首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Intracellular recordings were made from Retzius cells from segmental ganglia of the leech, Hirudo medicinalis. The ionic mechanisms of the following compounds were examined: L-glutamate, ibotenate, quisqualate, AMPA, kainate, methyltetrahydrofolate and carbachol. All these compounds depolarise and excite Retzius cells. In sodium-free Ringer, the responses to L-glutamate, kainate, ibotenate and AMPA were greatly reduced, the response to quisqualate was reduced, the response to methyltetrahydrofolate was normal while the response to carbachol was abolished. In sodium-free high calcium Ringer the responses to L-glutamate, ibotenate and carbachol were absent, the responses to quisqualate and AMPA greatly reduced, the responses to methyltetrahydrofolate and kainate were normal. The methyltetrahydrofolate and kainate responses in sodium-free high calcium Ringer were greatly reduced on addition of cobalt. All the responses are associated with an increase in conductance, the increase being the largest in the case of kainate. It is concluded that the response to L-glutamate, ibotenate and carbachol are dependent on sodium, the responses to quisqualate and AMPA are mainly sodium dependent, possibly with a small calcium component. The kainate response in normal Ringer is largely sodium dependent but in sodium-free Ringer calcium can completely substitute for sodium. The methyltetrahydrofolate response appears to be sodium independent but at least partly calcium dependent. These studies provide further evidence that L-glutamate and ibotenate act on a common receptor on leech Retzius cells while kainate acts on a separate receptor which can activate a calcium ionophore. It is probable that methyltetrahydrofolate acts on a different ionophore system to kainate. N-Methyl-D-aspartate has no agonist activity on any of these receptors.  相似文献   

2.
Intracellular recordings were made from central neurons of Limulus polyphemus and from Retizu cells of the leech, Hirudo medicinalis. The effects of carbachol, amino acids and octopamine were examined on these neurons. Octopamine was found to have a mainly inhibitory effect on a few Limulus neurons. The effects of octopamine were mimicked by clonidine and napthazoline but not by xylazine. Both compounds were slightly more potent than octopamine. Yohimbine, metoclopramide, chlorpromazine and chlordimeform failed to antagonize this octopamine response. The excitatory effect of carbachol was blocked by alpha-bungarotoxin, 10(-7)M. Neither this concentration nor higher concentrations of alpha-bungarotoxin had any effect on L-glutamate excitation. m-Carboxyphenyl derivatives of alanine and glycine acted differentially on Limulus neurons responding to L-glutamate. m- Carboxyphenylglycine only inhibited neurones which showed a biphasic response to L-glutamate while m- carboxyphenylalanine only excited these neurons. Both compounds excited leech Retzius cells, with m- carboxyphenylalanine being about 20 times more potent than m- carboxyphenylglycine . The actions of alpha- ketokainate and allo-alpha- ketokainate were compared to kainate, dihydrokainate and L-glutamate on leech Retzius cells. The equipotent molar ratios for kainate, dihydrokainate , alpha- ketokainate and allo-alpha- ketokainate were 0.0029 +/- 0.0004, 0.021 +/- 0.047, 0.029 +/- 0.005 and 0.14 +/- 0.0093 respectively with L-glutamate as one. All the analogues were more potent than L-glutamate. Quinolinic acid had no glutamate-like activity on either Limulus or Hirudo neurons. Methyltetrahydrofolate was inactive on Limulus neurons but excited leech Retzius cells, being slightly less potent than L-glutamate. Dibutyl cAMP terminated the excitatory actions of kainate on both Limulus and Hirudo neurons. Anisatin , a putative GABA antagonist, was a potent antagonist of GABA inhibition on Limulus neurons.  相似文献   

