首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two different enzymes exhibiting 6-phosphofructo-1-kinase (PFK1) activity were isolated from the mycelium of Aspergillus niger: the native enzyme with a molecular mass of 85 kDa, which corresponded to the calculated molecular mass of the deduced amino acid sequence of the A. niger pfkA gene, and a shorter protein of approximately 49 kDa. A fragment of identical size also was obtained in vitro by the proteolytic digestion of the partially purified native PFK1 with proteinase K. When PFK1 activity was measured during the proteolytic degradation of the native protein, it was found to be lost after 1 h of incubation, but it was reestablished after induction of phosphorylation by adding the catalytic subunit of cyclic AMP-dependent protein kinase to the system. By determining kinetic parameters, different ratios of activities measured at ATP concentrations of 0.1 and 1 mM were detected with fragmented PFK1, as with the native enzyme. Fructose-2,6-biphosphate significantly increased the Vmax of the fragmented protein, while it had virtually no effect on the native protein. The native enzyme could be purified only from the early stages of growth on a minimal medium, while the 49-kDa fragment appeared later and was activated at the time of a sudden change in the growth rate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of sequential purifications of PFK1 enzymes by affinity chromatography during the early stages of the fungal development suggested spontaneous posttranslational modification of the native PFK1 in A. niger cells, while from the kinetic parameters determined for both isolated forms it could be concluded that the fragmented enzyme might be more efficient under physiological conditions.  相似文献   

2.
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase from rat liver was phosphorylated by cyclic AMP-dependent protein kinase and [gamma-32P]ATP. Treatment of the 32P-labeled enzyme with thermolysin removed all of the radioactivity from the enzyme core and produced a single labeled peptide. The phosphopeptide was purified by ion exchange chromatography, gel filtration, and reverse phase high pressure liquid chromatography. The sequence of the 12-amino acid peptide was found to be Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser(P)-Ser-Ile-Pro-Gln. Correlation of the extent of phosphorylation with activity showed that a 50% decrease in the ratio of kinase activity to bisphosphate activity occurred when only 0.25 mol of phosphate was incorporated per mol of enzyme subunit, and maximal changes occurred with 0.7 mol incorporated. The kinetics of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of the native bifunctional enzyme was compared with that of other rat liver protein substrates. The Km for 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (10 microM) was less than that for rat liver pyruvate kinase (39 microM), fructose-1,6-bisphosphatase (222 microM), and 6- phosphofructose -1-kinase (230 microM). Comparison of the initial rate of phosphorylation of a number of protein substrates of the cyclic AMP-dependent protein kinase revealed that only skeletal muscle phosphorylase kinase was phosphorylated more rapidly than the bifunctional enzyme. Skeletal muscle glycogen synthase, heart regulatory subunit of cyclic AMP-dependent protein kinase, and liver pyruvate kinase were phosphorylated at rates nearly equal to that of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase, while phosphorylation of fructose-1,6-bisphosphatase and 6-phosphofructo-1-kinase was barely detectable. Phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was not catalyzed by any other protein kinase tested. These results are consistent with a primary role of the cyclic AMP-dependent protein kinase in regulation of the enzyme in intact liver.  相似文献   

3.
A cDNA encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was isolated from a Spinacia oleracea leaf library and used to express a recombinant enzyme in Escherichia coli and Spodoptera frugiperda cells. The insoluble protein expressed in E. coli was purified and used to raise antibodies. Western blot analysis of a protein extract from spinach leaf showed a single band of 90.8 kDa. Soluble protein was purified to homogeneity from S. frugiperda cells infected with recombinant baculovirus harboring the isolated cDNA. The soluble protein had a molecular mass of 320 kDa, estimated by gel filtration chromatography, and a subunit size of 90.8 kDa. The purified protein had activity of both 6-phosphofructo-2-kinase specific activity 10.4-15.9 nmol min(-1) x mg protein (-1) and fructose-2,6-bisphosphatase (specific activity 1.65-1.75 nmol x mol(-1) mg protein(-1). The 6-phosphofructo-2-kinase activity was activated by inorganic phosphate, and inhibited by 3-carbon phosphorylated metabolites and pyrophosphate. In the presence of phosphate, 3-phosphoglycerate was a mixed inhibitor with respect to both fructose 6-phosphate and ATP. Fructose-2,6-bisphosphatase activity was sensitive to product inhibition; inhibition by inorganic phosphate was uncompetitive, whereas inhibition by fructose 6-phosphate was mixed. These kinetic properties support the view that the level of fructose 2,6-bisphosphate in leaves is determined by the relative concentrations of hexose phosphates, three-carbon phosphate esters and inorganic phosphate in the cytosol through reciprocal modulation of 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities of the bifunctional enzyme.  相似文献   

