首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In social insects, colonies commonly show temporal polyethism in worker behavior, such that a worker follows a predictable pattern of changes between tasks as it ages. This pattern usually leads from workers first doing a safe task like brood care, to ending their lives doing the most dangerous tasks like foraging. Two mechanisms could potentially underlie this pattern: (1) age‐based task allocation, where the aging process itself predisposes workers to switch to more dangerous tasks; and (2) foraging for work, where ants switch to tasks that need doing from tasks which have too many associated workers. We tested the relative influence of these mechanisms by establishing nests of Camponotus floridanus with predetermined combinations of workers of known age and previous task specialization. The results supported both mechanisms. Nests composed of entirely brood‐tending workers had the oldest workers preferentially switching to foraging. However, in nests initially composed entirely of foragers, the final distribution of tenders and foragers was not different from random task‐switching and therefore supportive of foraging for work. Thus, it appears that in C. floridanus there is directionality to the mechanisms of task allocation. Switching to more dangerous tasks is age‐influenced, but switching to less dangerous tasks is age‐independent. The results also suggest that older workers are more flexible in their task choice behavior. Younger workers are more biased towards choosing within‐nest tasks. Finally, there are effects of previous experience that tend to keep ants in familiar tasks. Task allocation based on several mechanisms may balance between: (1) concentrating the most worn workers into the most dangerous tasks; (2) increasing task performance levels; and (3) maintaining behavioral flexibility to respond to demographic perturbations. The degree to which behavior is flexible may correlate to the frequency of such perturbations in a species.  相似文献   

2.
We briefly review the literature on the division of labour in ant colonies with monomorphic worker populations, and show that there are anomalies in current theories and in the interpretation of existing data sets. Most ant colonies are likely to be in unstable situations and therefore we doubt if an age-based division of labour can be sufficiently flexible. We present data for a type of small ant colony in a highly seasonal environment, concentrating on individually marked older workers. We show that contrary to expectation such workers undertake a wide variety of tasks and can even retain their ability to reproduce, even whilst younger workers are actively foraging. Our analysis shows that old workers occupy four distinct spatial stations within the nest and that these are related to the tasks they perform. We suggest that correlations between age and task in many ant colonies might simply be based on ants foraging for work, i.e. actively seeking tasks to perform and remaining faithful to these as long as they are profitably employed. For this reason, employed older workers effectively displace unemployed younger workers into other tasks. In a companion paper, Tofts 1993,Bull. math. Biol. develops an algorithm that shows how foraging for work can be an efficient and flexible mechanism for the division of labour in social insects. The algorithm creates a correlation between age and task purely as a by-product of itsmodus operandi.  相似文献   

3.
Question: What is the role of mound‐building ants (Lasius flavus) in successional changes of a grassland ecosystem towards a spruce forest? Location: Slovenské Rudohorie Mountains, Slovakia; ca. 950 m a.s.l. near the Obrubovanec point (1020 m a.s.l.; 48°41′N, 19°39′E). Methods: Both chronosequence data along a successional gradient and temporal data from long‐term permanent plots were collected on ants, spruce establishment, and vegetation structure, together with additional data on spruce growth. Results: There are more spruce seedlings on ant mounds (4.72 m?2) than in the surrounding vegetation (0.81 m?2). Spruce seedlings grow faster on these mounds compared to surrounding areas. The first colonization wave of seedlings was rapid and probably occurred when grazing prevailed over mowing. Ant colony presence, mound volume, and plant species composition change along the successional gradient. Mounds become bigger when partly shaded but shrink in closed forest, when ant colonies disappear. Shade‐tolerant acidophylic species replace grassland plants both on the mounds and in surrounding areas. Conclusions: The massive occurrence of Lasius flavus anthills contributes to a runaway feedback process that accelerates succession towards forest. The effect of ants as ecosystem engineers is scale‐dependent: although they stabilize the system at the scale of an individual mound, they may destabilize the whole grassland system over a longer time scale if combined with changes in mowing regime.  相似文献   

