首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Since atretic follicles contain significant amounts of androgen and/or progesterone in their follicular fluid, we examined whether they also contribute to ovarian steroid secretion. Steroid secretion by atretic porcine follicles and their responsiveness to FSH was assessed by a perifusion system that allows for separate dynamic incubation of whole follicles in vitro. Identically treated nonatretic follicles of comparable size served as a reference group. The extent of granulosal pyknosis, on which the staging of atresia was based, was inversely related to follicular estradiol (E2) secretion and its responsiveness to FSH. Both basal and FSH-stimulated secretion of testosterone (T), androstenedione (A), and progesterone (P) were maintained by follicles in all stages of atresia. Secretion of A by late atretic follicles was greater than that in earlier stages or by nonatretic follicles. Atretic follicles may therefore release comparable or larger amounts of androgen and P into their intraovarian environment than do nonatretic follicles. We examined whether steroids secreted by atretic follicles in vitro could be utilized by nonatretic follicles. A static incubation system was used that allows for simultaneous incubation of a number of individual follicles. When nonatretic follicles were exposed to A, T, or P in physiologic concentrations (10(-7)-10(-5) M), their secretion of E2 increased 2-8-fold. Doses of FSH or LH that stimulated follicular steroid in vitro had no additional stimulatory effect when combined with A or P treatment, respectively. In conclusion, atretic follicles may contribute significantly to intraovarian levels of androgen and P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The objectives of this study were to investigate whether estradiol treatment during lactation modifies 1) the patterns of endogenous LH, FSH, and prolactin (PRL) release; 2) the sensitivity of the pituitary to exogenous injections of LHRH; and 3) the responsiveness of the ovarian follicles to gonadotropin. Plasma LH, FSH, and PRL were determined in samples taken repeatedly from 18 sows on Days 24-27 of lactation. Ovaries were then recovered, and follicular development was assessed by measuring the follicular diameter (FFD) and follicular fluid estradiol-17 beta concentration (FFE) of the ten largest follicles dissected from each ovary. Sows were randomly allocated to one of four treatments: 1) Group C (4 sows) received no treatment; 2) Group LHRH (5 sows) received 800 ng of LHRH every 2 h throughout the sampling period; 3) Group E2 (4 sows) received subcutaneous implants containing estradiol-17 beta 24 h after start of sampling; 4) Group LHRH + E2 (5 sows) were administered a combination of LHRH and estradiol-17 beta implants. Between-animal variability for plasma LH, FSH, and PRL was considerable. LH concentration and LH pulse frequency increased (p less than 0.05) after LHRH treatment in the LHRH and LHRH + E2 groups; however, an acute inhibition of LH secretion was observed in the latter group immediately after estradiol implant application. In the absence of LHRH treatment, estradiol caused chronic inhibition of LH secretion. Follicular development was greater in the LHRH and LHRH + E2 groups compared to the C and E2 groups (p less than 0.05 for both FFD and FFE).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
血管紧张素Ⅱ在小鼠卵泡闭锁中的作用   总被引:1,自引:0,他引:1  
Cheng Y  Jiao LH  Liu RH  Wang QB  Wang H  Xia GL 《生理学报》2002,54(1):75-78
应用幼年小鼠经孕马血清促性腺激素(pregnant mares serum gonadotropin,PMSG)处理的动物模型,研究了卵泡从发育到闭锁动态变化过程中血管紧张素Ⅱ(AngⅡ)的作用。结果表明:(1)24日龄小鼠给予PMSG(10IU/只)后6d时,卵巢中出现大量闭锁卵泡,颗粒细胞DNA琼脂糖电泳显示了梯形条带;(2)随卵泡闭锁发生,卵巢AngⅡ含量增加;(3)AngⅡ显著拮抗FSH刺激颗粒细胞雌二醇生成的作用。我们认为,AngⅡ参与了对小鼠卵泡闭锁的调节。  相似文献   

