首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caveolin-1 is the principal structural component of caveolae microdomains, which represent a subcompartment of the plasma membrane. Several independent lines of evidence support the notion that caveolin-1 functions as a suppressor of cell transformation. For example, the human CAV-1 gene maps to a suspected tumor suppressor locus (D7S522/7q31.1) that is frequently deleted in a number of carcinomas, including breast cancers. In addition, up to 16% of human breast cancers harbor a dominant-negative mutation, P132L, in the CAV-1 gene. Despite these genetic associations, the tumor suppressor role of caveolin-1 still remains controversial. To directly assess the in vivo transformation suppressor activity of the caveolin-1 gene, we interbred Cav-1 (-/-) null mice with tumor-prone transgenic mice (MMTV-PyMT) that normally develop multifocal dysplastic lesions throughout the entire mammary tree. Herein, we show that loss of caveolin-1 gene expression dramatically accelerates the development of these multifocal dysplastic mammary lesions. At 3 wk of age, loss of caveolin-1 resulted in an approximately twofold increase in the number of lesions (foci per gland; 3.3 +/- 1.0 vs. 7.0 +/- 1.2) and an approximately five- to sixfold increase in the total area occupied by these lesions. Similar results were obtained at 4 wk of age. However, complete loss of caveolin-1 was required to accelerate the appearance of these dysplastic mammary lesions, because Cav-1 (+/-) heterozygous mice did not show any increases in foci development. We also show that loss of caveolin-1 increases the extent and the histological grade of these mammary lesions and facilitates the development of papillary projections in the mammary ducts. Finally, we demonstrate that cyclin D1 expression levels are dramatically elevated in Cav-1 (-/-) null mammary lesions, consistent with the accelerated appearance and growth of these dysplastic foci. This is the first in vivo demonstration that caveolin-1 can function as a transformation suppressor gene.  相似文献   

2.
3.
The INK4a/ARF locus encodes two physically linked tumor suppressor proteins, p16(INK4a) and ARF, which regulate the RB and p53 pathways, respectively. The unusual genomic relationship of the open reading frames of these proteins initially fueled speculation that only one of the two was the true tumor suppressor, and loss of the other merely coincidental in cancer. Recent human and mouse genetic data, however, have firmly established that both proteins possess significant in vivo tumor suppressor activity, although there appear to be species- and cell-type specific differences between the two. For example, ARF plays a clear role in preventing Myc-induced lymphomagenesis in mice, whereas the role for p16(INK4a) is human carcinomas is more firmly established. In this review, I discuss the evolutionary history of the locus, the relative importance of these tumor suppressor genes in human cancer, and recent information suggesting novel biochemical and physiologic functions of these proteins in vivo.  相似文献   

4.
Caveolin-1 is the principal structural protein of caveolae membranes in fibroblasts and endothelia. Recently, we have shown that the human CAV-1 gene is localized to a suspected tumor suppressor locus, and mutations in Cav-1 have been implicated in human cancer. Here, we created a caveolin-1 null (CAV-1 -/-) mouse model, using standard homologous recombination techniques, to assess the role of caveolin-1 in caveolae biogenesis, endocytosis, cell proliferation, and endothelial nitric-oxide synthase (eNOS) signaling. Surprisingly, Cav-1 null mice are viable. We show that these mice lack caveolin-1 protein expression and plasmalemmal caveolae. In addition, analysis of cultured fibroblasts from Cav-1 null embryos reveals the following: (i) a loss of caveolin-2 protein expression; (ii) defects in the endocytosis of a known caveolar ligand, i.e. fluorescein isothiocyanate-albumin; and (iii) a hyperproliferative phenotype. Importantly, these phenotypic changes are reversed by recombinant expression of the caveolin-1 cDNA. Furthermore, examination of the lung parenchyma (an endothelial-rich tissue) shows hypercellularity with thickened alveolar septa and an increase in the number of vascular endothelial growth factor receptor (Flk-1)-positive endothelial cells. As predicted, endothelial cells from Cav-1 null mice lack caveolae membranes. Finally, we examined eNOS signaling by measuring the physiological response of aortic rings to various stimuli. Our results indicate that eNOS activity is up-regulated in Cav-1 null animals, and this activity can be blunted by using a specific NOS inhibitor, nitro-l-arginine methyl ester. These findings are in accordance with previous in vitro studies showing that caveolin-1 is an endogenous inhibitor of eNOS. Thus, caveolin-1 expression is required to stabilize the caveolin-2 protein product, to mediate the caveolar endocytosis of specific ligands, to negatively regulate the proliferation of certain cell types, and to provide tonic inhibition of eNOS activity in endothelial cells.  相似文献   