3.
The effects of excitatory amino acid agonists and alpha-amino-omega-phosphonocarboxylic acid antagonists on phosphoinositide hydrolysis in hippocampal slices of the 7-day neonatal rat were examined. Significant stimulation of [3H]inositol monophosphate formation was observed with ibotenate, quisqualate, L-glutamate, L-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, L-homocysteate, and kainate. N-Methyl-D-aspartate had no effect. Of these agonists, ibotenate and quisqualate were the most potent and efficacious. Stimulations by ibotenate and quisqualate were partially inhibited by L-2-amino-4-phosphonobutyrate (10(-3) M), but this antagonist had no effect on L-glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, or kainate. At 10(-3) M, D,L-2-amino-3-phosphonopropionate completely inhibited ibotenate and quisqualate stimulations, partially inhibited L-glutamate stimulation, and had no effect on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-, kainate-, or carbachol-induced [3H]inositol monophosphate formation. Concentration-effect experiments showed D,L-2-amino-3-phosphonopropionate to be five times more potent as an antagonist of ibotenate-stimulated phosphoinositide hydrolysis than L-2-amino-4-phosphonobutyrate. Thus in the neonatal rat hippocampus, like in the adult rat brain, D,L-2-amino-3-phosphonopropionate is a selective and relatively potent inhibitor of excitatory amino acid-stimulated phosphoinositide hydrolysis. Because this glutamate receptor is uniquely sensitive to D,L-2-amino-3-phosphonopropionate, these studies provide further pharmacological evidence for the existence of a novel excitatory amino acid receptor subtype that is coupled to phosphoinositide hydrolysis in brain.  相似文献   

4.
The involvement of glutamate in putative ingestive sensory pathways affecting the excitability of serotonergic Retzius neurons (RZ) in the leech CNS was investigated with a pharmacological approach. Exposure of the prostomial lip to 150mm NaCl and 1mm arginine produced excitatory as well as inhibitory responses in RZ found in the reproductive segments, while only excitatory responses were elicted in standard midbody RZ. Antagonists of glutamatergic receptors of the kainate/quisqualate type effectively inhibited chemosensory dependent excitation of RZ. Antagonists of glutamatergic receptors of theN-methyld-aspartate type were ineffective in this regard. Cephalic nerve stimulation, like chemical stimulation of the lip, produced segment-specific responses in midbody RZ. Both the polysynaptic and monosynaptic components of the excitatory response of standard midbody RZ following cephalic nerve stimulation were inhibited in the presence of the kainate/quisqualate antagonist DNQX. These data suggest a role for glutamate as a transmitter in the neural circuitry from receptors of the leech prostomial lip to serotonergic RZ.  相似文献   

5.
In rat prefrontal cortical slices, the excitatory amino acids N-methyl-D-aspartate (NMDA), ibotenate, L-aspartate, quisqualate, kainate and L-glutamate inhibit carbachol-induced phosphoinositide hydrolysis as measured by the accumulation of [3H]inositol-1-phosphate ([3H]IP1). NMDA dose-dependently inhibited the carbachol response (IC50 = 14.4 microM), and this inhibition was blocked by the NMDA receptor antagonist D,L-aminophosphonovaleric acid. Lowering medium Na+ concentration to 10 mM or exposing slices to pertussis toxin alleviated the inhibitory effect of NMDA on carbachol-induced [3H]IP1 formation. Serotonin-induced stimulation of [3H]IP1 was also inhibited by NMDA; in contrast, stimulation by norepinephrine, epinephrine or dopamine was unaffected. The results suggest that excitatory amino acids, besides their traditional role as stimulatory substances, can also act to inhibit the production of 2nd messengers activated by certain neurotransmitters in the brain.  相似文献   

6.
The ED50 for loss of righting behaviour of cockroaches induced by kainate (43 mumol/kg body weight) indicated the toxicity of kainate to be much greater than would have been predicted from the excitatory action of this amino acid at insect skeletal muscle fibres. N-Methyl-D-aspartate had little effect on righting behaviour (ED50 greater than 3500 mumol/g body weight). Electrical recordings from the locust ventral nerve cord showed kainate (0.1-2 mM) to have a depolarizing action on neurons within the metathoracic ganglion. The depolarizing action of kainate was partially resistant to tetrodotoxin. The kainate-induced abolition of rostrally evoked potentials recorded in the abdominal connectives from the metathoracic ganglion suggests that the giant fibres are sensitive to kainate. Domoic acid was 46 times more potent than kainate. The lack of effect of N-methyl-D-aspartate (2 mM), dihydrokainate (2 mM), quisqualate (2 mM) and L-glutamate (20 mM) on nerve cords in the present experiments suggests that the kainate receptors in this preparation show a chemical selectivity comparable to that observed at vertebrate central neurones.  相似文献   