4.
Abstract The Argentine ant, Linepithema humile (Mayr), is a widespread invasive ant species that has been associated with losses of native ant species and other invertebrates from its introduced range. To date, various abiotic conditions have been associated with limitations to the spread of Argentine ants, however, competitive interactions with native ant fauna may also affect the spread of Argentine ants. Here, we experimentally manipulated colony sizes of Argentine ants in the laboratory to assess whether Argentine ants were able to survive and compete for resources with a widespread, dominant native ant, Iridomyrmexrufoniger’. The results showed that over 24 h, the proportions of Argentine ants that were alive, at baits, and at sugar water decreased significantly in the presence of Iridomyrmex. In addition, Argentine ant mortality increased over time, however, the proportion of the colony that was dead decreased with the largest colony size. Argentine ants were only able to overcome Iridomyrmex when their colony sizes were 5–10 times greater than those of the native ants. We also conducted trials in which colonies of Argentine ants of varying sizes were introduced to artificial baits occupied by Iridomyrmex in the field. The results showed that larger Argentine ant colonies significantly affected the foraging success of Iridomyrmex after the initial introduction (5 min). However, over the first 20 min, when the Argentine ants were present at the baits, and over the entire 50 min experimental period, the numbers of Iridomyrmex at baits did not differ significantly with the size of the Argentine ant colony. This is the first experimental study to investigate the role of colony size in the invasion biology of Argentine ants in Australia, and the results suggest that Iridomyrmex may reduce the spread of Argentine ants, and that Argentine ants may need to attain large colony sizes in order to survive in the presence of Iridomyrmex. We address the implications of these findings for the invasion success of Argentine ants in Australia, and discuss the ability of Argentine ants to attain large colony sizes in introduced areas.  相似文献   

5.
We have recently shown that an energy penalty for the incorporation of residual tensorial constraints into molecular structure calculations can be formulated without the explicit knowledge of the Saupe orientation tensor (Moltke and Grzesiek, J. Biomol. NMR, 1999, 15, 77–82). Here we report the implementation of such an algorithm into the program X-PLOR. The new algorithm is easy to use and has good convergence properties. The algorithm is used for the structure refinement of the HIV-1 Nef protein using 252 dipolar coupling restraints. The approach is compared to the conventional penalty function with explicit knowledge of the orientation tensor's amplitude and rhombicity. No significant differences are found with respect to speed, Ramachandran core quality or coordinate precision.  相似文献   

6.
Desert ants navigate by using two chief strategies: path integration, keeping track of the straight‐line distance and direction to the starting point as they travel, and landmark guidance, orientation based on the visual panorama. Both Cataglyphis ants in North Africa and Melophorus bagoti in Central Australia are known to adjust their vectors derived from path integration to compensate for mismatches between their outbound direction of travel and (the reverse of) the inbound direction of travel that takes them home, a process known as vector calibration. We created mismatches of 90° between the outbound vector and the homebound direction by displacing ants from a feeder before their homebound run. We examined temporal factors in vector calibration by varying the delay (0, 1 or 3 hr) between the outbound run to the feeder and the homebound run from the displacement site. According to the temporal weighting rule, such a delay should decrease the weight given to the vector information obtained from the outbound run. This in turn should favour reliance on the visual panorama and thus speed up calibration. Results did not support this prediction. At the displacement site, a delay had little effect on the extent of calibration or the speed of calibration (the number of trials to reach maximum calibration). Just before being displaced, ants were also tested in a test ring surrounded by high walls that obliterated the visual scenery. In the test ring, a delay made the ants less likely to rely on their vector: ants were often not oriented as a group. Otherwise, the ants in the test ring also did not calibrate any more or any faster.  相似文献   