5.
Caveolin-1 is a principal component of caveolae membranes in vivo. Caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). However, it remains unknown whether caveolin-1 plays any role in regulating cell cycle progression. Here, we directly demonstrate that caveolin-1 expression arrests cells in the G(0)/G(1) phase of the cell cycle. We show that serum starvation induces up-regulation of endogenous caveolin-1 and arrests cells in the G(0)/G(1) phase of the cell cycle. Moreover, targeted down-regulation of caveolin-1 induces cells to exit the G(0)/G(1) phase. Next, we constructed a green fluorescent protein-tagged caveolin-1 (Cav-1-GFP) to examine the effect of caveolin-1 expression on cell cycle regulation. We directly demonstrate that recombinant expression of Cav-1-GFP induces arrest in the G(0)/G(1) phase of the cell cycle. To examine whether caveolin-1 expression is important for modulating cell cycle progression in vivo, we expressed wild-type caveolin-1 as a transgene in mice. Analysis of primary cultures of mouse embryonic fibroblasts from caveolin-1 transgenic mice reveals that caveolin-1 induces 1) cells to exit the S phase of the cell cycle with a concomitant increase in the G(0)/G(1) population, 2) a reduction in cellular proliferation, and 3) a reduction in the DNA replication rate. Finally, we demonstrate that caveolin-1-mediated cell cycle arrest occurs through a p53/p21-dependent pathway. Taken together, our results provide the first evidence that caveolin-1 expression plays a critical role in the modulation of cell cycle progression in vivo.  相似文献   

6.
Research on tumor suppressors has for a long time run on two tracks: analysis of the mutations found in human tumor material, and active genetic manipulation in mice. As primary human cells were not easily amenable to genetic alterations, the proof to designate a suspected gene as a tumor suppressor was often by generation of knockout mice and analysis of their phenotypes. In this way, a vast amount of information has been gathered on the actions of major players in carcinogenesis. However, it has recently become apparent that there are major differences in the requirements for oncogenic transformation between human and mouse cells. Among these are the expression of hTERT, SV40 small t, and the response to Ras induced growth arrest by the tumor suppressor pathways involving p53, pRb and the INK4A locus. The potential contribution of these tumor suppressors to the prevention of transformation of human cells can now begin to be unraveled by the recent emergence of novel RNA interference genetic tools.  相似文献   

7.
Entry of quiescent cells into the cell cycle is driven by the cyclin D-dependent kinases Cdk4 and Cdk6. These kinases are negatively regulated by the INK4 cell cycle inhibitors. We report the generation of mice defective in P15(INK4b) and P18(INK4c). Ablation of these genes, either alone or in combination, does not abrogate cell contact inhibition or senescence of mouse embryo fibroblasts in culture. However, loss of P15(INK4b), but not of P18(INK4c), confers proliferative advantage to these cells and makes them more sensitive to transformation by H-ras oncogenes. In vivo, ablation of P15(INK4b) and P18(INK4c) genes results in lymphoproliferative disorders and tumor formation. Mice lacking P18(INK4c) have deregulated epithelial cell growth leading to the formation of cysts, mostly in the cortical region of the kidneys and the mammary epithelium. Loss of both P15(INK4b) and P18(INK4c) does not result in significantly distinct phenotypic manifestations except for the appearance of cysts in additional tissues. These results indicate that P15(INK4b) and P18(IKN4c) are tumor suppressor proteins that act in different cellular lineages and/or pathways with limited compensatory roles.  相似文献   

8.
Research on tumor suppressors has for a long time run on two tracks: analysis of the mutations found in human tumor material, and active genetic manipulation in mice. As primary human cells were not easily amenable to genetic alterations, the proof to designate a suspected gene as a tumor suppressor was often by generation of knockout mice and analysis of their phenotypes. In this way, a vast amount of information has been gathered on the actions of major players in carcinogenesis. However, it has recently become apparent that there are major differences in the requirements for oncogenic transformation between human and mouse cells. Among these are the expression of hTERT, SV40 small t, and the response to Ras induced growth arrest by the tumor suppressor pathways involving p53, pRb and the INK4A locus. The potential contribution of these tumor suppressors to the prevention of transformation of human cells can now begin to be unraveled by the recent emergence of novel RNA interference genetic tools.  相似文献   

