首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a broad consensus that habitat disturbance and introduction of non-indigenous species may dramatically modify community structure, particularly in insular ecosystems. However, it is less clear whether emergent macroecological patterns are similarly affected. The positive interspecific abundance–occupancy relationship (IAOR) is one of the most pervasive macroecological patterns, yet has rarely been analyzed for oceanic island assemblages. We use an extensive dataset for arthropods from six islands within the Azorean archipelago to test: (1) whether indigenous and non-indigenous species are distributed differently within the IAOR; and (2) to the extent that they are, can differences can be attributed to two indices of disturbance. We implemented modeling averaged methods using five of the most common IAOR models to derive an averaged IAOR fit for each island. After testing if species colonization status (indigenous versus non-indigenous) may explain the residuals of the IAOR, we identified true negative and positive outliers and tested the effect of colonization status on the likelihood of a species being a positive or negative outlier. We found that the indigenous and non-indigenous species are randomly distributed on both sides of the overall IAOR. Only for Flores Island, were non-indigenous species more aggregated than indigenous species. We were unable to detect a meaningful relationship between deviation from the IAOR and disturbance, despite the undoubted impact of both severe habitat loss and non-indigenous species on these oceanic islands. Our results show that the non-indigenous species have been integrated alongside indigenous species in the contemporary Azorean arthropod communities such that they are mostly undetectable by the study of the IAOR.  相似文献   

2.
Single-species metapopulation dynamics: concepts, models and observations   总被引:24,自引:0,他引:24  
This paper outlines a conceptual and theoretical framework for single-species metapopulation dynamics based on the Levins model and its variants. The significance of the following factors to metapopulation dynamics are explored: evolutionary changes in colonization ability; habitat patch size and isolation; compensatory effects between colonization and extinction rates; the effect of immigration on local dynamics (the rescue effect); and heterogeneity among habitat patches. The rescue effect may lead to alternative stable equilibria in metapopulation dynamics. Heterogeneity among habitat patches may give rise to a bimodal equilibrium distribution of the fraction of patches occupied in an assemblage of species (the core-satellite distribution). A new model of incidence functions is described, which allows one to estimate species' colonization and extinction rates on islands colonized from mainland. Four distinct kinds of stochasticity affecting metapopulation dynamics are discussed with examples. The concluding section describes four possible scenarios of metapopulation extinction.  相似文献   

3.
The metapopulation framework considers that the spatiotemporal distribution of organisms results from a balance between the colonization and extinction of populations in a suitable and discrete habitat network. Recent spatially realistic metapopulation models have allowed patch dynamics to be investigated in natural populations but such models have rarely been applied to plants. Using a simple urban fragmented population system in which favourable habitat can be easily mapped, we studied patch dynamics in the annual plant Crepis sancta (Asteraceae). Using stochastic patch occupancy models (SPOMs) and multi‐year occupancy data we dissected extinction and colonization patterns in our system. Overall, our data were consistent with two distinct metapopulation scenarios. A metapopulation (sensu stricto) dynamic in which colonization occurs over a short distance and extinction is lowered by nearby occupied patches (rescue effect) was found in a set of patches close to the city centre, while a propagule rain model in which colonization occurs from a large external population was most consistent with data from other networks. Overall, the study highlights the importance of external seed sources in urban patch dynamics. Our analysis emphasizes the fact that plant distributions are governed not only by habitat properties but also by the intrinsic properties of colonization and dispersal of species. The metapopulation approach provides a valuable tool for understanding how colonization and extinction shape occupancy patterns in highly fragmented plant populations. Finally, this study points to the potential utility of more complex plant metapopulation models than traditionally used for analysing ecological and evolutionary processes in natural metapopulations.  相似文献   

4.
Binckley CA  Resetarits WJ 《Oecologia》2007,153(4):951-958
The specific dispersal/colonization strategies used by species to locate and colonize habitat patches can strongly influence both community and metacommunity structure. Habitat selection theory predicts nonrandom dispersal to and colonization of habitat patches based on their quality. We tested whether habitat selection was capable of generating patterns of diversity and abundance across a transition of canopy coverage (open and closed canopy) and nutrient addition by investigating oviposition site choice in two treefrog species (Hyla) and an aquatic beetle (Tropisternus lateralis), and the colonization dynamics of a diverse assemblage of aquatic insects (primarily beetles). Canopy cover produced dramatic patterns of presence/absence, abundance, and species richness, as open canopy ponds received 99.5% of propagules and 94.6% of adult insect colonists. Nutrient addition affected only Tropisternus oviposition, as females oviposited more egg cases at higher nutrient levels, but only in open canopy ponds. The behavioral partitioning of aquatic landscapes into suitable and unsuitable habitats via habitat selection behavior fundamentally alters how communities within larger ecological landscapes (metacommunities) are linked by dispersal and colonization.  相似文献   

