experiments on dinucleotides. Four free energy perturbations, forming a closed loop, have been performed to allow the detection of systematic errors in the simulation procedure. Because of the larger number of atoms involved, it was necessary to use a much longer simulation time for the change in the protein, i.e., the perturbation from Glu to Gln, than in the perturbation from 3′-GMP to 2AP. Finally the structure of the binding site is analyzed for understanding differences in catalytic speed and binding strength. © 1993 Wiley-Liss, Inc. 相似文献
8.
Comparatively little is known about the role of non-native interactions in protein folding and their role in both folding and stability is controversial. We demonstrate that non-native electrostatic interactions involving specific residues in the denatured state can have a significant effect upon protein stability and can persist in the transition state for folding. Mutation of a single surface exposed residue, Lys12 to Met, in the N-terminal domain of the ribosomal protein L9 (NTL9), significantly increased the stability of the protein and led to faster folding. Structural and energetic studies of the wild-type and K12M mutant show that the 1.9 kcal mol(-1) increase in stability is not due to native state effects, but rather is caused by modulation of specific non-native electrostatic interactions in the denatured state. pH dependent stability measurements confirm that the increased stability of the K12M is due to the elimination of favorable non-native interactions in the denatured state. Kinetic studies show that the non-native electrostatic interactions involving K12 persist in the transition state. The analysis demonstrates that canonical Phi-values can arise from the disruption of non-native interactions as well as from the development of native interactions. 相似文献
9.
Biomolecular interaction analysis mass spectrometry (BIA/MS) is a two-dimensional analytical technique that quantitatively and qualitatively detects analytes of interests. In the first dimension, surface plasmon resonance (SPR) is utilized for detection of biomolecules in their native environment. Because SPR detection is non-destructive, analyte(s) retained on the SPR-active sensor surface can be analyzed in a second dimension using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The qualitative nature of the MALDI-TOF MS analysis complements the quantitative character of SPR sensing and overcomes the shortcomings of the SPR detection stemming from the inability to differentiate and characterize multi-protein complexes and non-specific binding. In this work, the benefit of performing MS analysis following SPR sensing is established. Retrieval and detection of four markers present in biological fluids (cystatin C, beta-2-microglobulin, urinary protein 1 and retinol binding protein) was explored to demonstrate the effectiveness of BIA/MS in simultaneous detection of clinically related biomarkers and delineation of non-specific binding. Furthermore, the BIA/MS limit of detection at very low SPR responses was investigated. Finally, detection of in-vivo assembled protein complexes was achieved for the first time using BIA/MS. 相似文献
10.
Kanai R Haga K Akiba T Yamane K Harata K 《Protein science : a publication of the Protein Society》2004,13(2):457-465
Cyclodextrin glycosyltransferase (CGTase) belonging to the alpha-amylase family mainly catalyzes transglycosylation and produces cyclodextrins from starch and related alpha-1,4-glucans. The catalytic site of CGTase specifically conserves four aromatic residues, Phe183, Tyr195, Phe259, and Phe283, which are not found in alpha-amylase. To elucidate the structural role of Phe283, we determined the crystal structures of native and acarbose-complexed mutant CGTases in which Phe283 was replaced with leucine (F283L) or tyrosine (F283Y). The temperature factors of the region 259-269 in native F283L increased >10 A(2) compared with the wild type. The complex formation with acarbose not only increased the temperature factors (>10 A(2)) but also changed the structure of the region 257-267. This region is stabilized by interactions of Phe283 with Phe259 and Leu260 and plays an important role in the cyclodextrin binding. The conformation of the side-chains of Glu257, Phe259, His327, and Asp328 in the catalytic site was altered by the mutation of Phe283 with leucine, and this indicates that Phe283 partly arranges the structure of the catalytic site through contacts with Glu257 and Phe259. The replacement of Phe283 with tyrosine decreased the enzymatic activity in the basic pH range. The hydroxyl group of Tyr283 forms hydrogen bonds with the carboxyl group of Glu257, and the pK(a) of Glu257 in F283Y may be lower than that in the wild type. 相似文献
11.
The native state of apomyoglobin described by proton NMR spectroscopy: interaction with the paramagnetic probe HyTEMPO and the fluorescent dye ANS. 总被引:1,自引:3,他引:1 下载免费PDF全文
Proton NMR experiments were carried out on apomyoglobin from sperm whale and horse skeletal muscle. Two small molecules, the paramagnetic relaxation agent 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO) and the fluorescent dye 8-anilino-1-naphthalenesulfonic acid (ANS), were used to alter and simplify the spectrum. Both were shown to bind in the heme pocket by docking onto the hydrophobic residues lining the distal side. Only 1 extensive region of the apoprotein structure, composed of hydrophobic residues, is not affected by HyTEMPO. It includes the 2 tryptophans (located in the A helix), other nonpolar residues of the A helix and side chains from the E, G, and GH helices. The spectral perturbations induced by ANS allowed assignment of the distal histidine (His-64) in horse apomyoglobin. This residue was previously reported to titrate with a pKa below 5 and tentatively labeled as His-82 on the basis of this value (Cocco MJ, Kao YH, Phillips AT, Lecomte JTJ, 1992, Biochemistry 31:6481-6491). The packing of the side chains and the low pKa of His-64 reinforce the idea that the distal side of the binding site is folded in a manner closely related to that in the holoprotein. ANS was found to sharpen the protein signals and the improvement of the spectral resolution facilitated the assignment of backbone amide resonances. Secondary structure, as manifested in characteristic inter-amide proton NOEs, was detected in the A, B, C, E, G, and H helices. The combined information on the hydrophobic cores and the secondary structure composes an improved representation of the native state of apomyoglobin. 相似文献
12.
