首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orientation and mobility of acrylodan fluorescent probe specifically bound to caldesmon Cys580 incorporated into muscle ghost fibers decorated with myosin S1 and containing tropomyosin was studied in the presence or absence of MgADP, MgAMP-PNP, MgATPgammaS or MgATP. Modeling of various intermediate states of actomyosin has shown discrete changes in orientation and mobility of the dye dipoles which is the evidence for multistep changes in the structural changes of caldesmon during the ATPase hydrolysis cycle. It is suggested that S1 interaction with actin results in nucleotide-dependent displacement of the C-terminal part of caldesmon molecule and changes in its mobility. Thus inhibition of the actomyosin ATPase activity may be due to changes in caldesmon position on the thin filament and its interaction with actin. Our new findings described in the present paper as well as those published recently elsewhere might conciliate the two existing models of molecular mechanism of inhibition of the actomyosin ATPase by caldesmon.  相似文献   

2.
S M Bower  Y Wang  P D Chantler 《FEBS letters》1992,310(2):132-134
The di-thiol reagent, 5,5'-dithiobis (2-nitrobenzoic acid) is shown to induce disulfide bond formation between Mercenaria regulatory light-chain Cys-55 sites on either head of scallop hybrid myosin. This indicates that these two sites on opposite heads of myosin can come within 2A of each other and this confirms a prediction based on earlier data [Chantler, Tao and Stafford (1991) Biophys. J. 59, 1242-1250]. Results demonstrate that myosin heads in solution show a considerable mutual freedom of movement which can be monitored by probes in the vicinity of regulatory light-chain residue 55. Implications for light-chain movement on the myosin head are discussed.  相似文献   

3.
K Y Horiuchi  S Chacko 《Biochemistry》1988,27(22):8388-8393
Cysteine residues of caldesmon were labeled with the fluorescent reagent N-(1-pyrenyl)maleimide. The number of sulfhydryl (SH) groups in caldesmon was around 3.5 on the basis of reactivity to 5,5'-dithiobis(2-nitrobenzoate); 80% of the SH groups were labeled with pyrene. The fluorescence spectrum from pyrene-caldesmon showed the presence of excited monomer and dimer (excimer). As the ionic strength increased, excimer fluorescence decreased, disappearing at salt concentrations higher than around 50 mM. The labeling of caldesmon with pyrene did not affect its ability to inhibit actin activation of heavy meromyosin Mg-ATPase and the release of this inhibition in the presence of Ca2+-calmodulin. Tropomyosin induced a change in the fluorescence spectrum of pyrene-caldesmon, indicating a conformational change associated with the interaction between caldesmon and tropomyosin. The affinity of caldesmon to tropomyosin was dependent on ionic strength. The binding constant was 5 x 10(6) M-1 in low salt, and the affinity was 20-fold less at ionic strengths close to physiological conditions. In the presence of actin, the affinity of caldesmon to tropomyosin was increased 5-fold. The addition of tropomyosin also changed the fluorescence spectrum of pyrene-caldesmon bound to actin filaments. The change in the conformation of tropomyosin, caused by the interaction between caldesmon and tropomyosin, was studied with pyrene-labeled tropomyosin. Fluorescence change was evident when unlabeled caldesmon was added to pyrene-tropomyosin bound to actin. These data suggest that the interaction between caldesmon and tropomyosin on the actin filament is associated with conformational changes on these thin filament associated proteins. These conformational changes may modulate the ability of thin filament to interact with myosin heads.  相似文献   

4.
We define conditions under which the two C-terminal residues of actin, Cys-374 and Phe-375, can be selectively removed by proteolysis with trypsin. This modification had little effect on the secondary structure of actin detected by Fourier-transform infrared spectroscopy. However, removing these residues caused small but significant decreases in the critical concentration of actin, in its ability to activate myosin ATPase, and in its interaction with tropomyosin and troponin. Removing residues 374-375 caused dramatic changes in the actin filament as seen by electron microscopy. The filaments had a much greater and more irregular curvature and were intertwined into disordered multifilament bundles. Removing 374-375 also significantly lowered the flow viscosity of filamentous-actin solutions. These data suggest an increase in the flexibility and fragility of the filament, supporting the idea that the C-terminus forms one of the major intermonomer contacts in the filament.  相似文献   

