首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Klebsiella pneumoniae isolated from oil well waters reduced in size in response to nutrient starvation. The cells remained viable during starvation and later were able to grow rapidly when stimulated by nutrients. The heterotrophic potential, culture absorbance and extracellular polysaccharide production decreased during cell starvation whereas an initial increase in colony-forming units was observed on agar plates. Transmission electron microscopy (TEM) after 24 d revealed that the cells had changed to small rods or cocci between 0.5 by 0.25 μm and 0.87 by 0.55 μm. When transferred to half-strength brain heart infusion medium, TEM showed cell division and rod-shaped cells after 45 min and full resuscitation within 4 h. Cell response was much slower in sodium citrate medium and resuscitation took 8 h.  相似文献   

2.
Stationary-phase-grown cells of the estuarine bacterium Vibrio vulnificus became nonculturable in nutrient-limited artificial seawater microcosms after 27 days at 5 degrees C. When the nonculturable cells were subjected to temperature upshift by being placed at room temperature, the original bacterial numbers were detectable by plate counts after 3 days, with a corresponding increase in the direct viable counts from 3% to over 80% of the total cell count. No increase in the total cell count was observed during resuscitation, indicating that the plate count increases were not due to growth of a few culturable cells. Chloramphenicol and ampicillin totally inhibited resuscitation of the nonculturable cells when added to samples that had been at room temperature for up to 24 h. After 72 h of resuscitation, the inhibitors had an easily detectable but reduced effect on the resuscitated cells, indicating that protein and peptidoglycan synthesis were still ongoing. Major changes in the morphology of the cells were discovered. Nonculturable cells of V. vulnificus were small cocci (approximately 1.0 micron in diameter). Upon resuscitation, the cells became large rods with a size of mid-log-phase cells (3.0 microns in length). Four days after the cells had become fully resuscitated, the cell size had decreased to approximately 1.5 micron in length and 0.7 micron in width. The cells were able to go through at least two cycles of nonculturability and subsequent resuscitation without changes in the total cell count. This is the first report of resuscitation, without the addition of nutrient, of nonculturable cells, and it is suggested that temperature may be the determining factor in the resuscitation from this survival, or adaptation, state of certain species in estuarine environments.  相似文献   

3.
利用噬菌体表面展示抗体库对不同血清处理U251细胞吸附的抗体进行差异筛选,筛选获得血清饥饿细胞吸附的阳性噬菌体克隆96个和血清饥饿后恢复血清培养细胞吸附的阳性噬菌体克隆82个。细胞免疫组化检测发现应答反应差异较大的抗体2个,即血清饥饿培养细胞特异反应的抗体1个(11号抗体)和血清饥饿后恢复血清培养细胞特异反应的抗体1个(2号抗体),其中2号抗体在恢复血清培养细胞中的应答反应强于血清饥饿培养细胞,是一个血清应答基因蛋白特异抗体,且在血清饥饿后恢复血清培养不同时间的U251细胞中具有一定的特异性反应。该研究为寻找与细胞周期调控有关的因子奠定了基础,同时对肿瘤的诊断和治疗研究也有重要意义。  相似文献   

4.
Nonculturable cells were found to occur in populations of Mycobacterium tuberculosis cells during the long post-stationary phase. These cells were small (0.6-0.8 micron) ovoid and coccoid forms with intact cell walls and negligible respiratory activity, which allows them to be regarded as dormant cells. Nonculturable cells were characterized by low viability after plating onto solid medium; a minor part of the population of these cells could be cultivated in liquid medium. Cell-free culture liquid of an exponential-phase Mycobacterium tuberculosis culture or the bacterial growth factor Rpf exerted a resuscitating effect, increasing substantially the growth capacity of the nonculturable cells in liquid medium. During resuscitation of nonculturable cells, a transition from ovoid to rodlike cell shape occurred. At early stages of resuscitation, ovoid cells formed small aggregates. The recovery of culturability was associated with the formation of rod-shaped cells in the culture. The data obtained demonstrate the in vitro formation of dormant cells of Mycobacterium tuberculosis, which do not grow on solid media but can be resuscitated in liquid medium under the effect of substance(s) secreted by actively growing cells.  相似文献   

