首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP synthases (F(0)F(1)-ATPases) mechanically couple ion flow through the membrane-intrinsic portion, F(0), to ATP synthesis within the peripheral portion, F(1). The coupling most probably occurs through the rotation of a central rotor (subunits c(10)epsilon gamma) relative to the stator (subunits ab(2)delta(alpha beta)(3)). The translocation of protons is conceived to involve the rotation of the ring of c subunits (the c oligomer) containing the essential acidic residue cD61 against subunits ab(2). In line with this notion, the mutants cD61N and cD61G have been previously reported to lack proton translocation. However, it has been surprising that the membrane-bound mutated holoenzyme hydrolyzed ATP but without translocating protons. Using detergent-solubilized and immobilized EF(0)F(1) and by application of the microvideographic assay for rotation, we found that the c oligomer, which carried a fluorescent actin filament, rotates in the presence of ATP in the mutant cD61N just as in the wild type enzyme. This observation excluded slippage among subunit gamma, the central rotary shaft, and the c oligomer and suggested free rotation without proton pumping between the oligomer and subunit a in the membrane-bound enzyme.  相似文献   

2.
Vacuolar-type ATPases V1V0 (V-ATPases) are found ubiquitously in the endomembrane organelles of eukaryotic cells. In this study, we genetically introduced a His tag and a biotin tag onto the c and G subunits, respectively, of Saccharomyces cerevisiae V-ATPase. Using this engineered enzyme, we observed directly the continuous counter-clockwise rotation of an actin filament attached to the G subunit when the enzyme was immobilized on a glass surface through the c subunit. V-ATPase generated essentially the same torque as the F-ATPase (ATP synthase). The rotation was inhibited by concanamycin and nitrate but not by azide. These results demonstrated that the V- and F-ATPase carry out a common rotational catalysis.  相似文献   

3.
In F1-ATPase, the rotation of the central axis subunit gamma relative to the surrounding alpha3beta3 subunits is coupled to ATP hydrolysis. We previously reported that the introduced regulatory region of the gamma subunit of chloroplast F1-ATPase can modulate rotation of the gamma subunit of the thermophilic bacterial F1-ATPase (Bald, D., Noji, H., Yoshida, M., Hirono-Hara, Y., and Hisabori, T. (2001) J. Biol. Chem. 276, 39505-39507). The attenuated enzyme activity of this chimeric enzyme under oxidizing conditions was characterized by frequent and long pauses of rotation of gamma. In this study, we report an inverse regulation of the gamma subunit rotation in the newly engineered F1-chimeric complex whose three negatively charged residues Glu210-Asp211-Glu212 adjacent to two cysteine residues of the regulatory region derived from chloroplast F1-ATPase gamma were deleted. ATP hydrolysis activity of the mutant complex was stimulated up to 2-fold by the formation of the disulfide bond at the regulatory region by oxidation. We successfully observed inverse redox switching of rotation of gamma using this mutant complex. The complex exhibited long and frequent pauses in its gamma rotation when reduced, but the rotation rates between pauses remained unaltered. Hence, the suppression or activation of the redox-sensitive F1-ATPase can be explained in terms of the change in the rotation behavior at a single molecule level. These results obtained by the single molecule analysis of the redox regulation provide further insights into the regulation mechanism of the rotary enzyme.  相似文献   

4.
During hydrolysis of ATP, the gamma subunit of the rotary motor protein F(1)-ATPase rotates within a ring of alpha(3)beta(3) subunits. Tentoxin is a phyto-pathogenic cyclic tetrapeptide, which influences F(1)-ATPase activity of sensitive species. At low concentrations, tentoxin inhibits ATP hydrolysis of ensembles of F(1) molecules in solution. At higher concentrations, however, ATP hydrolysis recovers. Here we have examined how tentoxin acts on individual molecules of engineered F(1)-ATPase from the thermophilic Bacillus PS3 (Groth, G., Hisabori, T., Lill, H., and Bald, D. (2002) J. Biol. Chem. 277, 20117-20119). We found that inhibition by tentoxin caused a virtually complete stop of rotation, which was partially relieved at higher tentoxin concentrations. Re-activation, however, was not simply a reversal of inhibition; while the torque appears unaffected as compared with the situation without tentoxin, F(1) under re-activating conditions was less susceptible to inhibitory ADP binding but displayed a large number of short pauses, indicating infringed energy conversion.  相似文献   