5.
Caldesmon, an actin/calmodulin binding protein, inhibits acto-heavy meromyosin (HMM) ATPase, while it increases the binding of HMM to actin, presumably mediated through an interaction between the myosin subfragment 2 region of HMM and caldesmon, which is bound to actin. In order to study the mechanism for the inhibition of acto-HM ATPase, we utilized the chymotryptic fragment of caldesmon (38-kDa fragment), which possesses the actin/calmodulin binding region but lacks the myosin binding portion. The 38-kDa fragment inhibits the actin-activated HMM ATPase to the same extent as does the intact caldesmon molecule. In the absence of tropomyosin, the 38-kDa fragment decreased the KATPase and Kbinding without any effect on the Vmax. However, when the actin filament contained bound tropomyosin, the caldesmon fragment caused a 2-3-fold decrease in the Vmax, in addition to lowering the KATPase and the Kbinding. The 38-kDa fragment-induced inhibition is partially reversed by calmodulin at a 10:1 molar ratio to caldesmon fragment; the reversal was more remarkable in 100 mM ionic strength at 37 degrees C than in 20 or 50 mM at 25 degrees C. Results from these experiments demonstrate that the 38-kDa domain of caldesmon fragment of myosin head to actin; however, when the actin filament contains bound tropomyosin, caldesmon fragment affects not only the binding of HMM to/actin but also the catalytic step in the ATPase cycle. The interaction between the 38-kDa domain of caldesmon and tropomyosin-actin is likely to play a role in the regulation of actomyosin ATPase and contraction in smooth muscle.  相似文献   

6.
P J Huber  U T Brunner  M C Schaub 《Biochemistry》1989,28(23):9116-9123
Thiol-disulfide exchange reactions between myosin and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) lead to the formation of 5-thio-2-nitrobenzoic acid (TNB)-mixed disulfides as well as to protein disulfide bonds. After incubation with DTNB, myosin was treated with an excess of N-ethylmaleimide (NEM) before electrophoretic analysis of the protein subunits in sodium dodecyl sulfate (SDS) without prior reduction by dithiothreitol (DTT). Without NEM treatment, thiol-disulfide rearrangement reactions occurred in the presence of SDS between the residual free thiols and DTNB. In the absence of divalent metal ions at 25 degrees C, DTNB was shown to induce an intrachain disulfide bond between Cys-127 and Cys-156 of the RLC. This intrachain cross-link restricts partially the unfolding of the RLC in SDS and can be followed as a faster migrating species, RLC'. Densitometric evaluation of the electrophoretic gel patterns indicated that the stoichiometric relation of the light chains (including RLC and RLC') remained unchanged. The two cysteine residues of the fast migrating RLC' were no more available for reaction with [14C]NEM, but upon reduction with DTT, the electrophoretic mobility of the RLC' reverted to that of unmodified RLC and of the RLC modified with two TNB groups. Ca2+ or Mg2+ was able to prevent this disulfide formation in the RLC of myosin by 50% at a free ion concentration of 1.1 X 10(-8) and 4.0 X 10(-7) M, respectively, at 25 degrees C and pH 7.6. Intrachain disulfide formation of RLC never occurred in myosin at 0 degree C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
It is known that the actin-binding protein caldesmon inhibits actomyosin ATPase activity and might in this way take part in the thin filament regulation of smooth muscle contraction. Although the molecular mechanism of this inhibition is unknown, it is clear that the presence of actin-bound tropomyosin is necessary for full inhibition. Recent evidence also suggests that the myosin-induced movement of tropomyosin plays a key role in regulation. In this work, fluorescence studies provide evidence to show that caldesmon interacts with and alters the position of tropomyosin in a reconstituted actin thin filament and thereby limits the ability of myosin heads to move tropomyosin. Caldesmon interacts with the Cys-190 region in the COOH-terminal half of tropomyosin, resulting in the movement of this part of tropomyosin to a new position on actin. Additionally, this constrains the myosin-induced movement of this region of tropomyosin. On the other hand, caldesmon does not appear to interact with the Cys-36 region in the NH2-terminal half of tropomyosin and neither alters the position of nor significantly constrains the myosin-induced movement of this part of tropomyosin. The ability of caldesmon to limit the myosin-induced movement of tropomyosin provides a possible molecular basis for the inhibitory function of caldesmon. The different movements of the two halves of tropomyosin indicate that actin-bound tropomyosin moves as a flexible molecule and not as a rigid rod. Interestingly, caldesmon, which inhibits tropomyosin's potentiation of actomyosin ATPase activity, moves tropomyosin in one direction, whereas myosin heads, which enhance potentiation, move tropomyosin in the opposite direction.  相似文献   