4.
Two different enzymes exhibiting 6-phosphofructo-1-kinase (PFK1) activity were isolated from the mycelium of Aspergillus niger: the native enzyme with a molecular mass of 85 kDa, which corresponded to the calculated molecular mass of the deduced amino acid sequence of the A. niger pfkA gene, and a shorter protein of approximately 49 kDa. A fragment of identical size also was obtained in vitro by the proteolytic digestion of the partially purified native PFK1 with proteinase K. When PFK1 activity was measured during the proteolytic degradation of the native protein, it was found to be lost after 1 h of incubation, but it was reestablished after induction of phosphorylation by adding the catalytic subunit of cyclic AMP-dependent protein kinase to the system. By determining kinetic parameters, different ratios of activities measured at ATP concentrations of 0.1 and 1 mM were detected with fragmented PFK1, as with the native enzyme. Fructose-2,6-biphosphate significantly increased the Vmax of the fragmented protein, while it had virtually no effect on the native protein. The native enzyme could be purified only from the early stages of growth on a minimal medium, while the 49-kDa fragment appeared later and was activated at the time of a sudden change in the growth rate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of sequential purifications of PFK1 enzymes by affinity chromatography during the early stages of the fungal development suggested spontaneous posttranslational modification of the native PFK1 in A. niger cells, while from the kinetic parameters determined for both isolated forms it could be concluded that the fragmented enzyme might be more efficient under physiological conditions.  相似文献   

5.
Rat hepatic 6-phosphofructo-1-kinase (ATP:d-fructose-6-phosphate 1-phosphotransferase) was purified to homogeneity and its phosphorylation by the catalytic subunit of the cyclic AMP-dependent protein kinase examined. Up to 4 mol of phosphate could be incorporated per mole of tetrameric enzyme, and the phosphate was incorporated into seryl residues. Phosphorylation did not alter the affinity of the enzyme for fructose 6-phosphate or fructose 2,6-bisphosphate. The rate of phosphorylation was enhanced by allosteric activators of 6-phosphofructo-1-kinase such as AMP and fructose 2,6-bisphosphate, and it was decreased by the allosteric inhibitors ATP and H+. The phosphopeptide region of the enzyme subunit was susceptible to limited proteolysis by trypsin. Removal of the phosphopeptide did not affect the subunit molecular weight nor the maximum activity of the enzyme, but it enhanced the apparent affinity of the enzyme for both fructose 6-phosphate and fructose 2,6-bisphosphate. It is concluded that the phosphopeptide region of the enzyme subunit is an important determinant of the affinity of the enzyme for its substrate as well as for the allosteric activator fructose 2,6-bisphosphate.  相似文献   

6.
The mechanism by which cAMP-dependent protein kinase-catalyzed phosphorylation modulates the activities of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was examined after site-specific mutation of the cAMP-dependent phosphorylation site (Ser32) to aspartic acid or alanine. The mutant and wild-type enzymes were overexpressed in Escherichia coli in a rich medium to levels as high as 30 mg/liter and were then purified to homogeneity. The kinetic properties of the Ser32-Ala mutant were identical with the dephosphorylated wild-type bifunctional enzyme. Mutation of Ser32 to aspartic acid mimicked several effects of cAMP-dependent phosphorylation: there was an increase in the Km for fructose 6-phosphate for 6-phosphofructo-2-kinase and an increase in the maximal velocity of fructose-2,6-bisphosphatase. Fructose-2,6-bisphosphatase activity of the Ser32-Asp mutant was 75% that of the phosphorylated wild-type enzyme, the mutant's kinase reaction had an identical dependence on fructose 6-phosphate, while its maximum velocity was only 60% that of the phosphorylated wild-type enzyme over a wide pH range. Furthermore, catalytic subunit-catalyzed in vitro phosphorylation of the Ser32-Ala mutant on Ser33 increased the Km for fructose 6-phosphate by 4-fold for the 6-phosphofructo-2-kinase. The results support the hypothesis that Ser32 is an important residue in the regulation of the activities of the bifunctional enzyme and that phosphorylation of Ser32 can be functionally substituted by aspartic acid. The results suggest a role for negative charge in the effect of phosphorylation.  相似文献   