5.
6.
7.
The speed of recovery of cell suspensions and biofilm populations of the ammonia oxidizer Nitrosomonas europaea, following starvation was determined. Stationary-phase cells, washed and resuspended in ammoniumfree inorganic medium, were starved for periods of up to 42 days, after which the medium was supplemented with ammonium and subsequent growth was monitored by measuring nitrite concentration changes. Cultures exhibited a lag phase prior to exponential nitrite production, which increased from 8.72 h (no starvation) to 153 h after starvation for 42 days. Biofilm populations of N. europaea colonizing sand or soil particles in continuous-flow, fixed column reactors were starved by continuous supply of ammonium-free medium. Following resupply of ammonium, starved biofilms exhibited no lag phase prior to nitrite production, even after starvation for 43.2 days, although there was evidence of cell loss during starvation. Biofilm formation will therefore provide a significant ecological advantage for ammonia oxidizers in natural environments in which the substrate supply is intermittent. Cell density-dependent phenomena in a number of gram-negative bacteria are mediated by N-acyl homoserine lactones (AHL), including N-(3-oxohexanoyl)-L-homoserine lactone (OHHL). Addition of both ammonium and OHHL to cell suspensions starved for 28 days decreased the lag phase in a concentration-dependent manner from 53.4 h to a minimum of 10.8 h. AHL production by N. europaea was detected by using a luxR-luxAB AHL reporter system. The results suggest that rapid recovery of high-density biofilm populations may be due to production and accumulation of OHHL to levels not possible in relatively low-density cell suspensions.  相似文献   

8.
Seven different strains of Saccharomyces cerevisiae were tested for the ability to maintain their fermentative capacity during 24 h of carbon or nitrogen starvation. Starvation was imposed by transferring cells, exponentially growing in anaerobic batch cultures, to a defined growth medium lacking either a carbon or a nitrogen source. After 24 h of starvation, fermentative capacity was determined by addition of glucose and measurement of the resulting ethanol production rate. The results showed that 24 h of nitrogen starvation reduced the fermentative capacity by 70 to 95%, depending on the strain. Carbon starvation, on the other hand, provoked an almost complete loss of fermentative capacity in all of the strains tested. The absence of ethanol production following carbon starvation occurred even though the cells possessed a substantial glucose transport capacity. In fact, similar uptake capacities were recorded irrespective of whether the cells had been subjected to carbon or nitrogen starvation. Instead, the loss of fermentative capacity observed in carbon-starved cells was almost surely a result of energy deprivation. Carbon starvation drastically reduced the ATP content of the cells to values well below 0.1 micro mol/g, while nitrogen-starved cells still contained approximately 6 micro mol/g after 24 h of treatment. Addition of a small amount of glucose (0.1 g/liter at a cell density of 1.0 g/liter) at the initiation of starvation or use of stationary-phase instead of log-phase cells enabled the cells to preserve their fermentative capacity also during carbon starvation. The prerequisites for successful adaptation to starvation conditions are probably gradual nutrient depletion and access to energy during the adaptation period.  相似文献   

9.
Seven different strains of Saccharomyces cerevisiae were tested for the ability to maintain their fermentative capacity during 24 h of carbon or nitrogen starvation. Starvation was imposed by transferring cells, exponentially growing in anaerobic batch cultures, to a defined growth medium lacking either a carbon or a nitrogen source. After 24 h of starvation, fermentative capacity was determined by addition of glucose and measurement of the resulting ethanol production rate. The results showed that 24 h of nitrogen starvation reduced the fermentative capacity by 70 to 95%, depending on the strain. Carbon starvation, on the other hand, provoked an almost complete loss of fermentative capacity in all of the strains tested. The absence of ethanol production following carbon starvation occurred even though the cells possessed a substantial glucose transport capacity. In fact, similar uptake capacities were recorded irrespective of whether the cells had been subjected to carbon or nitrogen starvation. Instead, the loss of fermentative capacity observed in carbon-starved cells was almost surely a result of energy deprivation. Carbon starvation drastically reduced the ATP content of the cells to values well below 0.1 μmol/g, while nitrogen-starved cells still contained approximately 6 μmol/g after 24 h of treatment. Addition of a small amount of glucose (0.1 g/liter at a cell density of 1.0 g/liter) at the initiation of starvation or use of stationary-phase instead of log-phase cells enabled the cells to preserve their fermentative capacity also during carbon starvation. The prerequisites for successful adaptation to starvation conditions are probably gradual nutrient depletion and access to energy during the adaptation period.  相似文献   