7.
In Retzius neurones of the medicinal leech, Hirudo medicinalis, kainate activates ionotropic glutamate receptors classified as AMPA/kainate receptors. Activation of the AMPA/kainate receptor-coupled cation channels evokes a marked depolarization, intracellular acidification, and increases in the intracellular concentrations of Na+ ([Na+]i) and Ca2+. Qualitatively similar changes are observed upon the application of carbachol, an activator of acetylcholine receptor-coupled cation channels. Using multibarrelled ion-selective microelectrodes it was demonstrated that kainate, but not carbachol, caused additional increases in the intracellular free Mg2+ concentration ([Mg2+]i). Experiments were designed to investigate whether this kainate-induced [Mg2+]i increase was due to a direct Mg2+ influx through the AMPA/kainate receptor-coupled cation channels or a secondary effect due to the depolarization or the ionic changes. It was found that: (a) Similar [Mg2+]i increases were evoked by the application of glutamate or aspartate. (b) All kainate-induced effects were inhibited by the glutamatergic antagonist DNQX. (c) The magnitude of the [Mg2+]i increases depended on the extracellular Mg2+ concentration. (d) A reduction of the extracellular Ca2+ concentration increased kainate-induced [Mg2+]i increases, excluding possible Ca2+ interference at the Mg2+-selective microelectrode or at intracellular buffer sites. (e) Neither depolarizations evoked by the application of 30 mM K+, nor [Na+]i increases induced by the inhibition of the Na+/K+ ATPase caused comparable [Mg2+]i increases. (f) Inhibitors of voltage-dependent Ca2+ channels did not affect the kainate-induced [Mg2+]i increases. Moreover, previous experiments had already shown that intracellular acidification evoked by the application of 20 mM propionate did not cause changes in [Mg2+]i. The results indicate that kainate-induced [Mg2+]i increases in leech Retzius neurones are due to an influx of extracellular Mg2+ through the AMPA/kainate receptor-coupled cation channel. Mg2+ may thus act as an intracellular signal to distinguish between glutamatergic and cholinergic activation of leech Retzius neurones.  相似文献   

8.
1. Experiments were conducted in vitro on isolated spinal cords of frogs and immature rats and in vivo on cat spinal neurones. 2. The concept of two major types of excitatory amino acid receptors present in these preparations is summarized, one type (NMDA receptors) being activated specifically by N-methyl-D-aspartate (NMDA) and blocked by specific antagonists such as D(-)-2-amino-5-phosphonovalerate (APV), and a second type (non-NMDA receptors) characterized by insensitivity to specific NMDA antagonists. This second type may be comprised of two sub-types activated selectively by the agonists quisqualate and kainate. The putative transmitters L-glutamate and L-aspartate have mixed action on both NMDA and non-NMDA receptors. The major action of both transmitter candidates is considered to be on non-NMDA receptors, but the proportion of the composite responses mediated by NMDA receptors (at least for spinal neurones) appears to be greater for L-aspartate than for L-glutamate. 3. The preference of NMDA and non-NMDA receptors for a range of agonists is discussed. Some newer agonists are considered, in addition to several known agonists not previously discussed in terms of NMDA- and non-NMDA-receptor preference. Structure-activity relations of agonists are discussed. 4. The actions of some new amino acid antagonists are reported. Some of these have useful kainate and quisqualate blocking activity, in addition to their ability to block NMDA induced responses. 5. Evidence is presented suggesting that excitatory amino acid receptors are involved in both polysynaptic and monosynaptic excitation in the spinal cord, NMDA receptors mediating polysynaptic excitation and non-NMDA receptors monosynaptic excitation. 6. The unusual effect is reported of L-2-amino-4-phosphonobutyrate, which potently blocks spinal synaptic excitation in the absence of depressant action on excitatory amino acid-induced responses.  相似文献   