7.
On the basis of the present knowledge of Aspergillus niger metabolism during citric acid fermentation, an idea on how to improve the process was formed. Initially, a higher sucrose concentration was used for the germination of spores, which caused a higher intracellular level of the osmoregulator, glycerol, to be present. When citric acid started to be excreted into the medium, the substrate was suddenly diluted. Optimization of this procedure resulted in a nearly tripled volumetric rate (grams per liter per hour) of acid production, while the overall fermentation time was halved compared with the usual batch process. Yet, a characteristic delay was observed at the start of the acid excretion after the dilution. Hypo-osmotic shock caused a prominent elevation of intracellular cyclic AMP levels. Simultaneously, the specific activity of 6-phosphofructo-1-kinase increased significantly, probably due to phosphorylation of the protein molecule by cyclic AMP-dependent protein kinase. Specific 6-phosphofructo-1-kinase activity was much higher in the treated than in the normally growing mycelium. The metabolic flow through glycolysis was expected to be higher, which should contribute to a higher volumetric rate of acid production.  相似文献   

8.
A novel form of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase that possesses little 2-kinase or bisphosphatase activity as isolated has been partially purified from spinach (Spinacia oleracea L.) leaves. However, the new form can be activated by pretreatment with Mg X ATP at room temperature. After ATP activation, the fructose 2,6-bisphosphatase activity has a Michaelis constant for fructose 2,6-bisphosphate of about 1 mM, and is inhibited by high substrate concentrations (greater than 2 mM) and both end products. The kinase/phosphatase activity ratio of the new form was dependent on pH and varied from 0.3 at pH 7.0 to 5.0 at pH 8.2. In contrast, the previously characterized form of the enzyme (which is isolated in an active form and is unaffected by preincubation with Mg X ATP) had an activity ratio of about 2 that was insensitive to pH over the range tested. The ATP-dependent activation of the new enzyme form was stimulated by fructose 6-phosphate and inhibited by glucose 6-phosphate. These results explain why activation is not observed during assay of this enzyme, and indicate that the activation process may be regulated by metabolites. Collectively, these data provide further evidence for the existence, in spinach leaves, of two molecular forms of the enzyme which exhibit different kinetic properties.  相似文献   

9.
Bovine brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was purified to homogeneity and characterized. This bifunctional enzyme is a homodimer with a subunit molecular weight of 120,000, which is twice that of all other known bifunctional enzyme isozymes. The kinase/bisphosphatase activity ratio was 3.0. The Km values for fructose 6-phosphate and ATP of the 6-phosphofructo-2-kinase were 27 and 55 microM, respectively. The Km for fructose 2,6-bisphosphate and the Ki for fructose 6-phosphate for the bisphosphatase were 70 and 20 microM, respectively. Physiologic concentrations of citrate had reciprocal effects on the enzyme's activities, i.e. inhibiting the kinase (Ki of 35 microM) and activating the bisphosphatase (Ka of 16 microM). Phosphorylation of the brain enzyme was catalyzed by the cyclic AMP-dependent protein kinase with a stoichiometry of 0.9 mol of phosphate/mol of subunit and at a rate similar to that seen with the liver isozyme. In contrast to the liver isozyme, the kinetic properties of the brain enzyme were unaffected by cyclic AMP-dependent protein kinase phosphorylation, and also was not a substrate for protein kinase C. The brain isozyme formed a labeled phosphoenzyme intermediate and cross-reacted with antibodies raised against the liver isozyme. However, the NH2-terminal amino acid sequence of a peptide generated by cyanogen bromide cleavage of the enzyme had no identity with any known bifunctional enzyme sequences. These results indicate that a novel isozyme, which is related to other 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isozymes, is expressed specifically in neural tissues.  相似文献   