4.
In order to better understand the pituitary regulation of follicular growth in the domestic cat, follicle stimulating hormone (FSH) and luteinizing hormone (LH) receptors (R) were localized and quantified in relation to follicle diameter and atresia using in situ ligand binding on ovarian sections. Expression of FSHR was homogeneous and restricted to follicle granulosa cells from the early antral stage onwards, whereas expression of LHR was heterogeneous on theca cells of all follicles from the early antral stage onward, and homogeneous on granulosa cells of healthy follicles larger than 800 microm in diameter and in corpora lutea. LHR were also widely expressed as heterogeneous aggregates in the ovarian interstitial tissue. Atretic follicles exhibited significantly reduced levels of both FSHR and LHR on granulosa cells, compared with healthy follicles whatever the follicular diameter, whereas levels of LHR on theca cells were lower only for atretic follicles larger than 1,600 microm in diameter. In healthy follicles, levels of FSHR and LHR in all follicular compartments increased significantly with diameter. Although generally comparable to that observed in other mammals, the expression pattern of gonadotropin receptors in the cat ovary is characterized by an early acquisition of LHR on granulosa cells of growing follicles and islets of LH binding sites in the ovarian interstitial tissue.  相似文献   

5.
The feedback effects of dihydrotestosterone (DHT) on gonadotropin secretion in rams were investigated using DHT-implanted castrate rams (wethers) infused with intermittent pulsatile luteinizing hormone-releasing hormone (LHRH) for 14 days. Castration, as anticipated, reduced both serum testosterone and DHT but elevated serum LH and follicle-stimulating hormone (FSH). Dihydrotestosterone implants raised serum DHT in wethers to intact ram levels and blocked the LH and FSH response to castration. The secretory profile of these individuals failed to show an endogenous LH pulse during any of the scheduled blood sampling periods, but a small LH pulse was observed following a 5-ng/kg LHRH challenge injection. Dihydrotestosterone-implanted wethers given repeated LHRH injections beginning at the time of castration increased serum FSH and yielded LH pulses that were temporally coupled to exogenous LHRH administration. While the frequency of these secretory episodes was comparable to that observed for castrates, amplitudes of the induced LH pulses were blunted relative to those observed for similarly infused, testosterone-implanted castrates. Dihydrotestosterone was also shown to inhibit LH and FSH secretion and serum testosterone concentrations in intact rams. In summary, it appears that DHT may normally participate in feedback regulation of LH and FSH secretion in rams. These data suggest androgen feedback is regulated by deceleration of the hypothalamic LHRH pulse generator and direct actions at the level of the adenohypophysis.  相似文献   