8.
We studied the effects of caldesmon, a major actin- and calmodulin-binding protein found in a variety of muscle and non-muscle tissues, on the various ATPase activities of skeletal-muscle myosin. Caldesmon inhibited the actin-activated myosin Mg2+-ATPase, and this inhibition was enhanced by tropomyosin. In the presence of the troponin complex and tropomyosin, caldesmon inhibited the Ca2+-dependent actomyosin Mg2+-ATPase; this inhibition could be partly overcome by Ca2+/calmodulin. Caldesmon, phosphorylated to the extent of approximately 4 mol of Pi/mol of caldesmon, inhibited the actin-activated myosin Mg2+-ATPase to the same extent as did non-phosphorylated caldesmon. Both inhibitions could be overcome by Ca2+/calmodulin. Caldesmon also inhibited the Mg2+-ATPase activity of skeletal-muscle myosin in the absence of actin; this inhibition also could be overcome by Ca2+/calmodulin. Caldesmon inhibited the Ca2+-ATPase activity of skeletal-muscle myosin in the presence or absence of actin, at both low (0.1 M-KCl) and high (0.3 M-KCl) ionic strength. Finally, caldesmon inhibited the skeletal-muscle myosin K+/EDTA-ATPase at 0.1 M-KCl, but not at 0.3 M-KCl. Addition of actin resulted in no inhibition of this ATPase by caldesmon at either 0.1 M- or 0.3 M-KCl. These observations suggest that caldesmon may function in the regulation of actin-myosin interactions in striated muscle and thereby modulate the contractile state of the muscle. The demonstration that caldesmon inhibits a variety of myosin ATPase activities in the absence of actin indicates a direct effect of caldesmon on myosin. The inhibition of the actin-activated Mg2+-ATPase activity of myosin (the physiological activity) may not be due therefore simply to the binding of caldesmon to the actin filament causing blockage of myosin-cross-bridge-actin interaction.  相似文献   

9.
Fluorescence resonance energy transfer between points on tropomyosin (positions 87 and 190) and actin (Gln-41, Lys-61, Cys-374, and the ATP-binding site) showed no positional change of tropomyosin relative to actin on the thin filament in response to changes in Ca2+ concentration (Miki et al. (1998) J. Biochem. 123, 1104-1111). This is consistent with recent electron cryo-microscopy analysis, which showed that the C-terminal one-third of tropomyosin shifted significantly towards the outer domain of actin, while the N-terminal half of tropomyosin shifted only a little (Narita et al. (2001) J. Mol. Biol. 308, 241-261). In order to detect any significant positional change of the C-terminal region of tropomyosin relative to actin, we generated mutant tropomyosin molecules with a unique cysteine residue at position 237, 245, 247, or 252 in the C-terminal region. The energy donor probe was attached to these positions on tropomyosin and the acceptor probe was attached to Cys-374 or Gln-41 of actin. These probe-labeled mutant tropomyosin molecules retain the ability to regulate the acto-S1 ATPase activity in conjunction with troponin and Ca2+. Fluorescence resonance energy transfer between these points of tropomyosin and actin showed a high transfer efficiency, which should be very sensitive to changes in distance between probes attached to actin and tropomyosin. However, the transfer efficiency did not change appreciably upon removal of Ca2+ ions, suggesting that the C-terminal region of tropomyosin did not shift significantly relative to actin on the reconstituted thin filament in response to the change of Ca2+ concentration.  相似文献   