5.
During ATP hydrolysis, the gammaepsilon c10 complex (gamma and epsilon subunits and a c subunit ring formed from 10 monomers) of F0F1 ATPase (ATP synthase) rotates relative to the alpha3beta3delta ab2 complex, leading to proton transport through the interface between the a subunit and the c subunit ring. In this study, we replaced the two pertinent residues for proton transport, cAsp-61 and aArg-210 of the c and a subunits, respectively. The mutant enzymes exhibited lower ATPase activities than that of the wild type but exhibited ATP-dependent rotation in planar membranes, in which their original assemblies are maintained. The mutant enzymes were defective in proton transport, as shown previously. These results suggest that proton transport can be separated from rotation in ATP hydrolysis, although rotation ensures continuous proton transport by bringing the cAsp-61 and aArg-210 residues into the correct interacting positions.  相似文献   

6.
The catalytic site of Escherichia coli F1 was probed using a reactive ATP analogue, adenosine triphosphopyridoxal (AP3-PL). For complete loss of enzyme activity, about 1 mol of AP3-PL bound to 1 mol of F1 was estimated to be required in the presence or absence of Mg2+. About 70% of the label was bound to the alpha subunit and the rest to the beta subunit in the absence of Mg2+, and the alpha Lys-201 and beta Lys-155 residues, respectively, were the major target residues (Tagaya, M., Noumi, T., Nakano, K., Futai, M., and Fukui, T. (1988) FEBS Lett. 233, 347-351). Addition of Mg2+ decreased the AP3-PL concentration required for half-maximal inhibition, and predominant labeling of the beta subunit (beta Lys-155 and beta Lys-201) with the reagent. ATP and ADP were protective ligands in the presence and absence of Mg2+. The alpha subunit mutation (alpha Lys-201----Gln or alpha Lys-201 deletion) were active in oxidative phosphorylation. However, purified mutant F1s showed impaired low multi-site activity, although their uni-site catalyses were essentially normal. Thus alpha Lys-201 is not a catalytic residue, but may be important for catalytic cooperativity. Mutant F1s were inhibited less by AP3-PL in the absence of Mg2+, and consistent with this, modifications of their alpha subunits by AP3-PL were reduced. AP3-PL was more inhibitory to the mutant enzymes in the presence of Mg2+, and bound to the beta Lys-155 and beta Lys-201 residues of mutant F1 (alpha Lys-201----Gln). These results strongly suggest that alpha Lys-201, beta Lys-155, and beta Lys-201 are located close together near the gamma-phosphate group of ATP bound to the catalytic site, and that the two beta residues and the gamma-phosphate group become closer to each other in the presence of Mg2+.  相似文献   

7.
The central stalk in ATP synthase, made of gamma, delta and epsilon subunits in the mitochondrial enzyme, is the key rotary element in the enzyme's catalytic mechanism. The gamma subunit penetrates the catalytic (alpha beta)(3) domain and protrudes beneath it, interacting with a ring of c subunits in the membrane that drives rotation of the stalk during ATP synthesis. In other crystals of F(1)-ATPase, the protrusion was disordered, but with crystals of F(1)-ATPase inhibited with dicyclohexylcarbodiimide, the complete structure was revealed. The delta and epsilon subunits interact with a Rossmann fold in the gamma subunit, forming a foot. In ATP synthase, this foot interacts with the c-ring and couples the transmembrane proton motive force to catalysis in the (alpha beta)(3) domain.  相似文献   

8.
A complex of gamma, epsilon, and c subunits rotates in ATP synthase (FoF(1)) coupled with proton transport. A gold bead connected to the gamma subunit of the Escherichia coli F(1) sector exhibited stochastic rotation, confirming a previous study (Nakanishi-Matsui, M., Kashiwagi, S., Hosokawa, H., Cipriano, D. J., Dunn, S. D., Wada, Y., and Futai, M. (2006) J. Biol. Chem. 281, 4126-4131). A similar approach was taken for mutations in the beta subunit key region; consistent with its bulk phase ATPase activities, F(1) with the Ser-174 to Phe substitution (betaS174F) exhibited a slower single revolution time (time required for 360 degree revolution) and paused almost 10 times longer than the wild type at one of the three 120 degrees positions during the stepped revolution. The pause positions were probably not at the "ATP waiting" dwell but at the "ATP hydrolysis/product release" dwell, since the ATP concentration used for the assay was approximately 30-fold higher than the K(m) value for ATP. A betaGly-149 to Ala substitution in the phosphate binding P-loop suppressed the defect of betaS174F. The revertant (betaG149A/betaS174F) exhibited similar rotation to the wild type, except that it showed long pauses less frequently. Essentially the same results were obtained with the Ser-174 to Leu substitution and the corresponding revertant betaG149A/betaS174L. These results indicate that the domain between beta-sheet 4 (betaSer-174) and P-loop (betaGly-149) is important to drive rotation.  相似文献   

