首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PP2A regulates the pro-apoptotic activity of FOXO1   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
DNA damage during the cell division cycle can activate ATM/ATR and their downstream kinases that are involved in the checkpoint pathway, and cell growth is halted until damage is repaired. As a result of DNA damage induced in mitotic cells by doxorubicin treatment, cells accumulate in a G2-like phase, not in mitosis. Under these conditions, two mitosis-specific kinases, Cdk1 and Plk1, are inhibited by inhibitory phosphorylation and dephosphorylation, respectively. G2-specific phosphorylation of Cdc25 was increased during incubation after mitotic DNA damage. Inhibition of Plk1 through dephosphorylation was dependent on ATM/Chk1 activity. Depleted expression of ATM and Chk1 was achieved using small hairpin RNA (shRNA) plasmid constructs. In this condition, damaged mitotic cells did not accumulated in a G2-like stage, and entered into G1 phase without delay. Protein phosphatase 2A was responsible for dephosphorylation of mitotic Plk1 in response to DNA damage. In knockdown of PP2A catalytic subunits, Plk1 was not dephosphorylated, but rather degraded in response to DNA damage, and cells did not accumulate in G2-like phase. The effect of ATM/Chk1 inhibition was counteracted by overexpression of PP2A, indicated that PP2A may function as a downstream target of ATM/Chk1 at a mitotic DNA damage checkpoint, or may have a dominant effect on ATM/Chk1 function at this checkpoint. Finally, we have shown that negative regulation of Plk1 by dephosphorylation is important to cell accumulation in G2-like phase at the mitotic DNA damage checkpoint, and that this ATM/Chk1/PP2A pathway independent on p53 is a novel mechanism of cellular response to mitotic DNA damage.  相似文献   

5.
6.
7.
We investigated early activation events after T cell triggering via the Ag receptor (TCR/CD3) complex as compared to activation via the CD2 surface molecule. To this end, resting peripheral human T lymphocytes were preincubated with 32P-orthophosphate and subsequently exposed to mitogenic mAb directed at either TCR/CD3 or CD2 for varying time periods. Cells were lysed and postnuclear lysates subjected to two-dimensional-gel electrophoresis (IEF and SDS-PAGE). As early as 10 min after stimulation through CD2, dephosphorylation of a cytosolic 19-kDa protein was observed. In contrast, this protein remained phosphorylated in unstimulated as well as CD3 activated T cells. Phosphoprotein (pp) 19 dephosphorylation was transient because, at later time points (2-4 h) after CD2 triggering, this protein was phosphorylated again. Phosphoaminoacid analysis indicated that pp19 is dephosphorylated on serine residues. Identical results were obtained using a CD2+ but TCR/CD3- human NK cell clone indicating that pp19 dephosphorylation occurs independent of surface expression of a TCR/CD3 complex. These data show that, in addition to protein phosphorylation events, serine dephosphorylation is involved in T cell triggering. More important, a selective signaling mechanism appears to be linked to T cell activation through the CD2 pathway.  相似文献   

8.
We present evidence that increases in intracellular calcium, induced by treatment with calcium ionophore A23187 or the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin, dephosphorylated histone H3 at serine10 (histone H3-Ser10) in a dose-dependent manner in human hepatoma HepG2 cells. Inhibition of p42/44MAPK, pp90RSK, or p38MAPK did not affect the ability of A23187 to dephosphorylate histone H3-Ser10. This response is significantly blocked by okadaic acid, indicating a requirement for protein phosphatase 2A (PP2A). A23187 increased the activity of PP2A towards phosphorylated histone H3-Ser10. Furthermore, pretreatment with calphostin C, a selective protein kinase C (PKC) inhibitor, blocked A23187-dependent dephosphorylation of histone H3-Ser10, and coimmunoprecipitation analysis showed PP2A association with the PKCbetaII isoform. Unlike untreated cells, coimmunoprecipitated complex from A23187-treated cells showed greater dephosphorylation of histone H3-Ser10 in a PP2A-dependent manner. Inhibition of PP2A increased phosphorylation at Ser660 that determines calcium sensitivity and activity of PKCbetaII isoform, thus supporting a role for intracomplex regulation. Finally, chromatin immunoprecipitation assays following exposure to A23187 and okadaic acid revealed regulatory role of histone H3-Ser10 phosphorylation in selective gene induction. Altogether, our findings suggest a novel role for calcium in modulating histone H3-Ser10 phosphorylation level and led us to propose a model emphasizing PP2A activation, occurring downstream following perturbations in calcium homeostasis, as key event in dephosphorylating histone H3-Ser10 in mammalian cells.  相似文献   