10.
The movement of reconstituted thin filaments over an immobilized surface of thiophosphorylated smooth muscle myosin was examined using an in vitro motility assay. Reconstituted thin filaments contained actin, tropomyosin, and either purified chicken gizzard caldesmon or the purified COOH-terminal actin-binding fragment of caldesmon. Control actin-tropomyosin filaments moved at a velocity of 2.3 +/- 0.5 microns/s. Neither intact caldesmon nor the COOH-terminal fragment, when maintained in the monomeric form by treatment with 10 mM dithiothreitol, had any effect on filament velocity; and yet both were potent inhibitors of actin-activated myosin ATPase activity, indicating that caldesmon primarily inhibits myosin binding as reported by Chalovich et al. (Chalovich, J. M., Hemric, M. E., and Velaz, L. (1990) Ann. N. Y. Acad. Sci. 599, 85-99). Inhibition of filament motion was, however, observed under conditions where cross-linking of caldesmon via disulfide bridges was present. To determine if monomeric caldesmon could "tether" actin filaments to the myosin surface by forming an actin-caldesmon-myosin complex as suggested by Chalovich et al., we looked for caldesmon-dependent filament binding and motility under conditions (80 mM KCl) where filament binding to myosin is weak and motility is not normally seen. At caldesmon concentrations > or = 0.26 microM, actin filament binding was increased and filament motion (2.6 +/- 0.6 microns/s) was observed. The enhanced motility seen with intact caldesmon was not observed with the addition of up to 26 microM COOH-terminal fragment. Moreover, a molar excess of the COOH-terminal fragment competitively reversed the enhanced binding seen with intact caldesmon. These results show that tethering of actin filaments to myosin by the formation of an actin-caldesmon-myosin complex enhanced productive acto-myosin interaction without placing a significant mechanical load on the moving filaments.  相似文献   

11.
Intrastrand cross-linking of actin filaments by ANP, N-(4-azido-2-nitrophenyl) putrescine, between Gln-41 in subdomain 2 and Cys-374 at the C-terminus, was shown to inhibit force generation with myosin in the in vitro motility assays [Kim et al. (1998) Biochemistry 37, 17801-17809]. To clarify the immobilization of which of these two sites inhibits the actomyosin motor, the properties of actins with partially overlapping cross-linked sites were examined. pPDM (N,N'-p-phenylenedimaleimide) and ABP [N-(4-azidobenzoyl) putrescine] were used to obtain actin filaments cross-linked ( approximately 50%) between Cys-374 and Lys-191 (interstrand) and Gln-41 and Lys-113 (intrastrand), respectively. ANP, ABP, and pPDM cross-linked filaments showed similar inhibition of their sliding speeds and force generation with myosin ( approximately 25%) in the in vitro motility assays. In analogy to ANP cross-linking of actin, pPDM and ABP cross-linkings did not change the strong S1 binding to actin and the V(max) and K(m) parameters of actomyosin ATPase. The similar effects of these three cross-linkings reveal the tight coupling between structural elements of the subdomain 2/subdomain 1 interface and show the importance of its dynamic flexibility to force generation with myosin. The possibility that actin cross-linkings inhibit rate-limiting steps in motion and force generation during myosin cross-bridge cycle was tested in stopped-flow experiments. Measurements of the rates of mantADP release from actoS1 and ATP-induced dissociation of actoS1 did not reveal any differences between un-cross-linked and ANP cross-linked actin in these complexes. These findings are discussed in terms of the uncoupling between force generation and other aspects of actomyosin interactions due to a constrained dynamic flexibility of the subdomain 2/subdomain 1 interface in cross-linked actin filaments.  相似文献   

12.
Earlier studies using polarized microphotometry have shown that caldesmon inhibits the alterations in structure and flexibility of actin in ghost fibers that take place upon the binding of myosin heads (Ga?azkiewicz et al. (1987) Biochim. Biophys. Acta 916, 368-375). The present investigations, performed with an IAEDANS label attached to myosin subfragment 1 (S-1), revealed that this inhibition results from the weakening of the binding between myosin heads and actin as indicated by the caldesmon-induced increase in the random movement of S-1. Parallel experiments with actin labeled at Cys-374 demonstrated that this effect of caldesmon is transmitted to the C-terminus of the actin molecule resulting in a conformational adjustment in this region of the molecule.  相似文献   