7.
1. The ecologically dominant leaf‐cutting ants exhibit one of the most complex forms of morphological caste‐based division of labour in order to efficiently conduct tasks, ranging from harvesting fresh leaf material to caring for the vulnerable fungal crop they farm as food. While much of their division of labour is well known, the role of the smallest workers on foraging trails is puzzling. Frequently these minim workers hitchhike on leaf fragments and it has been suggested that they may act to reduce the microbial contamination of leaf material before they enter the nest. Here we investigated this potentially important role of minims with field colonies of Atta colombica. 2. We experimentally increased the microbial load of leaf fragments and found that this resulted in minims hitchhiking on leaf fragments for longer. Furthermore, we show that leaves naturally have a significant microbial load and that the presence of hitchhikers reduces the microbial load of both experimentally manipulated and natural leaf fragments. 3. Intriguingly, the microbial load of leaves high in the canopy where ants were foraging was much lower than closer to the ground where the ants avoided cutting leaves. This suggests that the often perplexing foraging patterns of leaf‐cutting ants may in part be explained by the ants avoiding leaves that are more heavily contaminated with microbes. 4. The removal of microbial contaminants is therefore an important role of hitchhiking minim workers in natural colonies of Atta leaf‐cutting ants, although other tasks such as trail maintenance and defence also explain their occurrence on trails.  相似文献   

8.
Ascertaining the costs and benefits of mutualistic interactions is important for predicting their stability and effect on community dynamics. Despite widespread designation of the interaction between ants and extrafloral nectaries (EFNs) as a mutualism and over 100 years of studies on ant benefits to plants, the benefits to ants have never been experimentally quantified. The success of invasive ants is thought to be linked to the availability of carbohydrate-rich resources, though reports of invasive ant visits to EFNs are mixed. In two laboratory experiments, we compared worker survival of one native (Iridomyrmex chasei) and two invasive ant species (Linepithema humile and Pheidole megacephala) exposed to herbivorized or non-herbivorized EFN-bearing plants (Acacia saligna) or positive and negative controls. We found that non-herbivorized plants did not produce any measurable extrafloral nectar, and ants with access to non-herbivorized plants had the same survival as ants with access to an artificial plant and water (unfed ants). Ants given herbivorized plants had 7–11 times greater worker survival relative to unfed ants, but there were no differences in survival between native and invasive ants exposed to herbivorized plants. Our results reveal that ants cannot induce A. saligna extrafloral nectar production, but workers of both native and invasive ant species can benefit from extrafloral nectar as much as they benefit from sucrose.  相似文献   

9.
Background

Biological networks describes the mechanisms which govern cellular functions. Temporal networks show how these networks evolve over time. Studying the temporal progression of network topologies is of utmost importance since it uncovers how a network evolves and how it resists to external stimuli and internal variations. Two temporal networks have co-evolving subnetworks if the evolving topologies of these subnetworks remain similar to each other as the network topology evolves over a period of time. In this paper, we consider the problem of identifying co-evolving subnetworks given a pair of temporal networks, which aim to capture the evolution of molecules and their interactions over time. Although this problem shares some characteristics of the well-known network alignment problems, it differs from existing network alignment formulations as it seeks a mapping of the two network topologies that is invariant to temporal evolution of the given networks. This is a computationally challenging problem as it requires capturing not only similar topologies between two networks but also their similar evolution patterns.

Results

We present an efficient algorithm, Tempo, for solving identifying co-evolving subnetworks with two given temporal networks. We formally prove the correctness of our method. We experimentally demonstrate that Tempo scales efficiently with the size of network as well as the number of time points, and generates statistically significant alignments—even when evolution rates of given networks are high. Our results on a human aging dataset demonstrate that Tempo identifies novel genes contributing to the progression of Alzheimer’s, Huntington’s and Type II diabetes, while existing methods fail to do so.

Conclusions

Studying temporal networks in general and human aging specifically using Tempo enables us to identify age related genes from non age related genes successfully. More importantly, Tempo takes the network alignment problem one huge step forward by moving beyond the classical static network models.