9.
Recovery from DNA damage is critical for cell survival. However, serious damage cannot be repaired, leading to cell death for prevention of abnormal cell growth. Previously, we demonstrated that 4N-DNA accumulates via the initiation of an abnormal interphase without cytokinesis and that re-replication occurs during a prolonged recovery period in the presence of severe DNA damage in mitotic cells. Mitotic phosphorylated Plk1 is typically degraded during mitotic exit. However, Plk1 has unusually found to be dephosphorylated in mitotic slippage without cytokinesis during recovery from mitotic DNA damage. Here, we investigated how Plk1 dephosphorylation is established during recovery from mitotic DNA damage. Mitotic DNA damage activated ATM and Chk1/2 and repressed Cdk1 and Greatwall protein kinase, followed by PP2A activation through the dissociation of ENSA and PP2A-B55. Interaction between Plk1 and PP2A-B55α or PP2A-B55δ was strongly induced during recovery from mitotic DNA damage. Moreover, the depletion of PP2A-B55α and/or PP2A-B55δ by siRNA transfection led to the recovery of Plk1 phosphorylation and progression of the cell cycle into the G1 phase. Therefore, to adapt to severe DNA damage, the activated Greatwall/ENSA signaling pathway was repressed by ATM/Chk1/2, even in mitotic cells. Activation of the PP2A-B55 holoenzyme complex induced the dephosphorylation of Plk1 and Cdk1, and finally, mitotic slippage occurred without normal chromosome segregation and cytokinesis.  相似文献   

10.
11.
The focal adhesion protein VASP, a possible link between signal transduction pathways and the microfilament system, is phosphorylated by both cAMP- and cGMP-dependent protein kinases in vitro and in intact cells. Here, the analysis of VASP dephosphorylation by the serine/threonine protein phosphatases (PP) PP1, PP2A, PP2B and PP2C in vitro is reported. The phosphatases differed in their selectivity with respect to the dephosphorylation of individual VASP phosphorylation sites. Incubation of human platelets with okadaic acid, a potent inhibitor of PP1 and PP2A, caused the accumulation of phosphorylated VASP indicating that the phosphorylation status of VASP in intact cells is regulated to a major extent by serine/ threonine protein phosphatases. Furthermore, the accumulation of phosphorylated cAMP-dependent protein kinase substrate(s) appears to account for inhibitory effects of okadaic acid on platelet function.  相似文献   

12.
We investigated regulation of Na(+)/H(+) exchanger isoform 1 (NHE1) by dephosphorylation. Treatment of primary cultures of cardiomyocytes with the phosphatase inhibitor okadaic acid increased the rate of recovery from an acid load, suggesting that the okadaic acid sensitive PP1 may be involved in NHE1 regulation in vivo. We examined the ability of purified protein phosphatases PP1, PP2A, and PP2B to dephosphorylate the regulatory cytoplasmic tail. NHE1 was completely dephosphorylated by PP1, poorly dephosphorylated by PP2A, and not dephosphorylated by PP2B. Examination of NHE1 binding to PP1 or PP2B revealed that an association occurs between NHE1 and PP1 both in vitro and in vivo, but NHE1 did not associate with full-length PP2B. We expressed PP1 or inhibitor 2, a specific PP1 inhibitor, in cell lines to examine the effect of PP1 on NHE1 activity in vivo. Overexpression of PP1 causes a decrease in NHE1 activity but does not affect stimulation by thrombin. Cell lines expressing the specific PP1 inhibitor, inhibitor 2, had elevated proton efflux rates and could not be further stimulated by the Na(+)/H(+) exchanger agonist thrombin. The results suggest that PP1 is an important regulatory phosphatase of NHE1, that it can bind to and dephosphorylate the protein, and that it regulates NHE1 activity in vivo.  相似文献   