13.
Drebrin is a mammalian neuronal protein that binds to and organizes filamentous actin (F-actin) in dendritic spines, the receptive regions of most excitatory synapses that play a crucial role in higher brain functions. Here, the structural effects of drebrin on F-actin were examined in solution. Depolymerization and differential scanning calorimetry assays show that F-actin is stabilized by the binding of drebrin. Drebrin inhibits depolymerization mainly at the barbed end of F-actin. Full-length drebrin and its C-terminal truncated constructs were used to clarify the domain requirements for these effects. The actin binding domain of drebrin decreases the intrastrand disulfide cross-linking of Cys-41 (in the DNase I binding loop) to Cys-374 (C-terminal) but increases the interstrand disulfide cross-linking of Cys-265 (hydrophobic loop) to Cys-374 in the yeast mutants Q41C and S265C, respectively. We also demonstrate, using solution biochemistry methods and EM, the rescue of filament formation by drebrin in different cases of longitudinal interprotomer contact perturbation: the T203C/C374S yeast actin mutant and grimelysin-cleaved skeletal actin (between Gly-42 and Val-43). Additionally, we show that drebrin rescues the polymerization of V266G/L267G, a hydrophobic loop yeast actin mutant with an impaired lateral interface formation between the two filament strands. Overall, our data suggest that drebrin stabilizes actin filaments through its effect on their interstrand and intrastrand contacts.  相似文献   

14.
Caldesmon is known to bind to smooth muscle myosin. Ca2+/calmodulin-dependent phosphorylation of caldesmon completely blocks its interaction with myosin. Cleavage of caldesmon at its 2 cysteine residues by 2-nitro-5-thiocyanobenzoic acid (NTCB) occurs initially at one site to yield 108-kDa and 21.2-kDa peptides and subsequently at the second site within the 108-kDa peptide to yield 85-kDa and 23.5-kDa fragments. The 23.5-kDa peptide retains the ability to bind to myosin. The N-terminal (95 kDa) and C-terminal (42 kDa) chymotryptic peptides of caldesmon were isolated and digested with NTCB: the C-terminal actin- and calmodulin-binding peptide was not cleaved, indicating that it does not contain either of the cysteine residues, whereas the 95-kDa N-terminal peptide was cleaved at two sites to yield 56-kDa, 23.5-kDa, and 21.2-kDa fragments. The arrangement of NTCB fragments in caldesmon is, therefore: 21.2 kDa/23.5 kDa/85 kDa from N to C terminus. Digestion of phosphorylated caldesmon with NTCB suggested a single phosphorylation site in the 21.2-kDa peptide and three sites in the 23.5-kDa peptide. These results lead to the development of a model whereby caldesmon may cross-link actin to myosin and such cross-linking is blocked by phosphorylation of caldesmon. This mechanism may explain the formation of reversible "latch bridges" which permit force maintenance at low levels of myosin phosphorylation in intact smooth muscles.  相似文献   

15.
Troponin T (TnT) is an essential component of troponin (Tn) for the Ca(2+)-regulation of vertebrate striated muscle contraction. TnT consists of an extended NH(2)-terminal domain that interacts with tropomyosin (Tm) and a globular COOH-terminal domain that interacts with Tm, troponin I (TnI), and troponin C (TnC). We have generated two mutants of a rabbit skeletal beta-TnT 25-kDa fragment (59-266) that have a unique cysteine at position 60 (N-terminal region) or 250 (C-terminal region). To understand the spatial rearrangement of TnT on the thin filament in response to Ca(2+) binding to TnC, we measured distances from Cys-60 and Cys-250 of TnT to Gln-41 and Cys-374 of F-actin on the reconstituted thin filament by using fluorescence resonance energy transfer (FRET). The distances from Cys-60 and Cys-250 of TnT to Gln-41 of F-actin were 39.5 and 30.0 A, respectively in the absence of Ca(2+), and increased by 2.6 and 5.8 A, respectively upon binding of Ca(2+) to TnC. The rigor binding of myosin subfragment 1 (S1) further increased these distances by 4 and 5 A respectively, when the thin filaments were fully decorated with S1. This indicates that not only the C-terminal but also the N-terminal region of TnT showed the Ca(2+)- and S1-induced movement, and the C-terminal region moved more than N-terminal region. In the absence of Ca(2+), the rigor S1 binding also increased the distances to the same extent as the presence of Ca(2+) when the thin filaments were fully decorated with S1. The addition of ATP completely reversed the changes in FRET induced by rigor S1 binding both in the presence and absence of Ca(2+). However, plots of the extent of S1-induced conformational change vs. molar ratio of S1 to actin showed hyperbolic curve in the presence of Ca(2+) but sigmoidal curve in the absence of Ca(2+). FRET measurement of the distances from Cys-60 and Cys-250 of TnT to Cys-374 of actin showed almost the same results as the case of Gln-41 of actin. The present FRET measurements demonstrated that not only TnI but also TnT change their positions on the thin filament corresponding to three states of thin filaments (relaxed, Ca(2+)-induced or closed, and S1-induced or open states).  相似文献   

