首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
Sexual differentiation of rat liver carbonic anhydrase III   总被引:5,自引:0,他引:5  
Using radioimmunoassay, the concentration of carbonic anhydrase III in the livers of adult male rats was found to be approx. 30-times greater than that observed in mature females. Castration of male rats led to a marked reduction in liver carbonic anhydrase III concentrations which could be partially restored to control levels by testosterone replacement. Administration of testosterone to ovariectomised female rats induced about a 5-fold increase in liver carbonic anhydrase III concentration. Immunoprecipitation analysis of the products of liver mRNA translation in vitro with antiserum specific for carbonic anhydrase III showed that hormonal control of the levels of carbonic anhydrase III in liver is mediated by changes in the amount of translatable carbonic anhydrase III mRNA. Marked changes in liver carbonic anhydrase III concentrations were also observed in developing and ageing male rats.  相似文献   

2.
Using radioimmunoassay, the concentration of carbonic anhydrase III in the livers of adult male rats was found to be approx. 30-times greater than that observed in mature females. Castration of male rats led to a marked reduction in liver carbonic anhydrase III concentrations which could be partially restored to control levels by testosterone replacement. Administration of testosterone to ovariectomised female rats induced about a 5-fold increase in liver carbonic anhydrase III concentration. Immunoprecipitation analysis of the products of liver mRNA translation in vitro with antiserum specific for carbonic anhydrase III showed that hormonal control of the levels of carbonic anhydrase III in liver is mediated by changes in the amount of translatable carbonic anhydrase III mRNA. Marked changes in liver carbonic anhydrase III concentrations were also observed in developing and ageing male rats.  相似文献   

3.
The carbonic anhydrases reversibly hydrate carbon dioxide to yield bicarbonate and hydrogen ion. They have a variety of physiological functions, although the specific roles of each of the 10 known isozymes are unclear. Carbonic anhydrase isozyme III is particularly rich in skeletal muscle and adipocytes, and it is unique among the isozymes in also exhibiting phosphatase activity. Previously published studies provided evidence that the phosphatase activity was intrinsic to carbonic anhydrase III, that it had specificity for tyrosine phosphate, and that activity was regulated by reversible glutathionylation of cysteine186. To study the mechanism of this phosphatase, we cloned and expressed the rat liver carbonic anhydrase III. The purified recombinant had the same specific activity as the carbonic anhydrase purified from rat liver, but it had virtually no phosphatase activity. We attempted to identify an activator of the phosphatase in rat liver and found a protein of approximately 14 kDa, the amount of which correlated with the phosphatase activity of the carbonic anhydrase III fractions. It was identified as liver fatty acid binding protein, which was then purified to test for activity as an activator of the phosphatase and for protein-protein interaction, but neither binding nor activation could be demonstrated. Immunoprecipitation experiments established that carbonic anhydrase III could be separated from the phosphatase activity. Finally, adding additional purification steps completely separated the phosphatase activity from the carbonic anhydrase activity. We conclude that the phosphatase activity previously considered to be intrinsic to carbonic anhydrase III is actually extrinsic. Thus, this isozyme exhibits only the carbon dioxide hydratase and esterase activities characteristic of the other mammalian isozymes, and the phosphatase previously shown to be activated by glutathionylation is not carbonic anhydrase III.  相似文献   

4.
Carbonic anhydrase III is a cytosolic protein which is particularly abundant in skeletal muscle, adipocytes, and liver. The specific activity of this isozyme is quite low, suggesting that its physiological function is not that of hydrating carbon dioxide. To understand the cellular roles of carbonic anhydrase III, we inactivated the Car3 gene. Mice lacking carbonic anhydrase III were viable and fertile and had normal life spans. Carbonic anhydrase III has also been implicated in the response to oxidative stress. We found that mice lacking the protein had the same response to a hyperoxic challenge as did their wild-type siblings. No anatomic alterations were noted in the mice lacking carbonic anhydrase III. They had normal amounts and distribution of fat, despite the fact that carbonic anhydrase III constitutes about 30% of the soluble protein in adipocytes. We conclude that carbonic anhydrase III is dispensable for mice living under standard laboratory husbandry conditions.  相似文献   