  相似文献   

10.
When ants are dispersing seeds (myrmecochory), cessation of foraging can be as important as recruitment in determining dispersal success. We studied food collection by Aphaenogaster rudis from experimental depots by monitoring temporal variation and preference in food removal (diaspores of Asarum canadense and Sanguinaria canadensis and larvae of Tenebrio obscurus). Removal of diaspores, but not insect larvae, declined to nearly zero over the scale of hours. Satiation extended over the scale of days for diaspores. Extensive collection of larvae inhibited future collection of diaspores, but the converse was not observed. Increasing distance from the nest reduced removal of diaspores, but not of food bodies isolated from diaspores. Removal rates for diaspores were uncorrelated with the number of workers or brood in a colony.  相似文献   

11.
Observations on activity of ants of the speciesLeptothorax acervorum show that ants within the nest are inactive for about 72% of their time (Frankset al., 1990.Bull. math. Biol.,52, 597–612). By examination of the activity of individual ants it is demonstrated that activity bouts of individuals are highly synchronized. The bursts of activity detected by Frankset al. occurred three to four times per hour. In this paper we develop a model to describe the phenomenon. As a result of the interdependence of the number of active ants within the nest and the high level of community activity some predictions are made, which are supported by experimental data in a quantitative way. In case of starvation the number of active ants will increase and no rhythms should occur. When proportionally more brood is present the rhythms should occur with a higher frequency. Eventually the rhythm breaks down and a stable equilibrium is reached.  相似文献   

12.
Background and AimsThe great diversity of floral characteristics among animal-pollinated plants is commonly understood to be the result of coevolutionary interactions between plants and pollinators. Floral antagonists, such as nectar thieves, also have the potential to exert an influence upon the selection of floral characteristics, but adaptation against floral antagonists has attracted comparatively little attention. We found that the corollas of hornet-pollinated Codonopsis lanceolata (Campanulaceae) and the tepals of bee-pollinated Fritillaria koidzumiana (Liliaceae) are slippery to nectar-thieving ants living in the plant’s habitat; because the flowers of both species have exposed nectaries, slippery perianths may function as a defence against nectar-thieving ants.MethodsWe conducted a behavioural experiment and observed perianth surface microstructure by scanning electron microscopy to investigate the mechanism of slipperiness. Field experiments were conducted to test whether slippery perianths prevent floral entry by ants, and whether ant presence inside flowers affects pollination.Key ResultsScanning electron microscopy observations indicated that the slippery surfaces were coated with epicuticular wax crystals. The perianths lost their slipperiness when wiped with hexane. Artificial bridging of the slippery surfaces using non-slippery materials allowed ants to enter flowers more frequently. Experimental introduction of live ants to the Codonopsis flowers evicted hornet pollinators and shortened the duration of pollinator visits. However, no statistical differences were found in the fruit or seed sets of flowers with and without ants.ConclusionsSlippery perianths, most probably based on epicuticular wax crystals, prevent floral entry by ants that negatively affect pollinator behaviour. Experimental evidence of floral defence based on slippery surfaces is rare, but such a mode of defence may be widespread amongst flowering plants.  相似文献   

13.
The Brazilian Atlantic Forest has been replaced by homogeneous tree monocultures with potentially drastic effect on ecological interactions. We expect that ecologically‐managed tree monocultures, however, can help to mitigate this impact. Here, we carried out an experiment with Inga vera (Fabaceae), an extrafloral nectary bearing plant, to test if the efficiency of ants as anti‐herbivory defense is affected by the replacement of its natural habitat (Araucaria Forest) by ecologically‐managed tree monocultures (plantations of Araucaria, Pinus, and Eucalyptus). Seedlings of Inga vera were transplanted to three patches of each habitat and ants were excluded from half of the plants. The abundance of ants and herbivores was low, similar among habitats, and exhibited temporal asynchrony. Number of herbivores and accumulated herbivory levels were lower in plant with ants. Rates of herbivory were extremely low and lower for young leaves than for mature leaves. The presence of ants did not affect plant performance traits measured by their growth in height, and their final numbers of leaves and leaflets. Contrary to what might be expected, ant‐protected plants produced fewer leaves and leaflets than unprotected ones. In conclusion, Inga vera‐ant interaction was similar between its natural habitat and the tree monocultures, indicating that potentially both species diversity and ecological processes can be conserved in ecologically‐managed tree monocultures.  相似文献   