10.
The chemotactic responses by starved cells of marine Vibrio sp. strain S14 differed from those elicited by cells that were not nutrient limited. The rate of chemotaxis at different concentrations of several attractants varied for starved and growing cells. Vibrio sp. strain S14 showed positive chemotaxis to leucine, valine, arginine, and glucose at the onset of energy and nutrient deprivation. A continued, though decreased, positive response was demonstrated fro leucine, arginine, and glucose at 10 h of starvation. Cells starved for 3 h displayed a stronger response to glucose than those starved for shorter or longer times. However, cells starved for 5 and 10 h responded more strongly to a lower concentration of glucose than did cells starved for 0 and 3 h. Starvation for 24 h elicited no measurable chemotaxis to leucine, arginine, or glucose. The motility decreased by over 95% in the cell population after 24 h of starvation, which resulted in a low sensitivity in the chemotaxis assay. A switch in the response to valine was observed by 3 h of starvation. The addition of nutrients of 22-h-starved cells elicited a temporary positive chemotactic response to leucine by 2 and 4 h of nutrient recovery, while cells at 1 and 6 h of recovery showed no response. At 2 h of recovery, the greatest response was recorded to 10−4 M leucine, whereas at 4 h it was to 10−2 M leucine. Ten to fifty percent of the 22-h-starved cell population regained their motility after 4 h of nutrient-aided recovery. It is possible that two types of chemosensory systems exist in marine bacteria. Starved and growing cells responded to different concentrations of the attractant, and growing cells displayed a saturated chemotactic system with leucine as the attractant, unlike the response during starvation.  相似文献   

11.
The marine bacterium Pseudomonas sp. strain S9 produces exopolysaccharides (EPS) during both growth and total energy source and nutrient starvation. Transmission electron microscopy of immunogold-labeled cells demonstrated that the EPS is closely associated with the cell surface during growth (integral EPS), while both the integral form and a loosely associated extracellular (peripheral) form were observed during starvation. Formation and release of the latter rendered the starvation medium viscous. In addition, after 3 h of starvation in static conditions, less than 5% of the cells were motile, compared with 100% at the onset of starvation and approximately 80% subsequent to release of the peripheral EPS at 27 h of starvation. Inhibition of protein synthesis with chloramphenicol added before 3 h of starvation caused no increase in viscosity. However, addition of chloramphenicol at 3 h did not prevent the subsequent increase in viscosity displayed by S9 cells. The amount of integral EPS increased for both nontreated and chloramphenicol-treated S9 cells during the first hour of starvation, with a subsequent equal decrease. The chloramphenicol-treated cells, as well as cells of a transposon-generated mutant strain deficient in peripheral EPS formation, remained adhesive to a hydrophobic inanimate surface during the initial 5 h of starvation, whereas nontreated wild-type cells had progressively decreased adhesion capacity. During the initial 5 h of starvation, most of the nontreated cells but only a small fraction of the chloramphenicol-treated and mutant cells detached from the hydrophobic substratum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The marine bacterium Pseudomonas sp. strain S9 produces exopolysaccharides (EPS) during both growth and total energy source and nutrient starvation. Transmission electron microscopy of immunogold-labeled cells demonstrated that the EPS is closely associated with the cell surface during growth (integral EPS), while both the integral form and a loosely associated extracellular (peripheral) form were observed during starvation. Formation and release of the latter rendered the starvation medium viscous. In addition, after 3 h of starvation in static conditions, less than 5% of the cells were motile, compared with 100% at the onset of starvation and approximately 80% subsequent to release of the peripheral EPS at 27 h of starvation. Inhibition of protein synthesis with chloramphenicol added before 3 h of starvation caused no increase in viscosity. However, addition of chloramphenicol at 3 h did not prevent the subsequent increase in viscosity displayed by S9 cells. The amount of integral EPS increased for both nontreated and chloramphenicol-treated S9 cells during the first hour of starvation, with a subsequent equal decrease. The chloramphenicol-treated cells, as well as cells of a transposon-generated mutant strain deficient in peripheral EPS formation, remained adhesive to a hydrophobic inanimate surface during the initial 5 h of starvation, whereas nontreated wild-type cells had progressively decreased adhesion capacity. During the initial 5 h of starvation, most of the nontreated cells but only a small fraction of the chloramphenicol-treated and mutant cells detached from the hydrophobic substratum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Growth of Euglena gracilis Z Pringsheim under photoheterotrophic conditions in a nitrogen-deprived medium resulted in progressive loss of chloroplastic material until total bleaching of the cells occurred. Biochemical analysis and ultrastructural observation of the first stages of the starvation process demonstrated an early lag phase (from 0 to 9 h) in which cells increased in size, followed by a period of cell division, apparently supported by the mobilization of some chloroplastic proteins such as the photosynthetic CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. The degradation of the enzyme started after 9 h of starvation and was preceded by a transient concentration of this protein in pyrenoidal structures. Protein nitrogen and photosynthetic pigments as well as number of chloroplasts per cell decreased during proliferation through mere distribution among daughter cells. However, after 24 h, when cell division had almost ceased, there was a slow but steady decline of photosynthetic pigments. This was paralleled by observable ultrastructural changes including progressive loss of chloroplast structure and accumulation of paramylon granules and lipid globules in the cytoplasm. These findings reinforce the role of chloroplastic materials as a nitrogen source during starvation of E. gracilis in a carbon-rich medium. The excess of ribulose-1,5-bisphosphate carboxylase/oxygenase acts as a first reservoir that, once exhausted, is superseded by the generalized disassembly of the photosynthetic structures, if the adverse environment persists more than 24 h.  相似文献   