5.
Androgen-linked control of rat liver carbonic anhydrase III   总被引:3,自引:0,他引:3  
The concentration of carbonic anhydrase III (CAIII) in male rat liver was found to be 30 times greater than that in the female. Castration of male rats led to marked reduction in liver CAIII concentrations which could be partially restored to control levels by testosterone replacement. Marked developmental and senescence changes in liver CAIII were also observed in male rats.  相似文献   

6.
In the accompanying paper, we described the existence, molecular characterization, and ontogeny of a 30 kDa abnormal protein in chicken dystrophic muscles. In this study, we have purified chicken carbonic anhydrase III and the 30 kDa protein and directly compared them. In terms of its enzymological features, the 30 kDa protein is a typical carbonic anhydrase III. Like carbonic anhydrases, it contains one mole zinc per mole of protein. The protein selectively cross-reacted with a chicken carbonic anhydrase III antibody. Antibody to the 30 kDa protein cross-reacted with chicken skeletal muscle carbonic anhydrase III. Moreover, the distribution of the abnormal protein is exactly identical to that of carbonic anhydrase III; however, there is a possibility that the 30 kDa protein is a variant of carbonic anhydrase III. Slight differences were found in antigenicities and in the apparent molecular weights of the two proteins. We have compared the two proteins by 125I-labeled two-dimensional peptide mapping. Tryptic maps have shown that the two proteins are highly homologous. Combined, these results strongly indicate that the 30 kDa protein and carbonic anhydrase III are similar, if not identical.  相似文献   

7.
Zinc and carbonic anhydrase III measurement in human and rat muscle extracts indicate that: 1. About one fifth of zinc in human soleus is associated with carbonic anhydrase III isozyme, and even higher levels of zinc and carbonic anhydrase III are found in rat soleus, where about one half of the zinc is in carbonic anhydrase III. Other muscle was also analysed in a similar way, (see text). Heart is notable in containing lower levels of zinc but negligible carbonic anhydrase III. 2. Treatment of muscle with water or phosphate solutions showed that all the carbonic anhydrase III was water extractable, whereas significant zinc remained bound, but was partially extractable by phosphate solutions. 3. Dialysis of muscle extracts showed that whilst some zinc was dialysable, there was no significant contribution from the carbonic anhydrase III in the dialysed extract. EDTA enhanced the release of dialysable zinc from muscle extract. These findings are discussed in relation to muscle disease.  相似文献   

8.
The immunohistochemical localization of carbonic anhydrase isoenzymes has never been investigated in avian renal tissue previously. Enzyme activity has largely been documented by histochemical and physiological reports. In this investigation, specific antisera were used to study the distribution of the cytosolic carbonic anhydrase II and III isoenzymes in the quail kidney. Comparison between the present findings and the corresponding histochemical patterns, previously obtained in the same species by a cobalt phosphate precipitation method, resulted in the bulk of renal carbonic anhydrase activity being attributed to the carbonic anhydrase II isoenzyme. Conversely, moderate carbonic anhydrase III immunostaining appeared to be confined to the smooth muscle cells of ureteral and arteriolar walls. Indirect evidence of the occurrence, in the quail kidney, of a membrane-associated carbonic anhydrase form, antigenically distinct from the II and III isoforms, was inferred.  相似文献   

9.
The contents of glutathione S-transferase (GST) subunits, carbonic anhydrase III (CAIII), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a 230 kDa protein are affected by protein deprivation in mouse liver. In order to know if particular amino acids control these contents, the effects of feeding for 5 days with diets containing different amino acids were examined. After an exploration using SDS-PAGE analysis, the action of selected diets was further examined by distinct techniques. The 230 kDa protein was identified as fatty acid synthase (FAS) by both mass spectrometry and amino acid sequence analyses. Dietary tests showed that: (1) a protein-free diet (PFD) increased the content of glutathione S-transferases P1 and M1, and glyceraldehyde-3-phosphate dehydrogenase, while the content of glutathione S-transferase A3, fatty acid synthase and carbonic anhydrase III decreased; (2) a protein-free diet having either methionine or cysteine preserved the normal contents of glutathione S-transferases P1, A3, M1 and carbonic anydrase III; (3) a protein-free diet having threonine preserved partially the normal contents of glutathione S-transferases P1, A3, M1 and carbonic anhydrase III; (4) a protein-free diet having methionine, threonine and cysteine prevented in part the loss of fatty acid synthase; and (5) the glyceraldehyde-3-phosphate dehydrogenase content was controlled by increased carbohydrate level and/or by lower amino acid content of diets, but not by any specific amino acid. These data indicate that methionine and cysteine exert a main role on the control of liver glutathione S-transferases A3 and P1, and carbonic anhydrase III. Thus, they emerge necessary to prevent unsafe alterations of liver metabolism caused by protein deprivation.  相似文献   