6.
Porcine follicular fluid (pff), treated with charcoal to remove steroids, was used to determine whether inhibin is active in the laboratory rabbit. When pff (5 ml/4 kg body weight) was injected (ip) into does that had been castrated 2 weeks earlier, there was a significant decline in blood follicle-stimulating hormone (FSH) levels; the decline lasted for 8-12 h. Blood levels of luteinizing hormone (LH) were suppressed, but only briefly at 3 h after injection. In other experiments, intact does which had been injected with pff 9 h and 10 min before receiving a single, i.v. injection of luteinizing hormone-releasing hormone (LHRH) (10 micrograms/kg body weight) showed a sharp reduction in the concentration of LH in the blood samples collected 15, 30 and 60 min after LHRH administration. Secretion of FSH responded poorly to LHRH stimulation, and pff had little suppressive action on blood levels. Having established that the pff preparation had inhibin activity, its action on the postovulatory surge of FSH secretion was next examined. This release of FSH, which occurs 6 to 36 h after ovulation, has been hypothesized to be required for the establishment of pregnancy by stimulating the growth of the ovarian follicles supplying the luteotropic estradiol. To test this hypothesis, pff was injected into rabbits every 8 h for the first 5 days of pregnancy and found to block the postovulatory FSH surge. The patterns of secretion of LH and progesterone in the same pff-injected animals were, however, not altered from normal pregnancy patterns by pff.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Hypothalamic regulation of luteinizing hormone (LH) secretion and ovarian function were investigated in beef heifers by infusing LH-releasing hormone (LHRH) in a pulsatile manner (1 microgram/ml; 1 ml during 1 min every h) into the external jugular vein of 10 hypophysial stalk-transected (HST) animals. The heifers were HST approximately 30 mo earlier. All heifers had increased ovarian size during the LHRH infusion. The maximum ovarian size (16 +/- 2.7 cm3) was greater (P less than 0.01) than the initial ovarian size (8 +/- 1.4 cm3). Ovarian follicular growth occurred in 4 of 10 HST heifers in response to pulsatile LHRH infusion. In 2 heifers, an ovarian follicle developed to preovulatory size, but ovulation occurred in only 1 animal after the frequency of LHRH was increased (1 microgram every 20 min during 8 h). In blood samples obtained at 20-min intervals every 5th day, LH concentrations in peripheral serum remained consistently low (0.9 ng/ml) and nonepisodic in the 10 HST heifers during infusion of vehicle on the day before beginning LHRH. In 7 of 10 HST animals, episodic LH secretion occurred in response to pulsatile infusion of LHRH. In 3 of these long-term HST heifers, however, serum LH remained at basal levels and the isolated pituitary seemingly was unresponsive to pulsatile infusion of LHRH as indicated by sequential patterns of gonadotropin secretion obtained at 5-day intervals. These results indicate that pulsatile infusion of LHRH induces LH release in HST beef heifers.  相似文献   

8.
IGF-Ⅰ及其受体、IGF结合蛋白-2和LH受体mRNA在卵泡中的表达   总被引:2,自引:0,他引:2  
罗文祥  祝诚  吴燕婉 《动物学报》1999,45(4):427-434
利用原位杂交和原位DNA-3’末端标记的方法研究了胰岛素样生长因子河(IG-I)、IGF-I受体、IGF结合蛋白-2、和促性腺激素受体的信使核糖核酸(mRNA)在不同生长与闭锁阶段的大鼠卵巢卵泡中表达的变化。结果表明:IGF-I主要在正常生长的初级卵泡、窦前卵泡和小窦状卵泡中表达。在各生长与成熟阶段的卵泡中都检测到IGF-I受体mRNA,闭锁卵泡的IGF-I受体表达降低。窦前与窦状的生长和闭锁卵泡均表达IGFBP-2。促卵泡激素(FSH)受体在窦前和小窦状卵泡的表达水平比其在大卵泡中的高。窦前与小窦状卵泡仅在膜细胞中表达黄体生成素(LH)受体mRNA,大卵泡的膜细胞与颗粒细胞均表达LH受体,在闭锁卵泡中仅在膜细胞中观察到LH受体的信号。综上结果,提示IGF-I,IGF-I受体和FSH受体在窦前和小窦状卵泡中的协同表达对卵泡的早期发育有重要作用。LH受体mRNA特异地在大卵泡的颗粒细胞中表达可能与优势卵泡选择相关。  相似文献   

