共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cell cycle (Georgetown, Tex.)》2013,12(12):2337-2347
A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity. 相似文献
2.
Adam R. Leman Jayaraju Dheekollu Zhong Deng Seung Woo Lee Mukund M. Das Paul M. Lieberman Eishi Noguchi 《Cell cycle (Georgetown, Tex.)》2012,11(12):2337-2347
A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity. 相似文献
3.
《Cell cycle (Georgetown, Tex.)》2013,12(7):1309-1315
Telomeres consist of repetitive DNA and associated proteins that protect chromosome ends from illicit DNA repair. It is well known that telomeric DNA is progressively eroded during cell division, until telomeres become too short and the cell stops dividing. There is a second mode of telomere shortening, however, which is a regulated form of telomere rapid deletion (TRD) termed telomere trimming that is reviewed here. Telomere trimming appears to involve resolution of recombination intermediate structures, which shortens the telomere by release of extrachromosomal telomeric DNA. This has been detected in human and in mouse cells and occurs both in somatic and germline cells, where it sets an upper limit on telomere length and contributes to a length equilibrium set-point in cells that have a telomere elongation mechanism. Telomere trimming thus represents an additional mechanism of telomere length control that contributes to normal telomere dynamics and cell proliferative potential. 相似文献
4.
5.
6.
Strain-specific telomere length revealed by single telomere length analysis in Caenorhabditis elegans 总被引:4,自引:0,他引:4
Cheung I Schertzer M Baross A Rose AM Lansdorp PM Baird DM 《Nucleic acids research》2004,32(11):3383-3391
Terminal restriction fragment analysis is the only method currently available for measuring telomere length in Caenorhabditis elegans. Its limitations include low sensitivity and interference by the presence of interstitial telomeric sequences in the C.elegans genome. Here we report the adaptation of single telomere length analysis (STELA) to measure the length of telomeric repeats on the left arm of chromosome V in C.elegans. This highly sensitive PCR-based method allows telomere length measurement from as few as a single worm. The application of STELA to eight wild-type C.elegans strains revealed considerable strain-specific differences in telomere length. Within individual strains, short outlying telomeres were observed that were clearly distinct from the bulk telomere length distributions, suggesting that processes other than end-replication losses and telomerase-mediated lengthening may generate telomere length heterogeneity in C.elegans. The utility of this method was further demonstrated by the characterization of telomere shortening in mrt-2 mutants. We conclude that STELA appears to be a valuable tool for studying telomere biology in C.elegans. 相似文献
7.
Dependence of the regulation of telomere length on the type of subtelomeric repeat in the yeast Saccharomyces cerevisiae. 总被引:2,自引:0,他引:2
In the yeast Saccharomyces cerevisiae, chromosomes terminate with approximately 400 bp of a simple repeat poly(TG(1-3)). Based on the arrangement of subtelomeric X and Y' repeats, two types of yeast telomeres exist, those with both X and Y' (Y' telomeres) and those with only X (X telomeres). Mutations that result in abnormally short or abnormally long poly(TG(1-3)) tracts have been previously identified. In this study, we investigated telomere length in strains with two classes of mutations, one that resulted in short poly(TG(1-3)) tracts (tel1) and one that resulted in elongated tracts (pif1, rap1-17, rif1, or rif2). In the tel1 pif1 strain, Y' telomeres had about the same length as those in tel1 strains and X telomeres had lengths intermediate between those in tel1 and pif1 strains. Strains with either the tel1 rap1-17 or tel1 rif2 genotypes had short tracts for all chromosome ends examined, demonstrating that the telomere elongation characteristic of rap1-17 and rif2 strains is Tel1p-dependent. In strains of the tel1 rif1 or tel1 rif1 rif2 genotypes, telomeres with Y' repeats had short terminal tracts, whereas most of the X telomeres had long terminal tracts. These results demonstrate that the regulation of telomere length is different for X and Y' telomeres. 相似文献
8.
9.
Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length 下载免费PDF全文
Telomere length is negatively regulated by proteins of the telomeric DNA-protein complex. Rap1p in Saccharomyces cerevisiae binds the telomeric TG(1-3) repeat DNA, and the Rap1p C terminus interacts with Rif1p and Rif2p. We investigated how these three proteins negatively regulate telomere length. We show that direct tethering of each Rif protein to a telomere shortens that telomere proportionally to the number of tethered molecules, similar to previously reported counting of Rap1p. Surprisingly, Rif proteins could also regulate telomere length even when the Rap1p C terminus was absent, and tethered Rap1p counting was completely dependent on the Rif proteins. Thus, Rap1p counting is in fact Rif protein counting. In genetic settings that cause telomeres to be abnormally long, tethering even a single Rif2p molecule was sufficient for maximal effectiveness in preventing the telomere overelongation. We show that a heterologous protein oligomerization domain, the mammalian PDZ domain, when fused to Rap1p can confer telomere length control. We propose that a nucleation and spreading mechanism is involved in forming the higher-order telomere structure that regulates telomere length. 相似文献
10.
11.
《Biophysical journal》2022,121(14):2684-2692
12.
13.
14.
《Cell》1986,46(6):873-883
We have cloned and sequenced the telomeric DNA of the linear mitochondrial DNA (mtDNA) of T. thermophila BVII. The mtDNA telomeres consist of a 53 bp sequence tandemly repeated from 4 to 30 times, with most molecules having 15 ± 4 repetitions. The previously recognized terminal heterogeneity of the mtDNA is completely accounted for by the variability in the number of repeats. The 53 bp repeat does not resemble known telomeric DNA in sequence, repeat size, or number of repetitions. The termini occur at heterogeneous positions within the 53 bp repeat. The junction of the telomeric repeat with the internal DNA is at a different position within the telomeric repeat on each end of the mtDNA. We propose a model for the maintenance of the mtDNA ends involving unequal homologous recombination. 相似文献
15.