10.
We have found that many dianionic species, at millimolar concentrations, significantly activate or inhibit the bovine carbonic anhydrase III-catalyzed hydration of CO2. Dianionic species such as HPO2-4 and SO2-3, with pKb values near 7, are activators, whereas weakly basis species such as SO2-4 act as inhibitors. Both activation and inhibition are partial hyperbolic in nature and do not appear to compete with monoanionic linear inhibitors like N-3. Our kinetic data are consistent with a formal mechanism of action for carbonic anhydrase III that is directly analogous to that of carbonic anhydrase II, in which Lys-64 of carbonic anhydrase III can act as an intramolecular H+ transfer group during CO2 hydration. Our data suggest that dianionic inhibitors depress the rate of H+ transfer during turnover by stabilizing the protonated form of Lys-64. We postulate that dianionic activators enhance the rate of a rate-limiting H+ transfer step in the mechanism, probably by acting directly as H+ acceptors.  相似文献   

11.
The dynamics and pathways of CO2 movements across the membranes of mitochondria respiring in vitro in a CO2/HCO-3 buffer at concentrations close to that in intact rat tissues were continuously monitored with a gas-permeable CO2-sensitive electrode. O2 uptake and pH changes were monitored simultaneously. Factors affecting CO2 entry were examined under conditions in which CO2 uptake was coupled to electrophoretic influx of K+ (in the presence of valinomycin) or Ca2+. The role of mitochondrial carbonic anhydrase (EC 4.2.1.1) in CO2 entry was evaluated by comparison of CO2 uptake by rat liver mitochondria, which possess carbonic anhydrase, versus rat heart mitochondria, which lack carbonic anhydrase. Such studies showed that matrix carbonic anhydrase activity is essential for rapid net uptake of CO2 with K+ or Ca2+. Studies with acetazolamide (Diamox), a potent inhibitor of carbonic anhydrase, confirmed the requirement of matrix carbonic anhydrase for net CO2 uptake. It was shown that at pH 7.2 the major species leaving respiring mitochondria is dissolved CO2, rather than HCO-3 or H2CO3 suggested by earlier reports. Efflux of endogenous CO2/HCO-3 is significantly inhibited by inhibitors of the dicarboxylate and tricarboxylate transport systems of the rat liver inner membrane. The possibility that these anion carriers mediate outward transport of HCO-3 is discussed.  相似文献   

12.
Carbonic anhydrase III, a cytosolic enzyme found predominantly in skeletal muscle, has a turnover rate for CO2 hydration 500-fold lower and a KI for inhibition by acetazolamide 700-fold higher (at pH 7.2) than those of red cell carbonic anhydrase II. Mutants of human carbonic anhydrase III were made by replacing three residues near the active site with amino acids known to be at the corresponding positions in isozyme II (Lys-64----His, Arg-67----Asn, and Phe-198----Leu). Catalytic properties were measured by stopped-flow spectrophotometry and 18O exchange between CO2 and water using mass spectrometry. The triple mutant of isozyme III had a turnover rate for CO2 hydration 500-fold higher than wild-type carbonic anhydrase III. The binding constants, KI, for sulfonamide inhibitors of the mutants containing Leu-198 were comparable to those of carbonic anhydrase II. The mutations at residues 64, 67, and 198 were catalytically independent; the lowered energy barrier for the triple mutant was the sum of the energy changes for each of the single mutants. Moreover, the triple mutant of isozyme III catalyzed the hydrolysis of 4-nitrophenyl acetate with a specific activity and pH dependence similar to those of isozyme II. Phe-198 is thus a major contributor to the low CO2 hydration activity, the weak binding of acetazolamide, and the low pKa of the zinc-bound water in carbonic anhydrase III. Intramolecular proton transfer involving His-64 was necessary for maximal turnover.  相似文献   