10.
We report the identification of a human 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase gene (PFKFB3) isolated from a human fetal brain cDNA library. The gene was localized to 10p15-->p14 by fluorescence in situ hybridization. The entire cDNA (4,322 bp) codes for a polypeptide of 520 amino acid residues (molecular weight, 59.571 kDa). Structural analysis showed the presence of a kinase domain located at the amino terminus and a bisphosphatase domain at the carboxy terminus, characteristic of previously described 6-phosphofructo-2-kinase/fructose 2, 6-bisphosphatase isozymes. In addition, a phosphorylation site for cAMP-dependent protein kinase was found at the carboxy terminus. Northern blot analysis showed the presence of a unique 4.8-kb mRNA expressed in the different tissues studied. In mammalian COS-1 cells, this cDNA drives the expression of an active isozyme. Taken together, these results identify the presence of a gene coding for a human 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase isozyme which is ubiquitously expressed.  相似文献   

11.
When glucose was added to a suspension of Saccharomyces cerevisiae in stationary phase, it caused a transient increase in the concentration of cyclic AMP and a more persistent increase in the concentration of hexose 6-phosphate and of fructose 2,6-bisphosphate. These effects of glucose on cyclic AMP and fructose 2,6-bisphosphate but not that on hexose 6-phosphate were greatly decreased in the presence of 0.15 mM acridine orange or when a temperature-sensitive mutant deficient in adenylate cyclase was used at the restrictive temperature. Incubation of the cells in the presence of dinitrophenol and in the absence of glucose increased the concentration of both cyclic AMP and fructose 2,6-bisphosphate, but with a minimal change in that of hexose 6-phosphate. Glucose induced also in less than 3 min a severalfold increase in the activity of 6-phosphofructo-2-kinase and this effect was counteracted by the presence of acridine orange. When a cell-free extract of yeast in the stationary phase was incubated with ATP-Mg and cyclic AMP, there was a 10-fold activation of 6-phosphofructo-2-kinase. Finally, the latter enzyme was purified 150-fold and its activity could then be increased about 10-fold upon incubation with ATP-Mg and the catalytic subunit of cyclic-AMP-dependent protein kinase. This activation resulted from a 4.3-fold increase in V and a 2-fold decrease in Km. Both forms of the enzyme were inhibited by sn-glycerol 3-phosphate. From these results it is concluded that the effect of glucose in increasing the concentration of fructose 2,6-bisphosphate in S. cerevisiae is mediated by the successive activation of adenylate cyclase and of cyclic-AMP-dependent protein kinase and by the phosphorylation of 6-phosphofructo-2-kinase by the latter enzyme. In deep contrast with what is known of the liver enzyme, yeast 6-phosphofructo-2-kinase is activated by phosphorylation instead of being inactivated.  相似文献   

12.
To understand the mechanism by which the activity of the 6-phosphofructo-2-kinase (6PF-2K) of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is stimulated by its substrate ATP, we studied two mutants of the enzyme. Mutation of either Arg-279, the penultimate basic residue within the Walker A nucleotide-binding fold in the bisphosphatase domain, or Arg-359 to Ala eliminated the activation of the chicken 6PF-2K by ATP. Binding analysis by fluorescence spectroscopy using 2'(3')-O-(N-methylanthraniloyl)-ATP revealed that the kinase domains of these two mutants, unlike that of the wild type enzyme, showed no cooperativity in ATP binding and that the mutant enzymes possess only the high affinity ATP binding site, suggesting that the ATP binding site on the bisphosphatase domain represents the low affinity site. This conclusion was supported by the result that the affinity of ATP for the isolated bisphosphatase domain is similar to that for the low affinity site in the wild type enzyme. In addition, we found that the 6PF-2K of a chimeric enzyme, in which the last 25 residues of chicken enzyme were replaced with those of the rat enzyme, could not be activated by ATP, despite the fact that the ATP-binding properties of this chimeric enzyme were not different from those of the wild type chicken enzyme. These results demonstrate that activation of the chicken 6PF-2K by ATP may result from allosteric binding of ATP to the bisphosphatase domain where residues Arg-279 and Arg-359 are critically involved and require specific C-terminal sequences.  相似文献   