16.
The cross-linking of the F-actin-caldesmon complex with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide in the presence of N-hydroxysuccinimide generated four major adducts which were identified on polyacrylamide gels. By cross-linking 3H-actin to 14C-caldesmon, these were found to represent 1:1 cross-linked complexes of actin and caldesmon displaying different electrophoretic mobilities. Tropomyosin did not noticeably affect the cross-linking process. The same four fluorescent species resulting from the cross-linking of caldesmon to F-actin labeled with N-[7-(dimethylamino)-4-methyl-3-coumarinyl]maleimide were subjected separately to partial cleavages with hydroxylamine or cyanogen bromide. These treatments yielded fluorescent 41- and 37-kDa fragments, respectively, from each cross-linked entity indicating unambiguously that caldesmon was cross-linked only to the NH2-terminal actin stretch of residues 1-12. This region is also known to serve for the carbodiimide-mediated cross-linking of the myosin subfragment-1 heavy chain (Sutoh, K. (1982) Biochemistry 21, 3654-3661). A covalent caldesmon-F-actin conjugate containing a protein molar ratio close to 1:19 was isolated following dissociation of uncross-linked caldesmon. It showed a low level of activation of the ATPase activity of skeletal myosin subfragment-1, and the binding of Ca2(+)-calmodulin to the derivative did not cause the reversal of the ATPase inhibition. In contrast, the reversible binding of caldesmon to F-actin cross-linked to myosin subfragment-1 did not inhibit the accelerated ATPase of the complex. The overall data point to the dual involvement of the actin's NH2 terminus in the inhibitory binding of caldesmon and in actomyosin interactions in the presence of ATP.  相似文献   

17.
Calponin inhibits the actin-activated ATPase of smooth muscle myosin and thus has been proposed as a thin filament-based regulatory component in smooth muscle. To obtain information on the mechanism of inhibition by calponin we have used chemical modification of actin and cross-linking of actin and subfragment 1. Modification of Lys 61 of actin had no effect on the inhibition by calponin of acto-heavy meromyosin ATPase, i.e. different from tropomyosin-troponin. In addition, modification of the acidic N-terminal region of actin did not impair the ability of calponin to bind to F-actin. Finally, calponin was effective in inhibiting ATPase activity of cross-linked acto-subfragment 1. Therefore the mechanism of inhibition by calponin is distinct from troponin-tropomyosin and caldesmon in that it does not involve either the N-terminal acidic region of actin nor the area around Lys 61 and does not fit a simple steric blocking model.  相似文献   