《Saudi Journal of Biological Sciences》2022,29(1):526-533
The continuous and rapid development of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus remains a health concern especially with the emergence of numerous variants and mutations worldwide. As with other RNA viruses, SARS-CoV-2 has a genetically high mutation rate. These mutations have an impact on the virus characteristics, including transmissibility, antigenicity and development of drug and vaccine resistance. This work was pursued to identify the differences that exist in the papain-like protease (PLPro) from 58 Saudi isolates in comparison to the first reported sequence from Wuhan, China and determine their implications on protein structure and the inhibitor binding. PLpro is a key protease enzyme for the host cells invasion and viral proteolytic cleavage, hence, it emerges as a valuable antiviral therapeutic target. Two mutations were identified including D108G and A249V and shown to increase the molecular flexibility of PLPro protein and alter the protein stability, particularly with D108G mutation. The effect of these mutations on the stability and dynamic behavior of PLPro structures as well as their effect on the binding of a known inhibitor; GRL0617 were further investigated by molecular docking and dynamic simulation. 相似文献
13.
Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. 总被引:11,自引:0,他引:11 下载免费PDF全文
D W Parsons P E McAndrew S T Iannaccone J R Mendell A H Burghes T W Prior 《American journal of human genetics》1998,63(6):1712-1723
The autosomal recessive neuromuscular disorder proximal spinal muscular atrophy (SMA) is caused by the loss or mutation of the survival motor neuron (SMN) gene, which exists in two nearly identical copies, telomeric SMN (telSMN) and centromeric SMN (cenSMN). Exon 7 of the telSMN gene is homozygously absent in approximately 95% of SMA patients, whereas loss of cenSMN does not cause SMA. We searched for other telSMN mutations among 23 SMA compound heterozygotes, using heteroduplex analysis. We identified telSMN mutations in 11 of these unrelated SMA-like individuals who carry a single copy of telSMN: these include two frameshift mutations (800ins11 and 542delGT) and three missense mutations (A2G, S262I, and T274I). The telSMN mutations identified to date cluster at the 3' end, in a region containing sites for SMN oligomerization and binding of Sm proteins. Interestingly, the novel A2G missense mutation occurs outside this conserved carboxy-terminal domain, closely upstream of an SIP1 (SMN-interacting protein 1) binding site. In three patients, the A2G mutation was found to be on the same allele as a rare polymorphism in the 5' UTR, providing evidence for a founder chromosome; Ag1-CA marker data also support evidence of an ancestral origin for the 800ins11 and 542delGT mutations. We note that telSMN missense mutations are associated with milder disease in our patients and that the severe type I SMA phenotype caused by frameshift mutations can be ameliorated by an increase in cenSMN gene copy number. 相似文献
14.
15.
The steady-state kinetics of purified yeast cytochrome c oxidase were investigated at low ionic strength where the electrostatic interaction with cytochrome c is maximized. In 10 mM cacodylate/Tris (pH 6.5) the oxidation kinetics of yeast iso-1-cytochrome c were sigmoidal with a Hill coefficient of 2.35, suggesting cooperative binding. The half-saturation point was 1.14 μM. Horse cytochrome c exhibited Michaelis-Menten kinetics with a higher affinity (Km = 0.35 μM) and a 100% higher maximal velocity.In 67 mM phosphate the Hill coefficient for yeast cytochrome c decreased to 1.42, and the species differences in Hill coefficients were lessened. Under the latter conditions, a yeast enzyme preparation partially depleted of phospholipids was activated on addition of diphosphatidylglycerol liposomes. When the enzyme was incorporated into sonicated yeast promitochondrial particles the apparent Km for horse cytochrome c was considerably lower than the value for the isolated enzyme.ATP was found to inhibit both the isolated oxidase and the membrane-bound enzyme. With the isolated enzyme in 10 mM cacodylate/Tris, 3 mM ATP increased the half-saturation point with yeast cytochrome c 3-fold, without altering the maximal velocity or the Hill coefficient. 67 mM phosphate abolished the inhibition of the isolated oxidase by ATP.The increase in affinity for cytochrome c produced by binding the oxidase to the membrane was not observed in the presence of 3 mM ATP, with the result that the membrane-bound enzyme was more sensitive to inhibition by ATP. ADP was a less effective inhibitor than ATP, and did not prevent the inhibition by ATP.It is proposed that non-specific electrostatic binding of cytochrome c to phospholipid membranes, followed by rapid lateral diffusion, is responsible for the dependence of the affinity on the amount and nature of the phospholipids and on the ionic strength.ATP may interfere with the membrane-facilitated binding of cytochrome c by a specific electrostatic interaction with the membrane or by binding to cytochrome c. 相似文献