首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
The characteristics of photosynthesis and water metabolism of Caragana microphylla Lam., C. davazamcii Sancz. and C. korshinskii Kom. populations in different sites (117.6o-105.7o E, 44.6o-38.8o N) were studied. (1) From the east to the west, the responses of the three species to photosynthetically available radiation (PAR) in net photosynthesis rate increased, the relative humidity of the air which corresponded to the occurrence of maximum photosynthesis rate decreased, and the corresponding air temperature increased. Along the same gradient, the before-noon superiority of the photosynthesis became evident, and the photosynthesis rate and the light use efficiency (LUE ) increased, while the transpiration rate decreased, thus the water use efficiency (WUE ) increased notably, and the leaf water content decreased gradually. From the east to the west, the plants took a water-saving strategy step by step with higher photosynthesis rate and lower transpiration rate. These physiological changes in the plants were adaptable to the conditions of light, temperature and humidity in the habitat of the plants, and might be the biological foundation for the geographical transition among C. microphylla , C. davazamcii and C. korshinskii. (2) The adaptation of photosynthetic system of C. microphylla , C. davazamcii and C. korshinskii to PAR, air humidity and temperature exhibited the interspecific continuity, which was consistent with the environmental gradient. In different species and different sites, the diurnal changes of net photosynthesis rate, the daily cumulative value of net photosynthesis, the diurnal changes of transpiration rate, the daily cumulative value of transpiration, the water use efficiency and the diurnal changes of leaf water content varied with longitudinal descent (from the east to the west). The characteristics of photosynthesis and water metabolism indicated that the geographical transition among C. microphylla , C. davazamcii and C. korshinskii was in gradual change, and these three species formed a geographical cline.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Potatoes (Solanum tuberosum L., cv. Bintje) were grown in a naturally lit glasshouse. Laboratory measurements on leaves at three insertion levels showed a decline with leaf age in photosynthetic capacity and in stomatal conductance at near saturating irradiance. Conductance declined somewhat more with age than photosynthesis, resulting in a smaller internal CO2 concentration in older relative to younger leaves. Leaves with different insertion number behaved similarly. The changes in photosynthesis rate and in nitrogen content with leaf age were closely correlated. When PAR exceeded circa 100 W m–2 the rate of photosynthesis and stomatal conductance changed proportionally as indicated by a constant internal CO2 concentration. The photosynthesis-irradiance data were fitted to an asymptotic exponential model. The parameters of the model are AMAX, the rate of photosynthesis at infinite irradiance, and EFF, the slope at low light levels. AMAX declined strongly with leaf age, as did EFF, but to a smaller extent. During drought stress photosynthetic capacity declined directly with decreasing water potential (range –0.6 to –1.1 MPa). Initially, stomatal conductance declined faster than photosynthetic capacity.Abbreviations LNx leaf number x, counted in acropetal direction - DAP days after planting - DALA days after leaf appearance - Ci CO2 concentration in the leaf - Ca CO2 concentration in ambient air - LWP leaf water potential - OP osmotic potential - PAR photosynthetically active radiation  相似文献   

13.
The impact of microbial activity on biofilm calcification in aquatic environments is still a matter of debate, especially in settings where ambient water has high CaCO3 mineral supersaturation. In this study, biofilms of two CO2-degassing karst-water creeks in Germany, which attain high calcite supersaturation during their course downstream, were investigated with regard to water chemistry of the biofilm microenvironment. The biofilms mainly consisted of filamentous cyanobacteria (Phormidium morphotype) and heterotrophic bacteria (including sulfate-reducing bacteria), which affect the microenvironment and produce acidic exopolymers. In situ and ex situ microelectrode measurements showed that a strong pH increase, coupled with Ca2 + consumption, occurred in light conditions at the biofilm surface, while the opposite occurred in the dark. Calcite supersaturation at the biofilm surface, calculated from ex situ Ca2 + and CO3 2? microelectrode measurements, showed that photosynthesis resulted in high omega values during illumination, while respiration slightly lowered supersaturation values in the dark, compared to values in the water column. Dissociation calculation demonstrated that the potential amount of Ca2 + binding by exopolymers would be insufficient to explain the Ca2 + loss observed, although Ca2 + complexation to exopolymers might be crucial for calcite nucleation. No spontaneous precipitation occurred on biofilm-free limestone substrates under the same condition, regardless of high supersaturation. These facts indicate that photosynthesis is a crucial mechanism to overcome the kinetic barrier for CaCO3 precipitation, even in highly supersaturated settings.  相似文献   

14.
15.
16.
Nataraja  K.N.  Jacob  J. 《Photosynthetica》1999,36(1-2):89-98
The objective of the present investigation was to examine the extent of variations in single leaf net photosynthetic rate (PN) and its relative dependence on stomatal conductance (gs) and the mesophyll capacity to fix carbon in 12 clones of the natural rubber plant. There were significant variations in PN measured at low and saturating photon flux density (PFD); the extent of variation was larger at low than at saturating PFD. The compensation irradiance (CI) and apparent quantum yield of CO2 assimilation (φc) calculated from the PN/PFD response curves showed significant variations among the clones. PN at low irradiance was positively correlated with φc. Thus a clone with large PN at low irradiance, high φc, and low CI may tolerate shade better and thus produce a high tree stand per hectare. A strong positive correlation existed between PN saturated with radiant energy (Psat) and carboxylation efficiency (CE) estimated from the response curves of PN on intercellular CO2 concentration (Ci), but gs showed a poor correlation with Psat High CO2 compensation concentration (Γ) led to low CE in Hevea clones. A clone with large Psat, high CE, low gs, and low Γ is the one in which photosynthesis is more dependent on the mesophyll factors than stomata. Such a clone may produce relatively high biomass and maintain high water use efficiency. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
18.
Govindjee  Šesták  Z.  Peters  W.R. 《Photosynthetica》2002,40(1):1-11
The history of the journals Photosynthetica and Photosynthesis Research is traced from its beginning. Their development is related to the history of several publishers (Dr W. Junk Publishers, Martinus Nijhoff, Kluwer Academic Publishers). This account is based on recollections and records of the authors, Ad C. Plaizier, and René Marcelle (the first Editor-in-Chief of Photosynthesis Research).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号