5.
Climate change is expected to alter the range and abundance of many species by influencing habitat qualities. For species living in fragmented populations, not only the quality of the present patches but also access to new habitat patches may be affected. Here, we show that colonization in a metacommunity can be directly influenced by weather changes, and that these observed weather changes are consistent with global climate change models. Using a long‐term dataset from a rock pool metacommunity of the three species Daphnia magna, Daphnia longispina and Daphnia pulex with 507 monitored habitat patches, we correlated a four‐fold increase in colonization rate with warmer, drier weather for the period from 1982 to 2006. The higher colonization rate after warm and dry summers led to an increase in metacommunity dynamics over time. A mechanistic explanation for the increased colonization rate is that the resting stages have a higher exposure to animal and wind dispersal in desiccated rock pools. Although colonization rates reacted in the same direction in all three species, there were significant species‐specific effects that resulted in an overall change in the metacommunity composition. Increased local instability and colonization dynamics may even lead to higher global stability of the metacommunity. Thus, whereas climate change has been reported to cause a unidirectional change in species range for many other species, it changes the dynamics and composition of an entire community in this metacommunity, with winners and losers difficult to predict.  相似文献   

6.
Extinction, colonization, and species occupancy in tidepool fishes   总被引:1,自引:0,他引:1  
Despite the increasing sophistication of ecological models with respect to the size and spatial arrangement of habitat, there is relatively little empirical documentation of how species dynamics change as a function of habitat size and the fraction of habitat occupied. In an assemblage of tidepool fishes, I used maximum-likelihood estimation to test whether models which included habitat size provided a better fit to empirical data on extinction and colonization probabilities than models that assumed constant probabilities over all habitats. I found species differences in how extinction and colonization probabilities scaled with habitat size (and hence local population size). However, there was little evidence for a relationship between extinction and colonization probabilities and the fraction of occupied tidepools, as assumed in simple metapopulation models. Instead, colonization and extinction were independent of the fraction of occupied tidepools, favoring a MacArthur-Wilson island-mainland model. When I incorporated declines in extinction probability with tidepool volume in a simple simulation model, I found that predicted occupancy could change greatly, especially when colonization was low. However, the predicted fraction of occupied patches in the simulation model changed little when I incorporated the range of values reported here for extinction and colonization and the rate at which they scale with habitat size. Quantifying extinction and colonization patterns of natural populations is fundamental to understanding how species are distributed spatially and whether metapopulation models of species occupancy provide explanatory power for field populations. Received: 14 March 1997 / Accepted: 21 September 1997  相似文献   

7.
Classical ecological theory has proposed several determinants of food chain length, but the role of metacommunity dynamics has not yet been fully considered. By modelling patchy predator-prey metacommunities with extinction-colonization dynamics, we identify two distinct constraints on food chain length. First, finite colonization rates limit predator occupancy to a subset of prey-occupied sites. Second, intrinsic extinction rates accumulate along trophic chains. We show how both processes concur to decrease maximal and average food chain length in metacommunities. This decrease is mitigated if predators track their prey during colonization (habitat selection) and can be reinforced by top-down control of prey vital rates (especially extinction). Moreover, top-down control of colonization and habitat selection can interact to produce a counterintuitive positive relationship between perturbation rate and food chain length. Our results show how novel limits to food chain length emerge in spatially structured communities. We discuss the connections between these constraints and the ones commonly discussed, and suggest ways to test for metacommunity effects in food webs.  相似文献   