9.
Removal of the ability to form a salt bridge or hydrogen bonds between the beta subunit catch loop (beta Y297-D305) and the gamma subunit of Escherichia coli F1Fo-ATP synthase significantly altered the ability of the enzyme to hydrolyze ATP and the bacteria to grow via oxidative phosphorylation. Residues beta T304, beta D305, beta D302, gamma Q269, and gamma R268 were found to be very important for ATP hydrolysis catalyzed by soluble F1-ATPase, and the latter four residues were also very important for oxidative phosphorylation. The greatest effects on catalytic activity were observed by the substitution of side chains that contribute to the shortest and/or multiple H-bonds as well as the salt bridge. Residue beta D305 would not tolerate substitution with Val or Ser and had extremely low activity as beta D305E, suggesting that this residue is particularly important for synthesis and hydrolysis activity. These results provide evidence that tight winding of the gamma subunit coiled-coil is important to the rate-limiting step in ATP hydrolysis and are consistent with an escapement mechanism for ATP synthesis in which alpha beta gamma intersubunit interactions provide a means to make substrate binding a prerequisite of proton gradient-driven gamma subunit rotation.  相似文献   

10.
Co-reconstitution of subunits E and G of the yeast V-ATPase and the alpha and beta subunits of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) resulted in an alpha(3)beta(3)EG hybrid complex showing 53% of the ATPase activity of TF(1). The alpha(3)beta(3)EG oligomer was characterized by electron microscopy. By processing 40,000 single particle projections, averaged two-dimensional projections at 1.2-2.4-nm resolution were obtained showing the hybrid complex in various positions. Difference mapping of top and side views of this complex with projections of the atomic model of the alpha(3)beta(3) subcomplex from TF(1) (Shirakihara, Y., Leslie, A. G., Abrahams, J. P., Walker, J. E., Ueda, T., Sekimoto, Y., Kambara, M., Saika, K., Kagawa, Y., and Yoshida, M. (1997) Structure 5, 825-836) demonstrates that a seventh mass is located inside the shaft of the alpha(3)beta(3) barrel and extends out from the hexamer. Furthermore, difference mapping of the alpha(3)beta(3)EG oligomer with projections of the A(3)B(3)E and A(3)B(3)EC subcomplexes of the V(1) from Caloramator fervidus (Chaban, Y., Ubbink-Kok, T., Keegstra, W., Lolkema, J. S., and Boekema, E. J. (2002) EMBO Rep. 3, 982-987) shows that the mass inside the shaft is made up of subunit E, whereby subunit G was assigned to belong at least in part to the density of the protruding stalk. The formation of an active alpha(3)beta(3)EG hybrid complex indicates that the coupling subunit gamma inside the alpha(3)beta(3) oligomer of F(1) can be effectively replaced by subunit E of the V-ATPase. Our results have also demonstrated that the E and gamma subunits are structurally similar, despite the fact that their genes do not show significant homology.  相似文献   