13.
Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DNA techniques. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was purified 5600-fold. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities could not be separated, indicating that the frog muscle enzyme is bifunctional. The enzyme preparation from frog muscle showed two bands on sodium dodecylsulphate polyacrylamide gel electrophoresis. The minor band had a relative molecular mass of 55800 and was identified as a liver (L-type) isoenzyme. It was recognized by an antiserum raised against a specific amino-terminal amino acid sequence of the L-type isoenzyme and was phosphorylated by the cyclic AMP-dependent protein kinase. The major band in the preparations from frog muscle (relative molecular mass = 53900) was slightly larger than the recombinant rat muscle (M-type) isoenzyme (relative molecular mass = 53300). The pH profiles of the frog muscle enzyme were similar to those of the rat M-type isoenzyme, 6-phosphofructo-2-kinase activity was optimal at pH 9.3, whereas fructose-2,6-bisphosphatase activity was optimal at pH 5.5. However, the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle differed from other M-type isoenzymes in that, at physiological pH, the maximum activity of 6-phosphofructo-2-kinase exceeded that of fructose-2,6-bisphosphatase, the activity ratio being 1.7 (at pH 7.2) compared to 0.2 in the rat M-type isoenzyme. 6-Phosphofructo-2-kinase activity from the frog and rat muscle enzymes was strongly inhibited by citrate and by phosphoenolpyruvate whereas glycerol 3-phosphate had no effect. Fructose-2,6-bisphosphatase activity from frog muscle was very sensitive to the non-competitive inhibitor fructose 6-phosphate (inhibitor concentration causing 50% decrease in activity = 2 mol · l-1). The inhibition was counteracted by inorganic phosphate and, particularly, by glycerol 3-phosphate. In the presence of inorganic phosphate and glycerol 3-phosphate the frog muscle fructose-2,6-bisphosphatase was much more sensitive to fructose 6-phosphate inhibition than was the rat M-type fructose-2,6-bisphosphatase. No change in kinetics and no phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was observed after incubation with protein kinase C and a Ca2+/calmodulin-dependent protein kinase. The kinetics of frog muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, although they would favour an initial increase in fructose 2,6-bisphosphate in exercising frog muscle, cannot fully account for the changes in fructose 2,6-bisphosphate observed in muscle of exercising frog. Regulatory mechanisms not yet studied must be involved in working frog muscle in vivo.Abbreviations BSA bovine serum albumin - Ca/CAMK Ca2+/calmodulin-dependent protein kinase (EC 2.7.1.37) - CL anti-l-type PFK-21 FBPase-2 antiserum - DTT dithiothreitol - EP phosphorylated enzyme intermediate - FBPase-2 fructose-2,6-bisphosphatase (EC 3.1.3.46) - F2,6P2 fructose 2,6-bisphosphate - I0,5 inhibitor concentration required to decrease enzyme activity by 50% - MCL-2 anti-PFK-2/FBPase-2 antiserum - Mr relative molecular mass - PEG polyethylene glycol - PFK-1 6-phosphofructo-1-kinase (EC 2.7.1.11) - PKF-2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PKA protein kinase A = cyclic AMP-dependent protein kinase (EC 2.7.1.37) - PKC protein kinase C (EC 2.7.1.37) - SDS sodium dodecylsulphate - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - U unit of enzyme activity  相似文献   

14.
Fructose 2,6-bisphosphate in isolated foetal hepatocytes   总被引:3,自引:0,他引:3  
Fru 2,6-P2 was present in isolated foetal hepatocytes at a concentration of 1.6 nmol per g cells. When foetal hepatocytes were exposed to glucagon no changes were observed either in the concentration of Fru 2,6-P2 and lactate release or in the activities of 6-phosphofructo-2-kinase and pyruvate kinase. Incubation of purified 6-phosphofructo-2-kinase with the catalytic subunit of protein kinase did not change the enzyme activity. The inhibition by sn-glycerol 3-phosphate was much lower for the foetal than for adult enzyme. These results suggest that an isoenzyme of 6-phosphofructo-2-kinase in foetal hepatocytes different from that of adult hepatocytes may be present.  相似文献   

15.
A β-glucan synthetase was isolated from a membrane fraction of the crayfish parasitic fungus Aphanomyces astaci Schikora, strain Si. [14C]-UDP-glucose was incorporated linearly for about 1 h at 30°C into an acid insoluble product. The apparent Km for UDP-glucose was found to be approximately 4.5 m M and the apparent Ki for UDP, a competitive inhibitor of the reaction, was 1 m M . The acid insoluble product obtained after incubating this glucan synthetase with[14C]-UDP-glucose was partially characterized by glucanase treatment. This product mainly consisted of β-1,3-linked glucosyl units. Synthetase activity was not stimulated by MgCl2, but cellobiose as well as GTP and EDTA in combination or ATP alone enhanced enzyme activity. A high proportion of the A. astaci synthetase was probably already activated during preparation and not accessible to further stimulation by nucleotide additions as found for glucan synthetase of Saccharomyces cerevisiae and Candida albicans. No synthetase activity or any factors affecting this enzyme was present in the cytosol. An exudate prepared from the cuticle of the crayfish host, did not inhibit glucan synthetase activity in vitro.  相似文献   