14.
Starved Tetrahymena thermophila cells underwent synchronous cell division 2 h after a mechanical stimulation. The macronucleus showed no obvious increase in DNA content before the cell division in the starvation medium, and the DNA content was decreased after the cell division. On the other hand, when the starved cells were given nutrient-supplied medium immediately after the mechanical stimulation, cell division was delayed for 3 h. This period was almost the same as that for G1 cells in the stationary culture to first division after transfer to fresh nutrient medium. These results suggest that the mechanical stimulation induces an early division of starved cells, skipping the macronuclear S-phase with the starved cells probably becoming trapped in G1. Starved cells that had finished division soon formed mating pairs with cells of the opposite type. These observations lead us to propose that cell division in starvation conditions may be necessary to reduce macronuclear DNA content prior to the mating of T. thermophila.  相似文献   

15.
16.
Three marine bacteria were examined for physiological and morphological changes in the initial phase of starvation. It was found that the starvation process was induced in a similar way irrespective of whether the cells were suspended in nutrient and energy free artificial seawater (NSS) or NSS supplemented with nitrogen and phosphorus. An initial phase of increased activity was consistent with a decreased response to added nutrients. Recovery from starvation exhibited the same response in both these starvation regimes, measured throughout the starvation period. Cells in nitrogen or phosphorus deprived starvation regimes, showed a high and rapid increased activity, followed by a delayed and more pronounced decline in respiratory activity. The initial phase of starvation also included a loss of poly--hydroybutyrate as observed by transmission electron microscopy (TEM). Two bacterial strains showed formation of small vesicles on the outer cell layer when examined by TEM. This formation and release of vesicles was related to the continuous size reduction during starvation survival. The results are discussed in terms of defining the mechanisms of initial cellular responses to nutrient deprivation.Abbreviation NSS nine salt solution  相似文献   

17.
Pre-starvation amoebae of Dictyostelium discoideum exhibit random movements. Starved cells aggregate by directed movements (chemotaxis) towards cyclic AMP and differentiate into live spores or dead stalk cells. Many differences between presumptive spore and stalk cells precede differentiation. We have examined whether cell motility-related factors are also among them. Cell speeds and localisation of motility-related signalling molecules were monitored by live cell imaging and immunostaining (a) in nutrient medium during growth, (b) immediately following transfer to starvation medium and (c) in nutrient medium that was re-introduced after a brief period of starvation. Cells moved randomly under all three conditions but mean speeds increased following transfer from nutrient medium to starvation medium; the transition occurred within 15 min. The distribution of speeds in starvation medium was bimodal: about 20% of the cells moved significantly faster than the remaining 80%. The motility-related molecules F-actin, PTEN and PI3 kinase were distributed differently in slow and fast cells. Among starved cells, the calcium content of slower cells was lower than that of the faster cells. All differences reverted within 15 min after restoration of the nutrient medium. The slow/fast distinction was missing in Polysphondylium pallidum, a cellular slime mould that lacks the presumptive stalk and spore cell classes, and in the trishanku (triA(-)) mutant of D. discoideum, in which the classes exist but are unstable. The transition from growth to starvation triggers a spontaneous and reversible switch in the distribution of D. discoideum cell speeds. Cells whose calcium content is relatively low (known to be presumptive spore cells) move slower than those whose calcium levels are higher (known to be presumptive stalk cells). Slow and fast cells show different distributions of motility-related proteins. The switch is indicative of a bistable mechanism underlying cell motility.  相似文献   