8.
The Southern water vole, Arvicola sapidus, is endemic to the Iberian Peninsula and France. Despite being catalogued as vulnerable, our current knowledge of this species is not sufficient to establish measures for its conservation and recovery, particularly in riparian zones of Mediterranean mountain areas. The aim of this study was to identify factors related to habitat configuration that determine the presence or absence of the species in the Montsant River. Specifically, we associated the presence/absence of this arvicolid rodent with composition of vegetation, river bank morphology, and watercourse characteristics. The results suggest that, in this area, the most favorable places for the species are those with a high degree of cover of herbaceous plants (mainly helophytes) and moderate to low levels of tree and shrub cover; gently sloping banks and a soft substrate; and the presence of water, with moderate to high stream widths and depths. In addition, we developed a classification method which allowed us to classify and characterize habitat conditions: the optimal scenario (preferential for arvicoline establishment), the suboptimal scenario (whose use is related to opportunities to find best scenarios), and the hostile scenario (not acceptable for use). In such riparian areas, the results revealed that the Southern water vole is a specialist in terms of habitat selection, but behaves as a generalist in terms of occupancy. Its ability to adapt to suboptimal conditions widens the options for managing Southern water vole populations, and indicates that the maintenance and rehabilitation of habitat along continuous stretches of river is the most effective approach to achieving self-sustaining populations.  相似文献   

9.
Aim How species traits and environmental conditions affect biogeographical dynamics is poorly understood. Here we test whether estimates of a species’ evolutionary age, colonization and persistence ability can explain its current ‘range filling’ (the ratio between realized and potential range size). Location Fynbos biome (Cape Floristic Region, South Africa). Methods For 37 species of woody plants (Proteaceae), we estimate range filling using atlas data and distribution models, evolutionary age using molecular phylogenies, and persistence ability using estimates of individual longevity (which determines the probability of extinction of local populations). Colonization ability is estimated from validated process‐based seed dispersal models, the arrangement of potential habitat, and data on local abundance. To relate interspecific variation in range filling to evolutionary age, colonization and persistence ability, we use two complementary model types: phenomenological linear models and the process‐based metapopulation model of Levins. Results Linear model analyses show that range filling increases with a species’ colonization and persistence ability but is not affected by species age. Moreover, colonization ability is a better predictor of range filling than its component variables (local abundance and dispersal ability). The phylogenetically independent interaction between colonization and persistence ability is significant (P < 0.05) for 97% of 180 alternative phylogenies. While the selected linear model explains 42% of the variance in arcsine transformed range filling, the Levins model performs more poorly. It overestimates range filling for realistic parameter values and produces unrealistic parameter estimates when fitted statistically. Main conclusions Colonization and local extinction seem to shape Proteaceae range dynamics on ecological rather than macroevolutionary time‐scales. Our results suggest that the positive abundance–range size relationship in this group is due primarily to the effect of abundance on colonization. In summary, this study contributes to a process‐based understanding of range dynamics and highlights the importance of colonization for the future survival of Fynbos Proteaceae.  相似文献   

10.
Although metapopulation dynamics have become the focus of considerable theoretical research, little attention has been paid to its role when examining the coexistence of species. When two or more species live in the same patch network, interspecific interactions may affect their dispersal, colonization and extinction rates, and it may be possible to incorporate competition affecting these parameters in metapopulation models. Here, we extend the territorial occupancy model proposed by Lande to competing species. Our model estimates an equilibrium proportion of habitat occupancy as a function of life‐history parameters, dispersal behavior, habitat suitability and interspecific interactions. Moreover, it could prove to be useful as a tool in the assessment of potential management decisions. We apply the model to the golden Aquila chrysaetos and the Bonelli's eagle Hieraaetus fasciatus, two territorial raptors that coexist in the Mediterranean region, sharing food and nesting habitats. Over the last twenty years, while the golden eagle has maintained and, in some cases, increased its breeding numbers, Bonelli's eagle has suffered a marked decline, with many territories abandoned by the latter now occupied by the former. This suggests that the dynamics of these species could be influenced by interspecific competition. The model identified the relative importance of competition (stable equilibrium that allows long‐term coexistence) and predicted that, when habitat overlap is slight as in the study area, intraspecific dynamics are much more important for the persistence of each species than interspecific ones. Our results suggest that the improvement of territorial bird survival and productivity are the most urgently needed actions to be undertaken in the case of the golden eagle, while for Bonelli's eagle efforts should be focused on improving territorial and non‐territorial bird survival. As habitat conservation measures, the proportion of suitable exclusive habitat should be increased for both species.  相似文献   