9.
By the frequency-dependent release of serotonin, Retzius neurons in the leech modulate diverse behavioral responses of the animal. However, little is known about how their firing pattern is produced. Here we have analyzed the effects of mechanical stimulation of the skin and intracellular stimulation of mechanosensory neurons on the electrical activity of Retzius neurons. We recorded the electrical activity of neurons in ganglia attached to their corresponding skin segment by segmental nerve roots, or in isolated ganglia. Mechanosensory stimulation of the skin induced excitatory synaptic potentials (EPSPs) and action potentials in both Retzius neurons in a ganglion. The frequency and duration of responses depended on the strength and duration of the skin stimulation. Retzius cells responded after T and P cells, but before N cells, and their sustained responses correlated with the activity of P cells. Trains of five impulses at 10 Hz in every individual T, P, or N cell in isolated ganglia produced EPSPs and action potentials in Retzius neurons. Responses to T cell stimulation appeared after the first impulse. In contrast, the responses to P or N cell stimulation appeared after two or more presynaptic impulses and facilitated afterward. The polysynaptic nature of all the synaptic inputs was shown by blocking them with a high calcium/magnesium external solution. The rise time distribution of EPSPs produced by the different mechanosensory neurons suggested that several interneurons participate in this pathway. Our results suggest that sensory stimulation provides a mechanism for regulating serotonin-mediated modulation in the leech.  相似文献   

10.
Pharmacologically distinct glutamate receptors on cerebellar granule cells   总被引:9,自引:0,他引:9  
J Drejer  T Honoré  E Meier  A Schousboe 《Life sciences》1986,38(23):2077-2085
Cultured cerebellar granule cells were found to exhibit calcium-dependent release of 3H-D-aspartate when stimulated with excitatory amino acids. L-glutamate and L-aspartate were found to be potent stimulators of 3H-D-aspartate release, D-aspartate was weaker and only minor effects were seen with D-glutamate, quisqualate, kainate, N-methyl-D-aspartate (NMDA) and L-alpha-aminoadipate (L-alpha AA). It was also found that only L-glutamate and L-aspartate showed high affinity for the 3H-L-glutamate binding sites on granule cell membranes. Stimulation by L-glutamate of 3H-D-aspartate release could be blocked by various excitatory amino acid antagonists. From the relative potencies of agonists and antagonists on D-aspartate release it is suggested that cerebellar granule cells express functionally active glutamate receptors with pharmacological characteristics different from all known excitatory amino acid receptors.  相似文献   

11.
The electrogenic nature of the L-glutamate-stimulated Na+ flux was examined by measuring the distribution of the lipophilic anion [35S]thiocyanate (SCN-) into synaptic membrane vesicles that were incubated in a NaCl medium. Concentrations of L-glutamate from 10(-7) to 10(-4) M added to the incubation medium caused an enhanced intravesicular accumulation of SCN-. Based on the SCN- distribution in synaptic membrane vesicles it was calculated that 10 microM L-glutamate induced an average change in the membrane potential of + 13 mV. L-Glutamate enhanced both the Na+ and K+ conductance of these membranes as determined by increases in SCN- influx. Other neuroexcitatory amino acids and amino acid analogs (D-glutamate, L-aspartate, L-cysteine sulfinate, kainate, ibotenate, quisqualate, N-methyl-D-aspartate, and DL-homocysteate) also increased SCN- accumulation in synaptic membrane vesicles. These observations are indicative of the activation by L-glutamate and some of its analogs of excitatory amino acid receptor ion channel complexes in synaptic membranes.  相似文献   

12.
The effects of compounds structurally related to L-glutamate were compared on spontaneous activity of afferent nerve fibres in Xenopus laevis lateral-line. The potencies (EPMR) of several compounds relative to L-glutamate (EPMR = 1) were: L-aspartate (EPMR = 1), D-aspartate (EPMR = 1), D-glutamate (EPMR = 1.98), quisqualate (EPMR = 0.0015), kainate (EPMR = 0.0045), dihydrokainate (EPMR = 0), ibotenate (EPMR = 1.5), L-homocysteate (EPMR = 0.17), 2,4,5-trihydroxyphenylalanine (6-OH-DOPA, EPMR = 0.23), and D-homocysteate (EPMR = 0.73), N-methyl-D,L-aspartate (EPMR = 5), and N-methyl-D-aspartate (NMDA, EPMR = 1). Several compounds, including gamma-aminobutyrate (GABA), suppressed spontaneous activity without eliciting excitatory responses. The results reveal receptors that are present at this vertebrate peripheral synapse.  相似文献   