14.
Exploiters of protection mutualisms are assumed to represent an important threat for the stability of those mutualisms, but empirical evidence for the commonness or relevance of exploiters is limited. Here, I describe results from a manipulative study showing that an orb‐weaver spider, Eustala oblonga, inhabits an ant‐acacia for protection from predators. This spider is unique in the orb‐weaver family in that it associates closely with both a specific host plant and ants. I tested the protective effect of acacia ants on E. oblonga by comparing spider abundance over time on acacias with ants and on acacias from which entire ant colonies were experimentally removed. Both juvenile and adult spider abundance significantly decreased over time on acacias without ants. Concomitantly, the combined abundance of potential spider predators increased over time on acacias without ants. These results suggest that ant protection of the ant‐acacia Acacia melanocerus also protects the spiders, thus supporting the hypothesis that E. oblonga exploits the ant–acacia mutualism for enemy‐free space. Although E. oblonga takes advantage of the protection services of ants, it likely exacts little to no cost and should not threaten the stability of the ant–acacia mutualism. Indeed, the potential threat of exploiter species to protection mutualisms in general may be limited to species that exploit the material rewards traded in such mutualisms rather than the protection services.  相似文献   

15.
In most mutualisms, partners disperse independently of each other. For instance, in ant-plant symbioses, plants disperse as seeds, and ants disperse as winged queens. For an ant-plant mutualism to persist, therefore, queens must be able to locate and colonise host plant saplings. It has been suggested that host plants emit volatile chemical cues that attract dispersing queens, but this has never been demonstrated experimentally. We used a Y-tube olfactometry protocol to test this hypothesis in the tropical understorey antplant Cordia nodosa Lam. (Boraginaceae), which associates with two genera of ants, Azteca (Dolichoderinae) and Allomerus (Myrmicinae). Both genera show significant attraction to the volatiles of C. nodosa over control understorey plant species that do not associate with ants. These results support the hypothesis that ants are attracted to volatiles emitted by their host plant and suggest a key preadaptation that promoted the evolution of ant-plant symbioses. Received 1 July 2005; revised 2 November 2005; accepted 8 November 2005.  相似文献   

16.
We report on the distribution, behaviour, interspecific competition and temporal persistence over 4 years of arboreal ants in a mangrove forest within which patches of habitat ranged from single isolated trees to groups of interlocking trees. Two ants, an undescribed species of Crematogaster and Anonychomyrma itinerans, were common but only one ever occurred within any occupied patch. Sampling of the same 108 trees in May 2008, December 2009 and May 2012 showed very little temporal change in occupancy by both species. In manipulative experiments where the branches of closely adjacent pairs of neighbouring Avicennia marina trees containing these different species were clamped together, the ants fought and one species succeeded in taking over both trees. Thirteen of 20 clamped pairs were taken over by Crematogaster and seven by A. itinerans. Occupancy of conjoined patches did not change during the following year, which suggests that the ant species present is not determined by any inherent heterogeneity among patches. Since ants can affect herbivory, community composition and tree health, we suggest that the success of attempts to restore or conserve mangroves may be improved by long-term comparative studies of the effects of ants, including possible differences among species, in natural and artificially planted mangrove forests.  相似文献   

17.
In leaf-cutting ants, the handling of waste materials from the fungus culture increases the risk of infection. Consequently, ants should manage their waste in a way that minimizes the spread of diseases. We investigated whether in Acromyrmex lobicornis, waste-worker ants (a) also perform roles in foraging or mound maintenance, (b) are morphologically different than other ant workers, and (c) are aggressively discriminated by other worker ants from the same colony. In addition, we investigated whether the location of external waste piles minimizes the probability that wastes spread to the ant nest. In the field, we (a) marked with different colours waste-workers, foragers and mound-workers and monitored whether these ants interchanged their tasks; (b) measured head width, head length, hind femur length and total length of waste-workers; foragers and mound-workers; (c) forced field encounters between waste-workers and foragers, and (d) measured the cardinal orientation of the waste piles in relation to the colony mound. Waste-worker ants did not perform other function outside the nest; neither foragers nor mound-workers managed the waste. Moreover, waste-workers were smaller than foragers and mound-workers, and were attacked if they tried to enter their nest using foraging entrances. The location of external refuse dumps also appears to reduce contamination risks. Waste piles always were down-slope, and often followed the prevailing wind direction. The importance of behaviours such as the division of labour, aggressions against waste-workers and nest compartmentalization (i.e., the orientation of external waste piles) to minimize the spread of pathogens is discussed.  相似文献   