18.
The ultrastructure of the wall of Candida albicans strain 6406 was examined in polyeneresistant organisms obtained by continued incubation after the cessation of growth. The walls of organisms harvested either during the exponential phase of growth or after 24 h starvation, when examined in situ, showed the typical layered appearance. After 72 h starvation, when the resistance to amphotericin B methyl ester (AME) was 60 times greater than that of exponentially growing organisms, both the periplasmic material and the distinct electron-dense layers were absent from the wall. At this stage there was no increase in the thickness of the wall. After 144 h starvation the thickness of the wall had increased from 143 +/-22 nm (exponential phase organisms) to 211+/-58 nm. If after 144 h starvation the organisms were incubated for 1 h in fresh nutrient medium they regained their sensitivity to AME and the wall regained the periplasmic material and its characteristic multilayered appearance. During the first 24 h starvation there was a considerable fall in the soluble glucan fraction, but on continued incubation there was little change in the relative proportions of the major carbohydrate constituents of the cell. Thin sections of purified walls isolated from organisms harvested either during exponential growth or after 144 h starvation were identical in appearance and characterized by the absence of the electrondense layers observed in sections of intact cells and by a reduction in thickness to 100+/-20nm.  相似文献   

19.
Induction of c-fos mRNA levels associated with the stimulation of growth by fetal bovine serum following quiescence was examined in three cell types following brief (24 h) serum starvation. Starved NIH-3T3 and HeLa S3 cells experienced c-fos mRNA induction 20-30 min after addition of serum. In contrast, Swiss-3T3 cells expressed c-fos constitutively following serum starvation. The pattern of oncogene expression coincided with the level of quiescence of each cell line prior to induction. Serum inductions of c-fos expression was dependent upon the response of each cell line to serum starvation, c-fos expression was also examined in HeLa S3 cells that had been separated into sequential cell cycle phases by centrifugal elutriation, c-fos expression peaked during the earliest part of the synchronous G1 phase. The amount of c-fos mRNA measured was approximately twice that found during other cell cycle phases. This suggests that, in addition to its role during the transition from quiescence, the c-fos gene product may play a regulatory role during the earliest part of G1 phase of the continuous cell cycle.  相似文献   

20.
We are studying cell differentiation in Dictyostelium discoideum by examining the regulation of genes that are preferentially expressed in different cell types. A system has been established in which prestalk- and prespore-cell-specific genes are expressed in single cells in response to culture conditions. We confirm our previous results showing that cyclic AMP induces prestalk genes and now show that it is also required for prespore gene induction. The expression of both classes of genes is additionally dependent on the presence of a factor(s) secreted by developing cells which we call conditioned medium factor(s). An assay for conditioned medium factor(s) shows that it is detectable within 2.5 h after the onset of development. Conditioned medium factor(s) also promotes the expression of genes induced early in development, but has no detectable effect on the expression of actin genes and a gene expressed maximally in vegetative cells. In the presence of conditioned medium factor(s), exogenous cyclic AMP at the onset of starvation fails to induce the prespore and prestalk genes. The addition of cyclic AMP between 2 and 12 h of starvation results in rapid prestalk gene expression, whereas prespore genes are induced at an invarient time (approximately 18 h after the onset of starvation). These data suggest that cyclic AMP and conditioned medium factor(s) are sufficient for prestalk gene induction, whereas an additional parameter(s) is involved in the control of prespore gene induction. In contrast to several previous studies, we show that multicellularity is not essential for the expression of either prespore or prestalk genes. These data indicate that prespore and prestalk genes have cell-type-specific as well as shared regulatory factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号