13.
The activation of glutamate receptors by kainic acid and domoic acid   总被引:9,自引:0,他引:9  
Hampson DR  Manalo JL 《Natural toxins》1998,6(3-4):153-158
The neurotoxins kainic acid and domoic acid are potent agonists at the kainate and alphaamino-5-methyl-3-hydroxyisoxazolone-4-propionate (AMPA) subclasses of ionotropic glutamate receptors. Although it is well established that AMPA receptors mediate fast excitatory synaptic transmission at most excitatory synapses in the central nervous system, the role of the high affinity kainate receptors in synaptic transmission and neurotoxicity is not entirely clear. Kainate and domoate differ from the natural transmitter, L-glutamate, in their mode of activation of glutamate receptors; glutamate elicits rapidly desensitizing responses while the two neurotoxins elicit non-desensitizing or slowly desensitizing responses at AMPA receptors and some kainate receptors. The inability to produce desensitizing currents and the high affinity for AMPA and kainate receptors are undoubtedly important factors in kainate and domoate-mediated neurotoxicity. Mutagenesis studies on cloned glutamate receptors have provided insight into the molecular mechanisms responsible for these unique properties of kainate and domoate.  相似文献   

14.
Segmental specialization of neuronal connectivity in the leech   总被引:2,自引:1,他引:1  
1. Every segmental ganglion of the leech Hirudo medicinalis contains two serotonergic Retzius cells. However, Retzius cells in the two segmental ganglia associated with reproductive function are morphologically distinct from Retzius cells elsewhere. This suggested that these Retzius cells might be physiologically distinct as well. 2. The degree of electrical coupling between Retzius cells distinguishes the reproductive Retzius cells; all Retzius cells are coupled in a non-rectifying manner, but reproductive Retzius cells are less strongly coupled. 3. Retzius cells in standard ganglia depolarize following swim motor pattern initiation or mechanosensory stimulation while Retzius cells in reproductive ganglia either do not respond or hyperpolarize. 4. In standard Retzius cells the depolarizing response caused by pressure mechanosensory neurons has fixed latency and one-to-one correspondence between the mechanosensory neuron action potentials and Retzius cell EPSPs. However, the latency is longer than for most known monosynaptic connections in the leech. 5. Raising the concentration of divalent cations in the bathing solution to increase thresholds abolishes the mechanosensory neuron-evoked EPSP in standard Retzius cells. This suggests that generation of action potentials in an interneuron is required for production of the EPSP, and therefore that the pathway from mechanosensory neuron to Retzius cell is polysynaptic. 6. P cells in reproductive segments have opposite effects on reproductive Retzius cells and standard Retzius cells in adjacent ganglia. Thus the difference in the pathway from P to Retzius is not localized specifically in the P cell, but elsewhere in the pathway, possibly in the type of receptor expressed by the Retzius cells.  相似文献   

15.
Activation of phosphoinositide metabolism is an early event in signal transduction for a number of neurotransmitters and hormones. In primary cultures of rat neurocortical cells, various excitatory amino acids stimulate inositol phosphate production with a rank order of potency of quisqualate greater than ibotenate greater than glutamate greater than kainate, N-methyl-D-aspartate greater than alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate. This response to excitatory amino acids was insensitive to a variety of excitatory amino acid antagonists including 6-cyano-7-nitroquinoxaline-2,3-dione, 3-3(2-carboxypiperazine-4-yl)propyl-1-phosphonate, and 2-amino-4-phosphonobutyrate. The individual responses of quisqualate-, ibotenate-, and kainate-stimulated inositol phosphate production were not additive. These results suggest that phosphoinositide metabolism activated by excitatory amino acids is mediated by a unique quisqualate-preferring receptor that is not antagonized by known N-methyl-D-aspartate and non-N-methyl-D-aspartate antagonists, and is relatively insensitive to alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate.  相似文献   