Mayer S Brüderlein S Perner S Waibel I Holdenried A Ciloglu N Hasel C Mattfeldt T Nielsen KV Möller P 《Cytogenetic and genome research》2006,112(3-4):194-201
During aging, telomeres are gradually shortened, eventually leading to cellular senescence. By T/C-FISH (telomere/centromere-FISH), we investigated human telomere length differences on single chromosome arms of 205 individuals in different age groups and sexes. For all chromosome arms, we found a linear correlation between telomere length and donor age. Generally, males had shorter telomeres and higher attrition rates. Every chromosome arm had its individual age-specific telomere length and erosion pattern, resulting in an unexpected heterogeneity in chromosome-specific regression lines. This differential erosion pattern, however, does not seem to be accidental, since we found a correlation between average telomere length of single chromosome arms in newborns and their annual attrition rate. Apart from the above-mentioned sex-specific discrepancies, chromosome arm-specific telomere lengths were strikingly similar in men and women. This implies a mechanism that arm specifically regulates the telomere length independent of gender, thus leading to interchromosomal telomere variations. 相似文献
16.
Thoroughbred racehorses possess superior cardiorespiratory fitness levels and are at the pinnacle of athletic performance compared to other breeds of horses. Although equine athletes have undergone years of artificial selection for racing performance, musculoskeletal injuries and illnesses are common and concerns relating to animal welfare have been proposed. Leukocyte telomere length is indicative of biological age, and accelerated telomere shortening occurs with excess physical and psychological stress. This study was designed to explore the association between leukocyte telomere length, biological factors (age, sex and coat colour), training status, winnings and race history parameters. Blood was collected from 146 Thoroughbred racehorses from around Geelong, Victoria, Australia. DNA was extracted from leukocytes; telomere length was measured using qPCR and analysed in context with traits obtained from the Racing Australia website. Age was inversely correlated with telomere length (r = ?0.194, P = 0.019). The oldest horses (≥11 years) in the highest age quartile possessed shorter telomeres compared to younger horses in the first, second and third quartiles (≤2, 3–5 and 6–10 years respectively; P < 0.05). No statistically significant associations were observed between telomere length and biological factors, training status, winnings or race history parameters in age‐adjusted analyses. The study findings suggest that Thoroughbred horses may undergo age‐related telomere shortening similar to other mixed breeds and humans. Despite concerns from some quarters regarding the welfare of racehorses, there was a lack of accelerated biological ageing observed in the present study, as indicated by leukocyte telomere length. 相似文献
17.
Flow cytometric measurement of telomere length 总被引:13,自引:0,他引:13
The regulation of telomere length may be involved in the cellular physiology of senescence, reproduction, cancer, immune response to infection, and possibly immune deficiency. The measurement of telomere length, critical to research in this area, has traditionally been performed by Southern blot analysis, which is cumbersome and time consuming. Several alternative methods have been described in recent years. Some, such as pulsed-field electrophoresis, slot blots, and centromere-to-telomere ratio measurements are essentially improvements to the Southern blot technique. However, other methods such as fluorescent in situ hybridization on metaphase chromosome spreads and flow cytometry-based fluorescent in situ hybridization represent a completely new technical approach to the problem. In this review, we compare methods, with particular emphasis placed on flow cytometric techniques for measuring telomere length in situ and identifying potential areas where improvements may still be made. 相似文献
18.
19.
P. G. Georgiev L. S. Melnikova T. G. Kan O. I. Kravchuk S. S. Mikhailovskii M. Yu. Savitskii 《Molecular Biology》2000,34(5):628-636
Eukaryotic chromosomes are linear and have their, ends formed by DNA-protein structures, telomeres. At present more and more
facts demonstrate the diversity of telomere functions. Telomeres protect the chromosome ends from degradation, fusion, recombination,
and from the repair system that recognizes nicks in DNA strands. As shown recently, shortening of the telomeres is a cause
of cell aging. In most organisms, telomeres are elongated by means of a special ribonucleoprotein complex; however, in some
insects this takes place by either gene conversion or transposition of mobile elements. Evolutionary relations between different
types of telomeres are discussed. 相似文献
20.
Natural variation in a subtelomeric region of Arabidopsis: implications for the genomic dynamics of a chromosome end 下载免费PDF全文
We investigated genome dynamics at a chromosome end in the model plant Arabidopsis thaliana through a study of natural variation in 35 wild accessions. We focused on the single-copy subtelomeric region of chromosome 1 north (approximately 3.5 kb), which represents the relatively simple organization of subtelomeric regions in this species. PCR fragment-length variation across the subtelomeric region indicated that the 1.4-kb distal region showed elevated structural variation relative to the centromere-proximal region. Examination of nucleotide sequences from this 1.4-kb region revealed diverse DNA rearrangements, including an inversion, several deletions, and an insertion of a retrotransposon LTR. The structures at the deletion and inversion breakpoints are characteristic of simple deletion-associated nonhomologous end-joining (NHEJ) events. There was strong linkage disequilibrium between the distal subtelomeric region and the proximal telomere, which contains degenerate and variant telomeric repeats. Variation in the proximal telomere was characterized by the expansion and deletion of blocks of repeats. Our sample of accessions documented two independent chromosome-healing events associated with terminal deletions of the subtelomeric region as well as the capture of a scrambled mitochondrial DNA segment in the proximal telomeric array. This natural variation study highlights the variety of genomic events that drive the fluidity of chromosome termini. 相似文献