11.
Strictly speaking, fundamental niches are inestimable. Nevertheless, ecologists attempt approximating them to understand species’ distribution and plasticity to environmental changes, with invaluable repercussions on both theoretical and applied ecology. So far, individual‐based habitat selection models only characterized realized niches of populations delimited by physical (e.g. fences), historical (colonization) and biotic (competition) barriers constraining access to a subset of resources available to the species. As populations with different realized niches share the same fundamental niche, we developed a novel framework to scale‐up response curves from population‐scale habitat selection models to approximate the species’ optimal habitat choices, unbiased by barriers constraining accessibility. We used GPS‐locations from 147 wild mountain reindeer Rangifer t. tarandus, belonging to 7 of the remaining populations scattered throughout the subspecies’ range. We linked individual choices to accessible habitat features using conditional‐logistic regression with log‐link function in a use‐available design. Focal variables were modeled using 2nd degree polynomials on log‐scale, which correspond to a Gaussian curve used to approximate the fundamental niche optimum (curve mean) and breadth (variance). Using both real and simulated data we demonstrate that robust approximations of a fundamental niche optimum and breadth can be estimated using a relatively small number of representative populations with relatively few individuals. While each classical realized niche model had strong predictive power for the focal population but poorly predicted across populations, the approximation of the fundamental niche allowed for robust inter‐population comparisons in habitat quality. The proposed approach brings individual‐based habitat selection models forward along the continuum from investigating the realized niche of a population towards investigating a species’ fundamental niche, and allows us to quantify empirically the relationship between realized and fundamental niches. This allows improving the understanding of differences in fitness among populations, the prediction of species’ distributions and plasticity to environmental changes, and suggestions for mitigation priorities.  相似文献   

12.
Predicting the effect of a changing environment, e.g., caused by climate change, on realized niche dynamics, and consequently, biodiversity is a challenging scientific question that needs to be addressed. One promising approach is to use estimated demographic parameters for predicting plant abundance and occurrence probabilities. Using longitudinal pinpoint cover data sampled along a hydrological gradient in the Marais poitevin grasslands, France, the effect of the gradient on the demographic probabilities of colonization and survival was estimated. The estimated probabilities and calculated elasticities of survival and colonization covaried with the observed cover of the different species along the hydrological gradient. For example, the flooding tolerant grass A. stolonifera showed a positive response in both colonization and survival to flooding, and the hydrological gradient is clearly the most likely explanation for the occurrence pattern observed for A. stolonifera. The results suggest that knowledge on the processes of colonization and survival of the individual species along the hydrological gradient is sufficient for at least a qualitative understanding of species occurrences along the gradient. The results support the hypothesis that colonization has a predominant role for determining the ecological success along the hydrological gradient compared to survival. Importantly, the study suggests that it may be possible to predict the realized niche of different species from demographic studies. This is encouraging for the important endeavor of predicting realized niche dynamics.  相似文献   

13.
Conservation measures often rely on habitat management, so knowledge about a species’ habitat use is a prerequisite for effective conservation planning. The Little Bustard Tetrax tetrax, a medium‐sized bird native to the Palaearctic steppes and today found in extensively farmed habitats, is a threatened species. Its population experienced a 94% decline in farmland habitats in France between 1982 and 1996, and populations all over Europe have suffered equally sharp declines. Due to this steep negative trend, this species has been the subject of a number of habitat selection studies in order to develop relevant conservation measures based on its habitat requirements. In this study, we investigated the habitat selection of a range of habitat types by both sexes and at two nested spatial scales: plot scale and landscape scale. In addition, we analysed intra‐specific social interactions by incorporating conspecific density in the statistical models of habitat use. The study was conducted on a very high‐density population, perhaps the highest ever recorded for this species at around 50 Bustards per 100 ha of suitable habitat. Our methodology combined two field approaches (point counts and quadrat counts). The findings showed rather limited sexual dimorphism in terms of habitat selection at a local scale, with only vegetation height differing between sexes at a micro‐habitat scale, no selection at landscape scale, and a prevailing role of social factors at both scales. The implications for future conservation strategies in relation to population density and landscape composition are discussed.  相似文献   

14.
The extrinsic determinants hypothesis emphasizes the essential role of environmental heterogeneity in species’ colonization. Consequently, high resident species diversity can increase community susceptibility to colonizations because good habitats may support more species that are functionally similar to colonizers. On the other hand, colonization success is also likely to depend on species traits. We tested the relative importance of environmental characteristics and species traits in determining colonization success using census data of 587 vascular plant species collected about 70 yr apart from 471 islands in the archipelago of SW Finland. More specifically, we explored potential new colonization as a function of island properties (e.g. location, area, habitat diversity, number of resident species per unit area), species traits (e.g. plant height, life-form, dispersal vector, Ellenberg indicator values, association with human impact), and species’ historical distributions (number of inhabited islands, nearest occurrence). Island properties and species’ historical distributions were more effective than plant traits in explaining colonization outcomes. Contrary to the extrinsic determinants hypothesis, colonization success was neither associated with resident species diversity nor habitat diversity per se, although colonization was lowest on sparsely vegetated islands. Our findings lead us to propose that while plant traits related to dispersal and establishment may enhance colonization, predictions of plant colonizations primarily require understanding of habitat properties and species’ historical distributions.  相似文献   