11.
We have previously reported that fodrin (beta subunit), tubulin (alpha subunit) and microtubule-associated proteins (MAPs; MAP2 and tau) are good substrates for the purified insulin receptor kinase (Kadowaki, T., Nishida, E., Kasuga, M., Akiyama, T., Takaku, F., Ishikawa, M., Sakai, H., Kathuria, S., and Fujita-Yamaguchi, Y. (1985) Biochem. Biophys. Res. Commun. 127, 493-500 and Kadowaki, T., Fujita-Yamaguchi, Y., Nishida, E., Takaku, F., Akiyama, T., Kathuria, S., Akanuma, Y., and Kasuga, M. (1985) J. Biol. Chem. 260, 4016-4020). In this study, to investigate the substrate specificities of tyrosine kinases, we have examined the actions of the purified epidermal growth factor (EGF) receptor kinase and Rous sarcoma virus src kinase on purified microfilament- and microtubule-related proteins. Among microfilament-related proteins examined, the purified EGF receptor kinase phosphorylated the beta subunit, but not the alpha subunit, of fodrin on tyrosine residues with a Km below the micromolar range. The fodrin phosphorylation by the EGF receptor kinase was markedly inhibited by F-actin. In contrast, the purified src kinase preferentially phosphorylated the alpha subunit of fodrin on tyrosine residues. Fodrin phosphorylation by the src kinase was not inhibited by F-actin. Among microtubule proteins examined, MAP2 was the best substrate for the EGF receptor kinase. By contrast, src kinase favored phosphorylation of tubulin as compared to MAP2. The peptide mapping of MAP2 phosphorylated by the EGF receptor kinase and by the insulin receptor kinase produced very similar patterns of phosphopeptides, while that of MAP2 phosphorylated by the src kinase gave a distinctly different pattern. When the phosphorylation of the tubulin subunits was examined, the EGF receptor kinase preferred beta subunit to alpha subunit, but the src kinase phosphorylated both alpha and beta subunits to a similar extent. These results, together with our previous results, indicate that the substrate specificities of the EGF receptor kinase and the insulin receptor kinase are very similar, but not identical, while that of the src kinase is distinctly different from that of these growth factor receptor kinases.  相似文献   

12.
This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alphabeta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alphabeta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alphabeta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin (as an allosterically acting 'competitive' antagonist) binds to this residue.  相似文献   

13.
F(o)F(1)-ATP synthase mediates coupling of proton flow in F(o) and ATP synthesis/hydrolysis in F(1) through rotation of central rotor subunits. A ring structure of F(o)c subunits is widely believed to be a part of the rotor. Using an attached actin filament as a probe, we have observed the rotation of the F(o)c subunit ring in detergent-solubilized F(o)F(1)-ATP synthase purified from Escherichia coli. Similar studies have been performed and reported recently [Sambongi et al. (1999) Science 286, 1722-1724]. However, in our hands this rotation has been observed only for the preparations which show poor sensitivity to dicyclohexylcarbodiimde, an F(o) inhibitor. We have found that detergents which adequately disperse the enzyme for the rotation assay also tend to transform F(o)F(1)-ATP synthase into an F(o) inhibitor-insensitive state in which F(1) can hydrolyze ATP regardless of the state of the F(o). Our results raise the important issue of whether rotation of the F(o)c ring in isolated F(o)F(1)-ATP synthase can be demonstrated unequivocally with the approach adopted here and also used by Sambongi et al.  相似文献   

14.
Two highly conserved amino acid residues near the C-terminus within the gamma subunit of the mitochondrial ATP synthase form a "catch" with an anionic loop on one of the three beta subunits within the catalytic alphabeta hexamer of the F1 segment [Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. Forming the catch is considered to be an essential step in cooperative nucleotide binding leading to gamma subunit rotation. The analogous residues, Arg304 and Gln305, in the chloroplast F1 gamma subunit were changed to leucine and alanine, respectively. Each mutant gamma was assembled together with alpha and beta subunits from Rhodospirillum rubrum F1 into a hybrid photosynthetic F1 that carries out both MgATPase and CaATPase activities and ATP-dependent gamma rotation [Tucker, W. C., Schwarcz, A., Levine, T., Du, Z., Gromet-Elhanan, Z., Richter, M. L. and Haran, G. (2004) J. Biol. Chem. 279, 47415-47418]. Surprisingly, changing Arg304 to leucine resulted in a more than 2-fold increase in the kcat for MgATP hydrolysis. In contrast, changing Gln305 to alanine had little effect on the kcat but completely abolished the well-known stimulatory effect of the oxyanion sulfite on MgATP hydrolysis. The MgATPase activities of combined mutants with both residues substituted were strongly inhibited, whereas the CaATPase activities were inhibited, but to a lesser extent. The results indicate that the C-terminus of the photosynthetic F1 gamma subunit, like its mitochondrial counterpart, forms a catch with the alpha and beta subunits that modulates the nucleotide binding properties of the catalytic site(s). The catch is likely to be part of an activation mechanism, overcoming inhibition by free mg2+ ions, but is not essential for cooperative nucleotide exchange.  相似文献   