16.
Changes in glycolytic flux have been observed in liver under conditions where effects of cAMP seem unlikely. We have, therefore, studied the phosphorylation of four enzymes involved in the regulation of glycolysis and gluconeogenesis (6-phosphofructo-1-kinase from rat liver and rabbit muscle; pyruvate kinase, 6-phosphofructo-2-kinase and fructose-1,6-bisphosphatase from rat liver) by defined concentrations of two cAMP-independent protein kinases: Ca2+/calmodulin-dependent protein kinase and Ca2+/phospholipid-dependent protein kinase (protein kinase C). The results were compared with those obtained with the catalytic subunit of cAMP-dependent protein kinase. The following results were obtained. 1. Ca2+/calmodulin-dependent protein kinase phosphorylates 6-phosphofructo-1-kinase and L-type pyruvate kinase at a slightly lower rate as compared to cAMP-dependent protein kinase. 2. 6-Phosphofructo-1-kinase is phosphorylated by the two kinases at a single identical position. There is no additive phosphorylation. The final stoichiometry is 2 mol phosphate/mol tetramer. The same holds for L-type pyruvate kinase except that the stoichiometry with either kinase or both kinases together is 4 mol phosphate/mol tetramer. 3. Rabbit muscle 6-phosphofructo-1-kinase is phosphorylated by cAMP-dependent protein kinase but not by Ca2+/calmodulin-dependent protein kinase. 4. Fructose-1,6-bisphosphatase from rat but not from rabbit liver is phosphorylated at the same position but at a markedly lower rate by Ca2+/calmodulin-dependent protein kinase when compared to the phosphorylation by cAMP-dependent protein kinase. 5. 6-Phosphofructo-2-kinase is phosphorylated by Ca2+/calmodulin-dependent protein kinase only at a negligible rate. 6. Protein kinase C does not seem to be involved in the regulation of the enzymes examined: only 6-phosphofructo-2-kinase became phosphorylated to a significant degree. In contrast to the phosphorylation by cAMP-dependent protein kinase, this phosphorylation is not associated with a change of enzyme activity. This agrees with our observation that the sites of phosphorylation by the two kinases are different. The results indicate that Ca2+/calmodulin-dependent protein kinase but not protein kinase C could be involved in the regulation of hepatic glycolytic flux under conditions where changes in the activity of cAMP-dependent protein kinase seem unlikely.  相似文献   

17.
Yeast 6-phosphofructo-2-kinase: sequence and mutant.   总被引:4,自引:0,他引:4  
M Kretschmer  D G Fraenkel 《Biochemistry》1991,30(44):10663-10672
We have reported yeast 6-phosphofructo-2-kinase (EC 2.7.1.105) as having a ca. 96-kDa subunit size, as well as isolation of its structural gene, PFK26. Sequencing now shows an open reading frame of 827 amino acids and 93.5 kDa. The deduced amino acid sequence has 42% identity with the 55-kDa subunit of the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from rat liver with extra material at both ends. Although the yeast sequence is especially similar to the liver one in its bisphosphatase domain, the essential His-258 of the liver enzyme is, in yeast, a serine, which may explain the apparent lack of bisphosphatase activity. Also, the yeast enzyme known to be activated via protein kinase A, has a putative phosphorylation site near its C-terminus and lacks the N-terminal phosphorylation sequence involved in inhibition of the liver enzyme. In a chromosomal null mutant strain, pfk26::LEU2, activity was marginal and the protein was not detectable as antigen. The mutant strain grew well on glucose and contained a near-normal level of fructose 2,6-P2. But in its growth on pyruvate, by contrast with the wild-type strain, no fructose 2,6-P2 was detectable, and it did not form after glucose addition in the presence of cycloheximide either. Such resting cells, however, metabolized glucose at the normal high rate. Glucose addition to the pfk26 mutant strain in the absence of cycloheximide, on the other hand, caused a ca. 10% normal rate of fructose 2,6-P2 accumulation, presumably employing a glucose-inducible second enzyme. Using strains also lacking 6-phosphofructo-1-kinase, affinity chromatography revealed the second enzyme as a minor peak amounting to 6% of 6-phosphofructo-2-kinase activity in a PFK26 strain and as the sole peak, in similar amount, in a pfk26 mutant strain.  相似文献   