18.
Summary Despite its apparent costs, nest relocation is a common phenomenon among ants. Polyrhachis ammon, a common ant in open habitats of eastern Australia, exhibits a high rate of colony emigration to new nest sites. We conducted a field survey and shading experiments in different seasons and years to determine which factors affect colony emigration in this species. We also compared morphological features characterising workers involved in adult transport to determine if workers performing different tasks belong-ed to discernible temporal castes. Nests that were abandon-ed after four weeks were smaller, although distance from a food source and low-level disturbance did not alter re-location rates. The effects of shading and nest temperature on nest survival varied between seasons, as did rates of nest relocation. Transporter workers could not be distinguished from foragers, but had greater mandibular wear and smaller dry mass than transportees. Our results suggest that cues promoting nest relocation in P. ammon may be the result of a combination of factors with varying temporal importance.  相似文献   

19.
BackgroundPhysiological evidence suggests that the nervous system controls motion by using a low-dimensional synergy organization for muscle activation. Because the muscle activation produces joint torques, kinetic changes accompanying aging can be related to changes in muscle synergies.ObjectivesWe explored the effects of aging on muscle synergies underlying sit-to-stand tasks, and examined their relationships with kinetic characteristics.MethodsFour younger and three older adults performed the sit-to-stand task at two speeds. Subsequently, we extracted the muscle synergies used to perform these tasks. Hierarchical cluster analysis was used to classify these synergies. We also calculated kinetic variables to compare the groups.ResultsThree independent muscle synergies generally appeared in each subject. The spatial structure of these synergies was similar across age groups. The change in motion speed affected only the temporal structure of these synergies. However, subject-specific muscle synergies and kinetic variables existed.ConclusionsOur results suggest common muscle synergies underlying the sit-to-stand task in both young and elderly adults. People may actively change only the temporal structure of each muscle synergy. The precise subject-specific structuring of each muscle synergy may incorporate knowledge of the musculoskeletal kinetics.  相似文献   

20.
Changes in the strength of trophic cascades over time have been associated with dramatic shifts in community structure and function. However, the pattern, process, and potential underlying mechanism of temporal variation in trophic cascades remains relatively unexplored. A top–down trophic cascade has been documented for the effects of predacious weaver ants Oecophylla smaragdina on the success of fig tree Ficus racemosa seed production. Ants cause high mortality of non‐pollinating fig wasps Sycophaga mayri that parasitize fruits, leading to greater success for the pollinating fig wasp–fig tree mutualists. Here, using a design in which pairs of branches were selected on a tree, and ants were excluded from one of each pair, we quantified the magnitude of the trophic cascade in the cool–dry, hot–dry and rainy (hot–wet) seasons in Xishuangbanna, southwest China. We also recorded the daily behavioral dynamics of ants and fig wasps in different seasons and analyzed the correlation between behavioral, activity and trophic cascade strength. We found that the strength of the trophic cascade was strong in the hot–dry season, diminished in the rainy season and disappeared in the cool–dry season in this system. The strength of species interactions between ants and non‐pollinating fig wasps, is positively correlated with trophic cascade strength, indicating that trophic cascade strength is determined by a top–down process when the community is well established. Moreover, because pollinating fig wasps, Ceratosolen fusciceps, play a central role in the establishment of fig wasp communities, when C. fusciceps wasps are absent, the community quickly disassembles as is the case in the cool–dry season. In summary, the strength of the trophic cascade is triggered by top–down processes, however, the occurrence of the trophic cascade is determined by a keystone species that plays a central role in assembly of the community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号