15.
F-ATP synthase synthesizes ATP at the expense of ion motive force by a rotary coupling mechanism. A central shaft, subunit gamma, functionally connects the ion-driven rotary motor, F(O), with the rotary chemical reactor, F(1). Using polarized spectrophotometry we have demonstrated previously the functional rotation of the C-terminal alpha-helical portion of gamma in the supposed 'hydrophobic bearing' formed by the (alpha beta)(3) hexagon. In apparent contradiction with these spectroscopic results, an engineered disulfide bridge between the alpha-helix of gamma and subunit alpha did not impair enzyme activity. Molecular dynamics simulations revealed the possibility of a 'functional unwinding' of the alpha-helix to form a swivel joint. Furthermore, they suggested a firm clamping of that part of gamma even without the engineered cross-link, i.e. in the wild-type enzyme. Here, we rechecked the rotational mobility of the C-terminal portion of gamma relative to (alpha beta)(3). Non-fluorescent, engineered F(1) (alpha P280C/gamma A285C) was oxidized to form a (nonfluorescent) alpha gamma heterodimer. In a second mutant, containing just the point mutation within alpha, all subunits were labelled with a fluorescent dye. Following disassembly and reassembly of the combined preparations and cystine reduction, the enzyme was exposed to ATP or 5'-adenylyl-imidodiphosphate (AMP-PNP). After reoxidation, we found fluorescent alpha gamma dimers in all cases in accordance with rotary motion of the entire gamma subunit under these conditions. Molecular dynamics simulations covering a time range of nanoseconds therefore do not necessarily account for motional freedom in microseconds. The rotation of gamma within hours is compatible with the spectroscopically detected blockade of rotation in the AMP-PNP-inhibited enzyme in the time-range of seconds.  相似文献   

16.
F-ATPases synthesize ATP from ADP and phosphate coupled with an electrochemical proton gradient in bacterial or mitochondrial membranes and can hydrolyse ATP to form the gradient. F-ATPases consist of a catalytic F1 and proton channel F0 formed from the alpha3beta3gammadelta and ab2c10 subunit complexes, respectively. The rotation of gammaepsilonc10 couples catalyses and proton transport. Consistent with the threefold symmetry of the alpha3beta3 catalytic hexamer, 120 degrees stepped revolution has been observed, each step being divided into two substeps. The ATP-dependent revolution exhibited stochastic fluctuation and was driven by conformation transmission of the beta subunit (phosphate-binding P-loop/alpha-helix B/loop/beta-sheet4). Recent results regarding mechanically driven ATP synthesis finally proved the role of rotation in energy coupling.  相似文献   

17.
The nucleotide sequence of the operon of the ATPase complex of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, has been determined. In addition to the three previously reported genes for the alpha, beta, and c (proteolipid) subunits of the ATPase complex (Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1989) J. Biol. Chem. 264, 7119-7121), the operon contained three other genes encoding hydrophilic proteins with molecular masses 25, 13, and 7 kDa. The 25-kDa protein is the third largest subunit (gamma), the 13-kDa protein is most likely the fourth subunit (delta), and the 7-kDa protein may correspond to an unknown subunit of the ATPase, tentatively named as epsilon subunit. They do not have significant sequence similarity to subunits in F0F1-ATPases and eukaryotic V-type ATPases, whereas the other three subunits, alpha, beta, and c, have homologous counterparts in F0F1- and V-type ATPases. The order of the genes in the operon was delta alpha beta gamma epsilon c. The S. acidocaldarius ATPase operon differed from the eucabacterial F0F1-ATPase operon in that the former contains only one gene for a hydrophobic subunit at the most downstream part of the operon whereas the latter has three hydrophobic F0 genes preceding five hydrophilic F1 genes.  相似文献   