9.
Modeling INK4/ARF tumor suppression in the mouse   总被引:1,自引:0,他引:1  
The INK4/ARF locus encodes the p15(INK4B), p16(INK4A) and p14(ARF) tumor suppressor proteins whose loss of function is associated with the pathogenesis of many human cancers. Dissecting the relative contribution of these genes to growth control in vivo is complicated by their physical contiguity and the frequency of homozygous deletions that inactivate all three components of this locus. While genetically engineered mouse models provide a rigorous system for elucidating cancer gene function, there is some evidence to suggest there are cross-species differences in regulating tumor biology. Given the prevalence of mouse models in cancer research and the potential contribution of such models to preclinical studies, it is important determine to what degree the function of these critical tumor suppressors is conserved between organisms. In this review, we assess the relative biological roles of INK4A, INK4B and ARF in mice and humans with the aim of determining the faithfulness of mouse models and also of obtaining insights into the pattern of specific tumor types that are associated with germline and somatic mutations at components of this locus. We will discuss 1) the contribution of INK4A, INK4B and ARF to growth control in vitro in a series of cell types, 2) the in vivo phenotypes associated with germline loss of function of this locus and 3) the study of Ink4a and Arf in different cancer-specific mouse models.  相似文献   

10.
Replication stress (RS) is a source of DNA damage that has been linked to cancer and aging, which is suppressed by the ATR kinase. In mice, reduced ATR levels in a model of the ATR-Seckel syndrome lead to RS and accelerated aging. Similarly, ATR-Seckel embryonic fibroblasts (MEF) accumulate RS and undergo cellular senescence. We previously showed that senescence of ATR-Seckel MEF cannot be rescued by p53-deletion. Here, we show that the genetic ablation of the INK4a/Arf locus fully rescues senescence on ATR mutant MEF, but also that induced by other conditions that generate RS such as low doses of hydroxyurea or ATR inhibitors. In addition, we show that a persistent exposure to RS leads to increased levels of INK4a/Arf products, revealing that INK4a/ARF behaves as a bona fide RS checkpoint. Our data reveal an unknown role for INK4a/ARF in limiting the expansion of cells suffering from persistent replication stress, linking this well-known tumor suppressor to the maintenance of genomic integrity.  相似文献   

11.
12.
INK4d-deficient mice are fertile despite testicular atrophy   总被引:4,自引:0,他引:4       下载免费PDF全文
The INK4 family of cyclin-dependent kinase (CDK) inhibitors includes four 15- to 19-kDa polypeptides (p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d)) that bind to CDK4 and CDK6. By disrupting cyclin D-dependent holoenzymes, INK4 proteins prevent phosphorylation of the retinoblastoma protein and block entry into the DNA-synthetic phase of the cell division cycle. The founding family member, p16(INK4a), is a potent tumor suppressor in humans, whereas involvement, if any, of other INK4 proteins in tumor surveillance is less well documented. INK4c and INK4d are expressed during mouse embryogenesis in stereotypic tissue-specific patterns and are also detected, together with INK4b, in tissues of young mice. INK4a is expressed neither before birth nor at readily appreciable levels in young animals, but its increased expression later in life suggests that it plays some checkpoint function in response to cell stress, genotoxic damage, or aging per se. We used targeted gene disruption to generate mice lacking INK4d. These animals developed into adulthood, had a normal life span, and did not spontaneously develop tumors. Tumors did not arise at increased frequency in animals neonatally exposed to ionizing radiation or the carcinogen dimethylbenzanthrene. Mouse embryo fibroblasts, bone marrow-derived macrophages, and lymphoid T and B cells isolated from these animals proliferated normally and displayed typical lineage-specific differentiation markers. Males exhibited marked testicular atrophy associated with increased apoptosis of germ cells, although they remained fertile. The absence of tumors in INK4d-deficient animals demonstrates that, unlike INK4a, INK4d is not a tumor suppressor but is instead involved in spermatogenesis.  相似文献   