15.
Temporal variability in primary productivity can change habitat quality for consumer species by affecting the energy levels available as food resources. However, it remains unclear how habitat-quality fluctuations may determine the dynamics of spatially structured populations, where the effects of habitat size, quality and isolation have been customarily assessed assuming static habitats. We present the first empirical evaluation on the effects of stochastic fluctuations in primary productivity—a major outcome of ecosystem functions—on the metapopulation dynamics of a primary consumer. A unique 13-year dataset from an herbivore rodent was used to test the hypothesis that inter-annual variations in primary productivity determine spatiotemporal habitat occupancy patterns and colonization and extinction processes. Inter-annual variability in productivity and in the growing season phenology significantly influenced habitat colonization patterns and occupancy dynamics. These effects lead to changes in connectivity to other potentially occupied habitat patches, which then feed back into occupancy dynamics. According to the results, the dynamics of primary productivity accounted for more than 50% of the variation in occupancy probability, depending on patch size and landscape configuration. Evidence connecting primary productivity dynamics and spatiotemporal population processes has broad implications for metapopulation persistence in fluctuating and changing environments.  相似文献   

16.
Aim The study of the spatial dynamics of invasive species is a key issue in invasion ecology. While mathematical models are useful for predicting the extent of population expansions, they are not suitable for measuring and characterizing spatial patterns of invasion unless the probability of detection is homogeneous across the distribution range. Here, we apply recently developed statistical approaches incorporating detection uncertainty to characterize the spatial dynamics of an invasive bird species, the Eurasian collared dove (Streptopelia decaocto). Location France. Methods Data on presence/absence of doves were recorded from 1996 to 2004 over 1045 grid cells (28 × 20 km) covering the entire country. Each grid cell included five point counts spaced along a route, which was visited twice a year, allowing for an estimation of detection probability. Each route was assigned to one of six geographical regions. We used robust design occupancy analysis to assess spatial and temporal variation in parameters related to the spatial dynamics of the species. These parameters included occupancy rate, colonization and local extinction probabilities. Our inference approach was based on the selection of the most parsimonious model among competitive models parametrized with conditional probabilities. Results The probability of detecting the presence of doves on a given route was high. However, we found evidence to incorporate detection uncertainty in inference processes about spatial dynamics, since detection probability was neither perfect (i.e. it was < 1), nor constant over space and time. Results showed a clear positive trend in occupancy rate over the study period, increasing from 55% in 1996 to 76% in 2004. In addition, occupancy rate differed among regions (range: 37–79%) and further analysis showed that colonization probability by region was positively related to occupancy rate. Finally, local extinction probability was lower than colonization probability and showed a tendency to decrease over the study period. Main conclusions Our results emphasize the importance of estimating detection probabilities in order to draw proper inferences about the spatial and temporal dynamics of the invasion pattern of the collared dove. In contrast to the perceived spatial dynamics from national atlas surveys, we provide evidence that the range of this species is currently increasing in France. Other results, such as regional specificity in colonization probabilities and time variation in local extinction are consistent with expectations from invasion and metapopulation theory.  相似文献   

17.
Every year, migratory species undertake seasonal movements along different pathways between discrete regions and habitats. The ability to assess the relative demographic contributions of these different habitats and pathways to the species’ overall population dynamics is critical for understanding the ecology of migratory species, and also has practical applications for management and conservation. Metrics for assessing habitat contributions have been well‐developed for metapopulations, but an equivalent metric is not currently available for migratory populations. Here, we develop a framework for estimating the demographic contributions of the discrete habitats and pathways used by migratory species throughout the annual cycle by estimating the per capita contribution of cohorts using these locations. Our framework accounts for seasonal movements between multiple breeding and non‐breeding habitats and for both resident and migratory cohorts. We illustrate our framework using a hypothetical migratory network of four habitats, which allows us to better understand how variations in habitat quality affect per capita contributions. Results indicate that per capita contributions for any habitat or pathway are dependent on habitat‐specific survival probabilities in all other areas used as part of the migratory circuit, and that contribution metrics are spatially linked (e.g. reduced survival in one habitat also decreases the contribution metric for other habitats). Our framework expands existing theory on the dynamics of spatiotemporally structured populations by developing a generalized approach to estimate the habitat‐ and pathway‐specific contributions of species migrating between multiple breeding and multiple non‐breeding habitats for a range of life histories or migratory strategies. Most importantly, it provides a means of prioritizing conservation efforts towards those migratory pathways and habitats that are most critical for the population viability of migratory species.  相似文献   