18.
The nature of rat liver protein phosphatases involved in the dephosphorylation of the glycolytic key enzyme 6-phosphofructo-1-kinase and the regulatory enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase was investigated. In terms of the classification system proposed by Ingebritsen & Cohen [(1983) Eur. J. Biochem. 132, 255-261], only the type-2 protein phosphatases 2A (which can be separated into 2A1 and 2A2) and 2C act on these substrates. Fractionation of rat liver extracts by anion-exchange chromatography and gel filtration revealed that protein phosphatase 2A is responsible for most of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase phosphatase activity (activity ratio 2A/2C = 4:1). On the other hand, 6-phosphofructo-1-kinase phosphatase activity is equally distributed between protein phosphatases 2A (2A1 plus 2A2) and 2C. In addition, the possible role of low-Mr compounds for the control of purified protein phosphatase 2C was examined. At near-physiological concentrations, none of the metabolites studied significantly affected the rate of dephosphorylation of 6-phosphofructo-1-kinase, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, pyruvate kinase or fructose-1,6-bisphosphatase.  相似文献   

19.
In order to ascertain whether the heart and liver forms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were products of two different genes or arose via alternative splicing of a single gene, the bovine liver cDNA of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was isolated from a lambda gt10 phage library and its sequence compared with that of bovine heart cDNA. The deduced amino acid sequence of the bovine liver cDNA was also compared with the amino acid sequence of the human and rat liver phosphofructo-2-kinase/fructose-2,6-bisphosphatase enzyme. The bovine liver cDNA codes for a protein that has 81.6% amino acid identity with the bovine heart form and 97.0 and 98.3% identity with the rat and human liver forms of the enzyme, respectively. Comparison of the nucleotide sequences of the two bovine cDNAs and their deduced amino acid sequences demonstrates that while there is conservation of the active sites of liver/muscle and heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases they are encoded by different genes.  相似文献   

20.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase appears to be the only enzyme catalyzing the formation and hydrolysis of Fru-2,6-P2. The enzyme as we isolate it, contains a trace of tightly bound Fru-6-P. In this condition, it exhibited an ATPase activity comparable to its kinase activity. Inorganic phosphate stimulated all of its activities, by increasing the affinity for all substrates and increasing the Vmax of ATP and Fru-2,6-P2 hydrolysis. The enzyme catalyzed ADP/ATP and Fru-6-P/Fru-2,6-P2 exchanges at rates comparable to net reaction rates. It was phosphorylated by both [gamma-32P]ATP and [2-32P] Fru-2,6-P2, and the label from either donor was chased by either unlabeled donor, showing that the bound phosphate is hydrolyzed if not transferred to an acceptor ligand. The rate of labeling of the enzyme by [2-32P]Fru-2,6-P2 was 2 orders of magnitude greater than the maximal velocity of the bisphosphatase and therefore sufficiently fast to be a step in the hydrolysis. Both inorganic phosphate and Fru-6-P increased the rate and steady state of enzyme phosphorylation by ATP. Fru-2,6-P2 inhibited the ATPase and kinase reactions and Fru-6-P inhibited the Fru-2,6 bisphosphatase reaction while ATP and ADP had no effect. Removal of the trace of Fru-6-P by Glu-6-P isomerase and Glu-6-P dehydrogenase reduced enzyme phosphorylation by ATP to very low levels, greatly inhibited the ATPase, and rendered it insensitive to Pi, but did not affect ADP/ATP exchange. (alpha + beta)Methylfructofuranoside-6-P did not increase the rate or steady state labeling by ATP. These results suggest that labeling of the enzyme by ATP involved the production of [2-32P]Fru-2,6-P2 from the trace Fru-6-P. The 6-phosphofructo-2-kinase, fructose 2,6-bisphosphatase, and ATP/ADP exchange were all inhibited by diethylpyrocarbonate, suggesting the involvement of histidine residues in all three reactions. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a Fru-2,6 bisphosphatase site which is readily phosphorylated by Fru-2,6-P2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号