13.
Caveolin-1 (Cav-1) is the primary structural component of caveolae and is implicated in the processes of vesicular transport, cholesterol balance, transformation, and tumorigenesis. Despite an abundance of data suggesting that Cav-1 has transformation suppressor properties both in vitro and in vivo, Cav-1 is expressed at increased levels in human prostate cancer. To investigate the role of Cav-1 in prostate cancer onset and progression, we interbred Cav-1(-/-) null mice with a TRAMP (transgenic adenocarcinoma of mouse prostate) model that spontaneously develops advanced prostate cancer and metastatic disease. We found that, although the loss of Cav-1 did not affect the appearance of minimally invasive prostate cancer, its absence significantly impeded progression to highly invasive and metastatic disease. Inactivation of one (+/-) or both (-/-) alleles of Cav-1 resulted in significant reductions in prostate tumor burden, as well as decreases in regional lymph node metastases. Moreover, further examination revealed decreased metastasis to distant organs, such as the lungs, in TRAMP/Cav-1(-/-) mice. Utilizing prostate carcinoma cell lines (C1, C2, and C3) derived from TRAMP tumors, we also showed a positive correlation between Cav-1 expression and the ability of these cells to form tumors in vivo. Furthermore, down-regulation of Cav-1 expression in these cells, using a small interfering RNA approach, significantly reduced their tumorigenic and metastatic potential. Mechanistically, we showed that loss or down-regulation of Cav-1 expression results in increased apoptosis, with increased prostate apoptosis response factor-4 and PTEN levels in Cav-1(-/-) null prostate tumors. Our current findings provide the first in vivo molecular genetic evidence that Cav-1 does indeed function as a tumor promoter during prostate carcinogenesis, rather than as a tumor suppressor.  相似文献   

14.
Caveolin-1 deficiency stimulates neointima formation during vascular injury   总被引:3,自引:0,他引:3  
Neointima formation is a process characterized by smooth muscle cell (SMC) proliferation and extracellular matrix deposition in the vascular intimal layer. Here, we critically evaluate the role of caveolin-1 (Cav-1) in the pathogenesis of neointima formation. Cav-1 and caveolae organelles are particularly abundant in SMCs, where they are thought to function in membrane trafficking and signal transduction events. To directly evaluate the role of Cav-1 in the pathogenesis of neointimal lesions, we used Cav-1-deficient (Cav-1 -/-) mice as a model system. The right common carotid artery of wild-type and Cav-1 -/- mice was ligated just proximal to its bifurcation. Specimens were then harvested 4-weeks postligation and processed for morphometric and immunohistochemical analyses. The carotids of Cav-1 -/- mice showed significantly more intimal hyperplasia with subtotal luminal obstruction, as compared to wild-type mice. These neointimal lesions consisted mainly of SMCs. Mechanistically, neointimal lesions derived from Cav-1 -/- mice exhibited higher levels of phospho-p42/44 MAP kinase and cyclin D1 immunostaining, consistent with the idea that Cav-1 functions as a negative regulator of signal transduction. A significant increase in phospho-Rb (Ser780) immunostaining was also observed, in line with the upregulation of cyclin D1. In conclusion, using a carotid artery blood-flow cessation model, we show that genetic ablation of Cav-1 in mice stimulates SMC proliferation (neointimal hyperplasia), with concomitant activation of the p42/44 MAP kinase cascade and upregulation of cyclin D1. Importantly, our current study is the first to investigate the role of Cav-1 in SMC proliferation in the vascular system using Cav-1 -/- mice.  相似文献   

15.
Inactivation of the p16(INK4a) tumor suppressor protein is critical for the development of human cancers, including human melanoma. However, the molecular basis of the protein's inhibitory effect on cancer development is not clear. Here we investigated a possible mechanism for p16(INK4a) inhibition of neoplastic transformation and UV-induced skin cancer. We show that p16(INK4a) suppresses the activity of c-Jun N-terminal kinases (JNKs) and that it binds to the glycine-rich loop of the N-terminal domain of JNK3. Although p16(INK4a) does not affect the phosphorylation of JNKs, its interaction with JNK inhibits c-Jun phosphorylation induced by UV exposure. This, in turn, interferes with cell transformation promoted by the H-Ras-JNK-c-Jun-AP-1 signaling axis.  相似文献   