18.
Understanding the regional dynamics of plant communities is crucial for predicting the response of plant diversity to habitat fragmentation. However, for fragmented landscapes the importance of regional processes, such as seed dispersal among isolated habitat patches, has been controversially debated. Due to the stochasticity and rarity of among‐patch dispersal and colonization events, we still lack a quantitative understanding of the consequences of these processes at the landscape‐scale. In this study, we used extensive field data from a fragmented, semi‐arid landscape in Israel to parameterize a multi‐species incidence‐function model. This model simulates species occupancy pattern based on patch areas and habitat configuration and explicitly considers the locations and the shapes of habitat patches for the derivation of patch connectivity. We implemented an approximate Bayesian computation approach for parameter inference and uncertainty assessment. We tested which of the three types of regional dynamics – the metacommunity, the mainland‐island, or the island communities type – best represents the community dynamics in the study area and applied the simulation model to estimate the extinction debt in the investigated landscape. We found that the regional dynamics in the patch‐matrix study landscape is best represented as a system of highly isolated ‘island’ communities with low rates of propagule exchange among habitat patches and consequently low colonization rates in local communities. Accordingly, the extinction rates in the local communities are the main drivers of community dynamics. Our findings indicate that the landscape carries a significant extinction debt and in model projections 33–60% of all species went extinct within 1000 yr. Our study demonstrates that the combination of dynamic simulation models with field data provides a promising approach for understanding regional community dynamics and for projecting community responses to habitat fragmentation. The approach bears the potential for efficient tests of conservation activities aimed at mitigating future losses of biodiversity.  相似文献   

19.
Colonization and extinction are primary drivers of local population dynamics, community structure, and spatial patterns of biological diversity. Existing paradigms of island biogeography, metapopulation biology, and metacommunity ecology, as well as habitat management and conservation biology based on those paradigms, emphasize patch size, number, and isolation as primary characteristics influencing colonization and extinction. Habitat selection theory suggests that patch quality could rival size, number, and isolation in determining rates of colonization and resulting community structure. We used naturally colonized experimental landscapes to address four issues: (a) how do colonizing aquatic beetles respond to variation in patch number, (b) how do they respond to variation in patch quality, (c) does patch context affect colonization dynamics, and (d) at what spatial scales do beetles respond to habitat variation? Increasing patch number had no effect on per patch colonization rates, while patch quality and context were critical in determining colonization rates and resulting patterns of abundance and species richness at multiple spatial scales. We graphically illustrate how variation in immigration rates driven by perceived predation risk (habitat quality) can further modify dynamics of the equilibrium theory of island biogeography beyond predator-driven effects on extinction rates. Our data support the importance of patch quality and context as primary determinants of colonization rate, occupancy, abundance, and resulting patterns of species richness, and reinforce the idea that management of metapopulations for species preservation, and metacommunities for local and regional diversity, should incorporate habitat quality into the predictive equation.  相似文献   

20.
We derive measures for assessing the value of an individual habitat fragment for the dynamics and persistence of a metapopulation living in a network of many fragments. We demonstrate that the most appropriate measure of fragment value depends on the question asked. Specifically, we analyse four alternative measures: the contribution of a fragment to the metapopulation capacity of the network, to the equilibrium metapopulation size, to the expected time to metapopulation extinction and the long-term contribution of a fragment to colonization events in the network. The latter measure is comparable to density-dependent measures in general matrix population theory, though some differences are introduced by the fact that "density dependence" is spatially localized in the metapopulation context. We show that the value of a fragment depends not only on the properties of the landscape but also on the properties of the species. Most importantly, variation in fragment values between the habitat fragments is greatest in the case of rare species that occur close to the extinction threshold, as these species are likely to be restricted to the most favorable parts of the landscape. We expect that the measures of habitat fragment value described and analysed here have applications in landscape ecology and in conservation biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号