13.
Recently it has been shown that the potent apoptotic agent ceramide activates a mitochondrial protein phosphatase 2A (PP2A) and promotes dephosphorylation of the anti-apoptotic molecule Bcl2 (Ruvolo, P. P., Deng, X., Ito, T., Carr, B. K., and May, W. S. (1999) J. Biol. Chem. 274, 20296-20300). In cells expressing Bcl2, dephosphorylation of Bcl2 appears to be required for ceramide-induced cell death because treatment of cells with low doses of the PP2A inhibitor okadaic acid blocks Bcl2 dephosphorylation and promotes cell survival. Furthermore, the non-phosphorylatable (i.e. PP2A-resistant) gain-of-function S70E mutant Bcl2 can protect cells from ceramide-induced apoptosis. These findings support a model whereby Bcl2 function is regulated by PP2A. PP2A is a heterotrimer that contains a catalytic C-subunit, a structural A-subunit, and a regulatory B-subunit. The A- and C-subunits are fairly conserved and ubiquitously expressed, and they form the catalytic complex of the phosphatase. In contrast, there are at least three families of diverse B-subunit molecules that vary in expression temporally and by tissue type. It is hypothesized that ceramide regulates PP2A via the B-subunit. Thus, understanding the mechanism of how PP2A regulates Bcl2 phosphorylation status and how ceramide might regulate this process requires identification of the regulatory B-subunit of PP2A that comprises the Bcl2 phosphatase. Results indicate that the B56 alpha-subunit is a candidate regulatory subunit of the physiologic Bcl2 phosphatase since (a) B56 alpha associates with Bcl2 as evidenced by pull-down experiments, (b) B56 alpha co-localizes with Bcl2 in mitochondrial membranes, (c) ceramide promotes translocation of B56 alpha to mitochondrial membranes, and (d) overexpression of B56 alpha promotes mitochondrial PP2A activity and Bcl2 dephosphorylation and potentiates cell killing with ceramide. These findings suggest a role for B56 alpha in regulating the Bcl2 phosphatase.  相似文献   

14.
Ca2+-regulated heat-stable protein of 24 kDa (CRHSP-24) is a serine phosphoprotein originally identified as a physiological substrate for the Ca2+-calmodulin regulated protein phosphatase calcineurin (PP2B). CRHSP-24 is a paralog of the brain-specific mRNA-binding protein PIPPin and was recently shown to interact with the STYX/dead phosphatase protein in developing spermatids (Wishart MJ and Dixon JE. Proc Natl Acad Sci USA 99: 2112-2117, 2002). Investigation of the effects of phorbol ester (12-o-tetradecanoylphorbol-13-acetate; TPA) and cAMP analogs in 32P-labeled pancreatic acini revealed that these agents acutely dephosphorylated CRHSP-24 by a Ca2+-independent mechanism. Indeed, cAMP- and TPA-mediated dephosphorylation of CRHSP-24 was fully inhibited by the PP1/PP2A inhibitor calyculin A, indicating that the protein is regulated by an additional phosphatase other than PP2B. Supporting this, CRHSP-24 dephosphorylation in response to the Ca2+-mobilizing hormone cholecystokinin was differentially inhibited by calyculin A and the PP2B-selective inhibitor cyclosporin A. Stimulation of acini with secretin, a secretagogue that signals through the cAMP pathway in acini, induced CRHSP-24 dephosphorylation in a concentration-dependent manner. Isoelectric focusing and immunoblotting indicated that elevated cellular Ca2+ dephosphorylated CRHSP-24 on at least three serine sites, whereas cAMP and TPA partially dephosphorylated the protein on at least two sites. The cAMP-mediated dephosphorylation of CRHSP-24 was inhibited by low concentrations of okadaic acid (10 nM) and fostriecin (1 microM), suggesting that CRHSP-24 is regulated by PP2A or PP4. Collectively, these data indicate that CRHSP-24 is regulated by diverse and physiologically relevant signaling pathways in acinar cells, including Ca2+, cAMP, and diacylglycerol.  相似文献   

15.
16.
Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 (PP-1) and 2A (PP-2A). The phosphorylation and dephosphorylation at the serine/threonine residues on proteins play important roles in regulating gene expression, cell cycle progression, and apoptosis. In this study, phosphatase inhibitor okadaic acid induces apoptosis in U937 cells via a mechanism that appears to involve caspase 3 activation, but not modulation of Bcl-2, Bax, and Bcl-X(L) expression levels. Treatment with 20 or 40 nM okadaic acid for 24 h produced DNA fragmentation in U937 cells. This was associated with caspase 3 activation and PLC-gamma1 degradation. Okadaic acid-induced caspase 3 activation and PLC-gamma1 degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 40 nM. Moreover, PMA (phorbol myristate acetate), PKC (protein kinase C) activator, protected U937 cells from okadaic acid-induced apoptosis, abrogated okadaic acid-induced caspase 3 activation, and specifically inhibited downregulation of XIAP (X-linked inhibitor of apoptosis) by okadaic acid. PMA cotreated U937 cells exhibited less cytochrome c release and sustained expression levels of the IAP (inhibitor of apoptosis) proteins during okadaic acid-induced apoptosis. In addition, these findings indicate that PMA inhibits okadaic acid-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase 3 that is involved in the execution of apoptosis.  相似文献   