16.
Despite the importance of the INK4a/ARF locus in tumor suppression, its modulation by histone deacetylase inhibitors (HDACis) remains to be characterized. Here, we have shown that the levels of p16INK4a are decreased in human and murine fibroblasts upon exposure to relatively high concentrations of trichostatin A and sodium butyrate. Interestingly, the levels of p19ARF are strongly upregulated in murine cells even at low concentrations of HDACis. Using ARF-deficient cells, we have demonstrated that p19ARF plays an active role in HDACi-triggered cytostasis and the contribution of p19ARF to this arrest is of higher magnitude than that of the well established HDACi target p21Waf1/Cip. Moreover, chemically induced fibrosarcomas in ARF-null mice are more resistant to the therapeutic effect of HDACis than similar tumors in wild type or p21Waf1/Cip-null mice. Together, our results have established the tumor suppressor ARF as a relevant target for HDACi chemotherapy.  相似文献   

17.
18.
It is well established that mammary gland development and lactation are tightly controlled by prolactin signaling. Binding of prolactin to its cognate receptor (Prl-R) leads to activation of the Jak-2 tyrosine kinase and the recruitment/tyrosine phosphorylation of STAT5a. However, the mechanisms for attenuating the Prl-R/Jak-2/STAT5a signaling cascade are just now being elucidated. Here, we present evidence that caveolin-1 functions as a novel suppressor of cytokine signaling in the mammary gland, akin to the SOCS family of proteins. Specifically, we show that caveolin-1 expression blocks prolactin-induced activation of a STAT5a-responsive luciferase reporter in mammary epithelial cells. Furthermore, caveolin-1 expression inhibited prolactin-induced STAT5a tyrosine phosphorylation and DNA binding activity, suggesting that caveolin-1 may negatively regulate the Jak-2 tyrosine kinase. Because the caveolin-scaffolding domain bears a striking resemblance to the SOCS pseudosubstrate domain, we examined whether Jak-2 associates with caveolin-1. In accordance with this homology, we demonstrate that Jak-2 cofractionates and coimmunoprecipitates with caveolin-1. We next tested the in vivo relevance of these findings using female Cav-1 (-/-) null mice. If caveolin-1 normally functions as a suppressor of cytokine signaling in the mammary gland, then Cav-1 null mice should show premature development of the lobuloalveolar compartment because of hyperactivation of the prolactin signaling cascade via disinhibition of Jak-2. In accordance with this prediction, Cav-1 null mice show accelerated development of the lobuloalveolar compartment, premature milk production, and hyperphosphorylation of STAT5a (pY694) at its Jak-2 phosphorylation site. In addition, the Ras-p42/44 MAPK cascade is hyper-activated. Because a similar premature lactation phenotype is observed in SOCS1 (-/-) null mice, we conclude that caveolin-1 is a novel suppressor of cytokine signaling.  相似文献   

19.
Involvement of the INK4a/Arf gene locus in senescence   总被引:4,自引:0,他引:4  
Collins CJ  Sedivy JM 《Aging cell》2003,2(3):145-150
The INK4a/ARF locus encodes two proteins whose expression limits cellular proliferation. Whilst the biochemical activities of the two proteins appear very different, they both converge on regulating the retinoblastoma and p53 tumour suppressor pathways. Neither protein is required for normal development, but lack of either predisposes to the development of malignancy. Both proteins have also been implicated in the establishment of senescence states in response to a variety of stresses, signalling imbalances and telomere shortening. The INK4a/Arf regulatory circuits appear to be partially redundant and show evidence of rapid evolution. Especially intriguing are the large number of biological differences documented between mice and man. We review here the brief history of INK4a/Arf and explore possible links with organismal aging and the evolution of longevity.  相似文献   

20.
Homozygous deletions in the region of chromosome 9p21 are frequent in human melanoma. Mutations in the p16INK4A cyclin-dependent kinase inhibitor (CDI) gene at this locus have implicated the product of this gene as a tumor suppressor. Less attention has been focused on the homologous, closely linked p15INK4B gene. To facilitate study of the phenotypic effects of restoring expression of the latter in aggressive melanoma cells lacking INK4 expression, we inserted the cDNA encoding p15INK4B into an autonomously maintained plasmid under positive tetracycline control ('TET ON' system). Similarly regulated luciferase and herpes thymidine kinase sequences were used as controls. We demonstrate that this system enabled efficient, and reasonably uniform, induction of p15INK4B expression in a human melanoma cell line exposed to the tetracycline derivative, doxycycline. Flow cytometry showed that this induction resulted in substantial accumulation of cells in the G0/G1 phase of the cell cycle. This system will facilitate detailed analysis of the cell cycle inhibitory mechanisms of this CDI in human melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号