16.
Although the N-methyl-D-aspartate (NMDA) subtype of L-glutamate receptor is well characterized, the significance of non-NMDA glutamate-sensitive binding sites is not well documented. In this study, a new tricyclic quinoxalinedione (NBQX) and an arthropod toxin (philanthotoxin) were shown to block responses of spinal neurones in vivo to kainate, quisqualate, and AMPA in parallel but had little effect on responses to NMDA. Philanthotoxin appeared to be a use-dependent antagonist consistent with a channel-blocking mode of action. On cortical wedges in vitro, however, NBQX proved to be a more potent antagonist of AMPA and quisqualate than of kainate (pA2 values of 7.1, 7.0, and 5.6, respectively) with no effect at 10 microM on responses to NMDA. These studies provide evidence that on cortical neurones, but not on spinal neurones. AMPA and kainate depolarize by pharmacologically different mechanisms.  相似文献   

17.
Simultaneously, the effect of sodium-free medium and tetrodotoxin (3 X 10(-8) M/ml) were investigated on some passive electrophysiological properties of leech Retzius nerve cells. Complete replacement of Na+ with Tris or addition of tetrodotoxin to the leech Ringer was followed by an increase of input resistance in contrast to the cell-to-cell interaction which was not affected by such a procedure. At the same time tetrodotoxin was not able to block repetitive spike activity. The data imply the existence of two types of Na+ channel in leech Retzius nerve cells.  相似文献   

18.
Specific stereoselective binding of [3H]L-glutamate was detected to membranes prepared from housefly thorax to which were added several antiproteases. A single high affinity binding site was detected (KD 0.5 +/- 0.04 microM), but total binding varied from preparation to preparation (5-60 pmoles/mg protein). Specific binding was inhibited by preincubation of the membranes with trypsin, chymotrypsin or protease, or by exposure to 70 degrees C for 5 min. It was also inhibited by several compounds, the most potent being L-glutamate and L-aspartate, followed by L-glutamate diethylester, then D-glutamate, N-methyl-D-aspartate and ibotenate. Quisqualate had little effect, while kainate, proctolin and D-aspartate had none. d-Tubocurarine stimulated [3H]L-glutamate binding. The data suggest that [3H]L-glutamate is binding to an L-glutamate receptor in housefly thoracic muscle membranes.  相似文献   

19.
E Sernagor  D Kuhn  L Vyklicky  M L Mayer 《Neuron》1989,2(3):1221-1227
The action of desipramine (DMI) and promazine on the response of mouse hippocampal neurons to the excitatory amino acid N-methyl-D-aspartic acid (NMDA) was investigated using whole-cell and single-channel recording. DMI at 20-50 microM was a potent, selective antagonist of responses to NMDA but not kainate or quisqualate. At -60 mV, the Kd for DMI block of responses to NMDA was 10 microM. The potency of DMI as an NMDA antagonist was highly voltage-dependent and behaved as though the Kd increased e-fold per 36 mV depolarization, reflecting an increase in the dissociation rate constant. Prior block of NMDA receptors with Mg2+ prevented binding of DMI, suggesting an action in the open channel. Single-channel analysis showed a decrease in the open time and burst length distributions, consistent with binding of DMI to open channels. We suggest that the action of DMI on NMDA receptor channels is similar to that of MK-801 and does not reflect binding to other domains, such as the regulatory sites for Zn2+ and glycine.  相似文献   

20.
The effect of quisqualate, an excitatory amino acid agonist, on the breakdown of exogenously added phosphatidylinositol was investigated in a membrane preparation from the cerebellum of young rats. Quisqualate stimulated phospholipase C activity in a dose-dependent manner in the presence of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). Half-maximal activation of the quisqualate response required 0.15 microM GTP gamma S and was optimal at a free Ca2+ concentration of 300 nM. Phosphoinositide breakdown was also stimulated by quisqualate using either exogenous phosphatidylinositides 4,5-bisphosphate or endogenous labeled phosphoinositides as the substrate for phospholipase C in cerebellar membranes. In the presence of guanine nucleotides, other excitatory amino acid agonists, such as L-glutamate, trans-D,L-1-aminocyclopentyl-1,3-dicarboxylic acid, and ibotenate, but not N-methyl-D-aspartate, stimulated phosphatidylinositol breakdown. However, quisqualate displayed the highest response among these excitatory amino acid agonists. These data indicate that there is a direct activation of phosphoinositide-specific phospholipase C by excitatory amino acids through a process dependent on the presence of guanine nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号