18.
Nagai M  Aki M  Li R  Jin Y  Sakai H  Nagatomo S  Kitagawa T 《Biochemistry》2000,39(43):13093-13105
Heme structures of a natural mutant hemoglobin (Hb), Hb M Iwate [alpha87(F8)His-->Tyr], and protonation of its F8-Tyr were examined with the 244-nm excited UV resonance Raman (UVRR) and the 406.7- and 441.6-nm excited visible resonance Raman (RR) spectroscopy. It was clarified from the UVRR bands at 1605 and 1166 cm(-)(1) characteristic of tyrosinate that the tyrosine (F8) of the abnormal subunit in Hb M Iwate adopts a deprotonated form. UV Raman bands of other Tyr residues indicated that the protein takes the T-quaternary structure even in the met form. Although both hemes of alpha and beta subunits in metHb A take a six-coordinate (6c) high-spin structure, the 406.7-nm excited RR spectrum of metHb M Iwate indicated that the abnormal alpha subunit adopts a 5c high-spin structure. The present results and our previous observation of the nu(Fe)(-)(O(tyrosine)) Raman band [Nagai et al. (1989) Biochemistry 28, 2418-2422] have proved that F8-tyrosinate is covalently bound to Fe(III) heme in the alpha subunit of Hb M Iwate. As a result, peripheral groups of porphyrin ring, especially the vinyl and the propionate side chains, were so strongly influenced that the RR spectrum in the low-frequency region excited at 406.7 nm is distinctly changed from the normal pattern. When Hb M Iwate was fully reduced, the characteristic UVRR bands of tyrosinate disappeared and the Raman bands of tyrosine at 1620 (Y8a), 1207 (Y7a), and 1177 cm(-)(1) (Y9a) increased in intensity. Coordination of distal His(E7) to the Fe(II) heme in the reduced alpha subunit of Hb M Iwate was proved by the observation of the nu(Fe)(-)(His) RR band in the 441.6-nm excited RR spectrum at the same frequency as that of its isolated alpha chain. The effects of the distal-His coordination on the heme appeared as a distortion of the peripheral groups of heme. A possible mechanism for the formation of a Fe(III)-tyrosinate bond in Hb M Iwate is discussed.  相似文献   

19.
The H(+)-translocating F(0)F(1)-ATP synthase of Escherichia coli functions as a rotary motor, coupling the transmembrane movement of protons through F(0) to the synthesis of ATP by F(1). Although the epsilon subunit appears to be tightly associated with the gamma subunit in the central stalk region of the rotor assembly, several studies suggest that the C-terminal domain of epsilon can undergo significant conformational change as part of a regulatory process. Here we use disulfide cross-linking of substituted cysteines on functionally coupled ATP synthase to characterize interactions of epsilon with an F(0) component of the rotor (subunit c) and with an F(1) component of the stator (subunit beta). Oxidation of the engineered F(0)F(1) causes formation of two disulfide bonds, betaD380C-S108C epsilon and epsilonE31C-cQ42C, to give a beta-epsilon-c cross-linked product in high yield. The results demonstrate the ability of epsilon to span the central stalk region from the surface of the membrane (epsilon-c) to the bottom of F(1) (beta-epsilon) and suggest that the conformation detected here is distinct from both the "closed" state seen with isolated epsilon (Uhlin, U., Cox, G. B., and Guss, J. M. (1997) Structure 5, 1219-1230) and the "open" state seen in a complex with a truncated form of the gamma subunit (Rodgers, A. J., and Wilce, M. C. (2000) Nat. Struct. Biol. 7, 1051-1054). The kinetics of beta-epsilon and epsilon-c cross-linking were studied separately using F(0)F(1) containing one or the other matched cysteine pair. The rate of cross-linking at the epsilon/c (rotor/rotor) interface is not influenced by the type of nucleotide added. In contrast, the rate of beta-epsilon cross-linking is fastest under ATP hydrolysis conditions, intermediate with MgADP, and slowest with MgAMP-PNP. This is consistent with a regulatory role for a reversible beta/epsilon (stator/rotor) interaction that blocks rotation and inhibits catalysis. Furthermore, the rate of beta-epsilon cross-linking is much faster than that indicated by previous studies, allowing for the possibility of a rapid response to regulatory signals.  相似文献   

20.
ATP synthase uses a unique rotary mechanism to couple ATP synthesis and hydrolysis to transmembrane proton translocation. The F(1) subcomplex has three catalytic nucleotide binding sites, one on each beta subunit, at the interface to the adjacent alpha subunit. In the x-ray structure of F(1) (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), the three catalytic beta/alpha interfaces differ in the extent of inter-subunit interactions between the C termini of the beta and alpha subunits. At the closed beta(DP)/alpha(DP) interface, a hydrogen-bonding network is formed between both subunits, which is absent at the more open beta(TP)/alpha(TP) interface and at the wide open beta(E)/alpha(E) interface. The hydrogen-bonding network reaches from betaL328 (Escherichia coli numbering) and betaQ441 via alphaQ399, betaR398, and alphaE402 to betaR394, and ends in a cation/pi interaction between betaR394 and alphaF406. Using mutational analysis in E. coli ATP synthase, the functional importance of the beta(DP)/alpha(DP) hydrogen-bonding network is demonstrated. Its elimination results in a severely impaired enzyme but has no pronounced effect on the binding affinities of the catalytic sites. A possible role for the hydrogen-bonding network in coupling of ATP synthesis/hydrolysis and rotation will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号