13.
Most work with the male rat liver carbonic anhydrase isozymes in the past decade has centered on the cytosolic CA III and the mitochondrial CA V. This paper reports that the relative activity of both isozymes is altered in streptozotocin-diabetes. Carbonic anhydrase activity of perfused liver homogenates and disrupted, isolated mitochondria was measured by the mass spectrometric 18O decay technique at 37 degrees C. The contributions of the different isozymes were determined based on intracellular location and sensitivity to acetazolamide inhibition. Diabetes resulted in a twofold increase in the activity of CA V but a halving in the activity of CA III. This is the first time that liver CA V has been shown to be altered by physiological stress. The total carbonic anhydrase activity in the diabetic rat liver was unaltered compared with control rats; however, CA III never accounted for more than 50% of this activity. Since CA isozymes I, II, and IV together account for 30% of the CA activity in control rats and 70% in diabetic rats it is concluded that one or more of these isozymes is subject to regulation in the diabetic male rat. The increase in CA V during diabetes is in accord with this isozyme having an important function in provision of substrate for hepatic gluconeogenesis and ureagenesis.  相似文献   

14.
Cobalt(III)bovine carbonic anhydrase B was prepared by the oxidation of the cobalt(II) enzyme with hydrogen peroxide and was purified by affinity chromatography. The oxidation reaction is inhibited by specific inhibitors of carbonic anhydrase. The inhibition is explained by the fact that the Co(II)-enzyme . inhibitor complex cannot be directly oxidized by hydrogen peroxide, but has to dissociate to give free Co(II) enzyme which is then oxidized. The Co(III) ion in Co(III) carbonic anhydrase cannot be directly substituted by zinc ions. It can be reduced by either dithionite or BH-4 ions to give, first, their complexes with the Co(II) enzyme, and upon their removal, a fully active Co(II) enzyme. Cyanide and azide bind to cobalt(III) carbonic anhydrase with similar rate constants of 0.060 +/- 0.005 and 0.070 +/- 0.007 M-1 S-1 respectively. These rates are faster than those found for Co(III) inorganic complexes. The Co(III) ion in both Co(III) carbonic anhydrase and Co(III) carboxypeptidase A was found to be diamagnetic, indicating a near octahedral symmetry.  相似文献   

15.
Hypophysectomy abolishes sexual dimorphism of liver carbonic anhydrase III   总被引:1,自引:0,他引:1  
Hypophysectomy was found to have no effect on the concentration of carbonic anhydrase III (CAIII) in male rat liver, whereas in the female, CAIII was elevated 10-fold, to male levels.  相似文献   

16.
An S-thiolated 30-kDa protein has been purified from rat liver by two steps of ion-exchange chromatography. This monomeric protein has two "reactive" sulfhydryls that can be S-thiolated by glutathione (form a mixed disulfide with glutathione) in intact liver. The protein has been identified as carbonic anhydrase III by sequence analysis of tryptic peptides from the pure protein. The two "reactive" sulfhydryls on this protein can produce three different S-thiolated forms of the protein that can be separated by isoelectric focusing. Using this technique it was possible to study the S-thiolation and dethiolation reactions of the pure protein. The reduced form of this protein was S-thiolated both by thiol-disulfide exchange with glutathione disulfide and by oxyradical-initiated S-thiolation with reduced glutathione. The S-thiolation rate of this 30-kDa protein was somewhat slower than that of glycogen phosphorylase b by both S-thiolation mechanisms. The S-thiolated form of this protein was poorly dethiolated (i.e., reduced) by glutathione, cysteine, cysteamine, or coenzyme A alone. Enzymatic catalysis by two different enzymes (glutaredoxin and thioredoxin-like) greatly enhanced the dethiolation rate. These experiments suggest that carbonic anhydrase III is a major participant in the liver response to oxidative stress, and that the protein may be S-thiolated by two different non-enzymatic mechanisms and dethiolated by enzymatic reactions in intact cells. Thus, the S-thiolation/dethiolation of carbonic anhydrase III resembles glycogen phosphorylase and not creatine kinase.  相似文献   