18.
In order to help understand the spatial rearrangements of thin filament proteins during the regulation of muscle contraction, we used fluorescence resonance energy transfer (FRET) to measure Ca(2+)-dependent, myosin-induced changes in distances and fluorescence energy transfer efficiencies between actin and the inhibitory region of troponin I (TnI). We labeled the single Cys-117 of a mutant TnI with N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (IAEDANS) and Cys-374 of actin with 4-dimethylaminophenylazophenyl-4'-maleimide (DABmal). These fluorescent probes were used as donor and acceptor, respectively, for the FRET measurements. We reconstituted a troponin-tropomyosin (Tn-Tm) complex which contained the AEDANS-labeled mutant TnI, together with natural troponin T (TnT), troponin C (TnC) and tropomyosin (Tm) from rabbit fast skeletal muscle. Fluorescence titration of the AEDANS-labeled Tn-Tm complex with DABmal-labeled actin, in the presence and absence of Ca(2+), resulted in proportional, linear increases in energy transfer efficiency up to a 7:1 molar excess of actin over Tn-Tm. The distance between AEDANS on TnI Cys-117 and DABmal on actin Cys-374 increased from 37.9 A to 44.1 A when Ca(2+) bound to the regulatory sites of TnC. Titration of reconstituted thin filaments, containing AEDANS-labeled Tn-Tm and DABmal-labeled actin, with myosin subfragment 1 (S1) decreased the energy transfer efficiency, in both the presence and absence of Ca(2+). The maximum decrease occurred at well below stoichiometric levels of S1 binding to actin, showing a cooperative effect of S1 on the state of the thin filaments. S1:actin molar ratios of approximately 0.1 in the presence of Ca(2+), and approximately 0.3 in the absence of Ca(2+), were sufficient to cause a 50% reduction in normalized transfer efficiency. The distance between AEDANS on TnI Cys-117 and DABmal on actin Cys-374 increased by approximately 7 A in the presence of Ca(2+) and by approximately 2 A in the absence of Ca(2+) when S1 bound to actin. Our results suggest that TnI's interaction with actin inhibits actomyosin ATPase activity by modulating the equilibria among active and inactive states of the thin filament. Structural rearrangements caused by myosin S1 binding to the thin filament, as detected by FRET measurements, are consistent with the cooperative behavior of the thin filament proteins.  相似文献   

19.
Wild type chicken gizzard caldesmon (756 amino acids) was expressed in a T7 RNA polymerase-based bacterial expression system at a yield of 1 mg pure caldesmon per litre bacterial culture. A mutant composed of amino acids 1-578 was also constructed and expressed. The wild type and mutant caldesmon were purified and compared with native chicken gizzard caldesmon. Native and wild type expressed caldesmon were indistinguishable in assays for inhibition of actin-tropomyosin activation of myosin ATPase, reversal of inhibition by Ca2+-calmodulin and binding to actin, actin-tropomyosin, Ca2+-calmodulin, tropomyosin and myosin. The mutant missing the C-terminal 178 amino acids had no inhibitory effect and did not bind to actin or Ca2+-calmodulin. It bound to tropomyosin with a 5-fold reduced affinity and to myosin with a greater than 10-fold reduced affinity.  相似文献   

20.
Earlier 1H-NMR experiments on the myosin subfragment-1 (S1) light chain isoenzymes from rabbit fast muscle, containing either the A1 or the A2 alkali light chains [S1(A1) or S1(A2)], have shown that the 41-residue N-terminal extension of A1, rich in proline, alanine and lysine residues, is freely mobile in solution but that this mobility is constrained in the acto-S1(A1) complex [Prince et al. (1981) Eur. J. Biochem. 121, 213-219]. It is now established that this N-terminal region of the A1-light chain interacts directly with the C-terminal region of actin in the acto-S1(A1) complex. This was shown by covalently labelling the Cys-374 residue of actin with a spin-label and observing the enhanced relaxation this paramagnetic centre induced in the 1H-NMR spectrum of S1(A1). In particular, the signal arising from the -N+(CH3)3 protons of alpha-N-trimethylalanine (Me3Ala) were monitored as this residue is uniquely sited at the N-terminus of the A1 light chain [Henry et al. (1982) FEBS Lett. 144, 11-15]. Experiments using complexes of actin with either the N-terminal 37-residue peptide of A1, S1(A1) or heavy meromyosin indicate that the N-terminal region of A1 is binding in a similar manner to actin in each case, with the N-terminal Me3Ala residue within 1.5 nm of the spin label introduced to Cys-374 of actin. A similar strategy was adopted to show that the Me3Ala residue can also be found close (less than 1.5 nm) to the fast-reacting SH1 thiol group on the S1 heavy chain. These data, together with published work, have been used to suggest a possible organisation for the polypeptide chains in the myosin head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号