17.
During mitotic arrest induced by paclitaxel, most of the mitochondrial Bcl-2 is phosphorylated. This mitotic arrest is transient; exit from mitosis, due to mitotic slippage, occurs and Bcl-2 is rapidly dephosphorylated. In the present study, we characterized PP1 as the cytosolic phosphatase involved in Bcl-2 dephosphorylation. When mitochondria and cytosol prepared from mitotic arrested cells were incubated in vitro, the proportion of phosphorylated forms of Bcl-2 in mitochondria remained unchanged. In contrast, cytosol prepared from cells during mitotic slippage led to a dose-dependent loss of phosphorylated forms of Bcl-2. Depletion of these cytosol extracts by microcystin-Sepharose maintained Bcl-2 phosphorylated forms, indicating that this cytosol possessed phosphatase activity. Furthermore, the dephosphorylation of Bcl-2 by cytosol prepared from cells exiting mitotic block was inhibited by okadaic acid, at a dose known to inhibit PP1, and by inhibitor 2, a specific inhibitor of PP1 and by immunodepletion of PP1. Finally, we showed that PP1 is associated with mitochondrial Bcl-2 in vivo. Taken together, these results demonstrate that PP1 is directly involved in Bcl-2 dephosphorylation during mitotic slippage.  相似文献   

18.
The mitotic kinase Aurora A (AurA) is regulated by a complex network of factors that includes co-activator binding, autophosphorylation, and dephosphorylation. Dephosphorylation of AurA by PP2A (human, Ser-51; Xenopus, Ser-53) destabilizes the protein, whereas mitotic dephosphorylation of its T-loop (human, Thr-288; Xenopus, Thr-295) by PP6 represses AurA activity. However, AurA(Thr-295) phosphorylation is restricted throughout the early embryonic cell cycle, not just during M-phase, and how Thr-295 is kept dephosphorylated during interphase and whether or not this mechanism impacts the cell cycle oscillator were unknown. Titration of okadaic acid (OA) or fostriecin into Xenopus early embryonic extract revealed that phosphatase activity other than PP1 continuously suppresses AurA(Thr-295) phosphorylation during the early embryonic cell cycle. Unexpectedly, we observed that inhibiting a phosphatase activity highly sensitive to OA caused an abnormal increase in AurA(Thr-295) phosphorylation late during interphase that corresponded with delayed cyclin-dependent kinase 1 (CDK1) activation. AurA(Thr-295) phosphorylation indeed influenced this timing, because AurA isoforms retaining an intact Thr-295 residue further delayed M-phase entry. Using mathematical modeling, we determined that one phosphatase would be insufficient to restrict AurA phosphorylation and regulate CDK1 activation, whereas a dual phosphatase topology best recapitulated our experimental observations. We propose that two phosphatases target Thr-295 of AurA to prevent premature AurA activation during interphase and that phosphorylated AurA(Thr-295) acts as a competitor substrate with a CDK1-activating phosphatase in late interphase. These results suggest a novel relationship between AurA and protein phosphatases during progression throughout the early embryonic cell cycle and shed new light on potential defects caused by AurA overexpression.  相似文献   

19.
20.
Oxidative stress induces cell death and growth arrest. In this study, the regulation and the functional role of the retinoblastoma family proteins pRb, p107, and p130 in the cellular response to oxidative stress were investigated. Treatment of endothelial cells with H2O2 induced rapid hypophosphorylation of the retinoblastoma family proteins. This event did not require p53 or p21Waf1/Cip1/Sdi1 and was not associated with cyclin/cyclin-dependent kinase down-modulation. Four lines of evidence indicate that H2O2-induced hypophosphorylation of pRb, p107, and p130 was because of the activity of protein phosphatase 2A (PP2A). First, cell treatment with two phosphatase inhibitors, okadaic acid and calyculin A, prevented the hypophosphorylation of the retinoblastoma family proteins, at concentrations that specifically inhibit PP2A. Second, SV40 small t, which binds and inhibits PP2A, when overexpressed prevented H2O2-induced dephosphorylation of the retinoblastoma family proteins, whereas a SV40 small t mutant unable to bind PP2A was totally inert. Third, PP2A core enzyme physically interacted with pRb and p107, both in H2O2-treated and untreated cells. Fourth, a PP2A phosphatase activity was co-immunoprecipitated with pRb, and the activity of pRb-associated PP2A was positively modulated by cell treatment with H2O2. Because DNA damaging agents inhibit DNA synthesis in a pRb-dependent manner, it was determined whether the PP2A-mediated dephosphorylation of the retinoblastoma family proteins played a role in this S-phase response. Indeed, it was found that inhibition of PP2A by SV40 small t over-expression prevented DNA synthesis inhibition induced by H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号