17.
Mammalian carbonic anhydrase III has previously been shown to catalyze the hydrolysis of p-nitrophenyl phosphate in addition to possessing the conventional CO2 hydratase and p-nitrophenylacetate esterase activities. Modification of pig muscle carbonic anhydrase III with the arginine reagent phenylglyoxal yielded two clearly distinctive results. Reaction of the enzyme with phenylglyoxal at concentrations equivalent to those of the enzyme yielded stoichiometric inactivation titration of the enzyme's phosphatase activity, approaching 100% loss of activity with the simultaneous modification of one arginine residue, the latter based on a 1:1 reaction of phenylglyoxal with arginine. At this low ratio of phenylglyoxal to enzyme, neither the CO2 hydratase activity nor the acetate esterase activity was affected. When the modification was performed with a significant excess of phenylglyoxal, CO2 hydratase and acetate esterase activities were diminished as well. That loss of activity was accompanied by the incorporation of an additional half dozen phenylglyoxals and, presumably, the modification of an equal number of arginine residues. The data in their entirety are interpreted to show that the p-nitrophenylphosphatase activity is a unique property of carbonic anhydrase III and that excessive amounts of the arginine-modifying reagent lead to unspecific structural changes of the enzyme as a result of which all of its enzymatic activities are inactivated.  相似文献   

18.
We report three experiments which show that the hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle occurs at a site on the enzyme different than the active site for CO2 hydration. This is in contrast with isozymes I and II of carbonic anhydrase for which the sites of 4-nitrophenyl acetate hydrolysis and CO2 hydration are the same. The pH profile of kcat/Km for hydrolysis of 4-nitrophenyl acetate was roughly described by the ionization of a group with pKa 6.5, whereas kcat/Km for CO2 hydration catalyzed by isozyme III was independent of pH in the range of pH 6.0-8.5. The apoenzyme of carbonic anhydrase III, which is inactive in the catalytic hydration of CO2, was found to be as active in the hydrolysis of 4-nitrophenyl acetate as native isozyme III. Concentrations of N-3 and OCN- and the sulfonamides methazolamide and chlorzolamide which inhibited CO2 hydration did not affect catalytic hydrolysis of 4-nitrophenyl acetate by carbonic anhydrase III.  相似文献   

19.
Using stopped flow methods, we have measured the steady state rate constants and the inhibition by N3- and I- of the hydration of CO2 catalyzed by carbonic anhydrase III from cat muscle. Also, using fluorescence quenching of the enzyme at 330 nm, we have measured the binding of the sulfonamide chlorzolamide to cat carbonic anhydrase III. Inhibition by the anions was uncompetitive at pH 6.0 and was mixed at higher values of pH. The inhibition constant of azide was independent of pH between 6.0 and 7.5 with a value of KIintercept = 2 X 10(-5) M; the binding constant of chlorzolamide to cat carbonic anhydrase III was also independent of pH in the range of 6.0 to 7.5 with a value Kdiss = 2 X 10(-6) M. Both of these values increased as pH increased above 8. There was a competition between chlorzolamide and the anions N-3 and OCN- for binding sites on cat carbonic anhydrase III. The pH profiles for the kinetic constants and the uncompetitive inhibition at pH 6.0 can be explained by an activity-controlling group in cat carbonic anhydrase III with a pKa less than 6. Moreover, the data suggest that like isozyme II, cat isozyme III is limited in rate by a step occurring outside the actual interconversion of CO2 and HCO3- and involving a change in bonding to hydrogen exchangeable with solvent water.  相似文献   

20.
Thyroidectomy has a dramatic effect on rat muscle, greatly increasing the number of Type I fibers and the concentrations of carbonic anhydrase III (CAIII) in the muscle. Carbonic anhydrase III is not confined to the Type I fibers, as was previously believed, but also occurs in fibers that exhibit a level of ATPase staining less than that of 2A fibers but greater than 2B. These fibers are rare in normal muscle but become numerous after thyroidectomy, when they stain heavily for CAIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号