9.
The purpose of these experiments was to investigate the mechanism of the anovulatory action of antiprogesterone RU486 (RU486) in rats by studying its effects on follicular growth, secretion of gonadotropins and ovarian steroids, and ovulation. Rats with 4-day estrous cycles received injections (s.c.) of either 0.2 ml oil or 0.1, 1, or 5 mg of RU486 at 0800 and 1600 h on metestrus, diestrus, and proestrus. At the same times, they were bled by jugular venipuncture to determine serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), 17 beta-estradiol (E), and progesterone (P). On the morning of the day after proestrus, ovulation and histological features of the ovary were recorded. Rats from each group were killed on each day of ovarian cycle to assess follicular development. Rats treated similarly were decapitated at the time of the ovulatory LH surge and blood was collected to measure LH. The serum levels of LH increased and those of FSH decreased during diestrus in rats treated with RU486. Neither E nor P levels differed among the groups. Treatment with RU486 caused both a blockade of the ovulation and an increase in ovarian weight in a dose-dependent manner. At the time of the autopsy (the expected day of ovulation), rats treated with 1 mg RU486 had ovaries presenting both normal and post-ovulatory follicles and unruptured luteinized follicles. Rats treated with 5 mg RU486 presented post-ovulatory follicles without signs of luteinization. The number of follicles undergoing atresia increased in rats treated with RU486. Rats treated with 5 mg RU486 exhibited a significant decrease in ovulatory LH release. The mechanism by which RU486 produces the ovulatory impairment in rats seems to be dual: first, by inducing inadequate follicular development at the time of the LH surge and second, by reducing the amount of ovulatory LH released. The physiological events-decreased basal FSH secretion and follicular atresia-that result from use of RU486 cannot be elucidated from these experiments and should be investigated further.  相似文献   

10.
The precise roles of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in the control of preovulatory follicle growth has been re-examined. Suppression of both pulsatile LH secretion and FSH or specific suppression of FSH results in an inhibition of preovulatory follicle growth beyond 2.5 mm dia. Infusion of sheep FSH alone in physiological amounts in the presence of basal, non-pulsatile LH results in the growth of preovulatory follicles. Co-infusion of large amplitude pulses of LH reduced or abolished this effect of FSH. It is suggested that: (1) FSH controls the number of follicles which develop; (2) selection of the large follicle destined to ovulate is directly related to the decline in the plasma concentration of FSH occurring during the period of follicle selection--thus, only the follicle(s) which can withstand this withdrawal of FSH will continue to develop; and (3) pulses of LH may directly affect the action of FSH on the follicle and play an important, hitherto unrecognized role in the selection of the ovulatory follicle by actively inducing atresia.  相似文献   

11.
Suckling may prolong the anovulatory period postpartum by 1) a neural-mediated inhibition of luteinizing hormone-releasing hormone (LHRH)-induced gonadotropin secretion, or 2) an inhibitory effect of hormones released by suckling on gonadotropin secretion and/or action at the ovary. In the present investigation we considered whether a suckling event caused 1) acute inhibition of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion, and 2) release of glucocorticoids and/or prolactin (PRL). Six Hereford cows remained intact and six were ovariectomized (ovx) on day 7 postpartum. Calves remained with their dams continuously. Cows were bled at 10-min intervals during 6 consecutive hr on days 14, 28 and 42 postpartum. Both LH and FSH were released episodically by day 14 in intact and ovx cows, but suckling did not acutely affect LH and FSH secretion. A PRL release accompanied suckling 67, 96 and 95% of the time. However, among all instances where PRL was released on days 14, 28 and 42 postpartum, 67, 29 and 37% occurred independent of a suckling event. Glucocorticoids were not released by suckling in intact cows but were released in ovx cows. We conclude that suckling does not acutely affect LH or FSH concentrations in serum of cows postpartum, that PRL concentrations usually increase in serum coincident with suckling but can be released at other times, and suckling-induced glucocorticoid release depends upon the presence of the ovary.  相似文献   

12.
This study examined the impact of the gonadotrophin-releasing hormone (GnRH) antagonist Antarelix on LH, FSH, ovarian steroid hormone secretion, follicular development and pituitary response to LHRH in cycling gilts. Oestrous cycle of 24 Landrace gilts was synchronised with Regumate (for 15 days) followed by 800 IU PMSG 24h later. In experiment 1, Antarelix (n=6 gilts) was injected i.v. (0.5mg per injection) twice daily on four consecutive days from day 3 to 6 (day 0=last day of Regumate feeding). Control gilts (n=6) received saline. Blood was sampled daily, and every 20 min for 6h on days 2, 4, 6, 8 and 10. In experiment 2, gilts (n=12) were assigned to the following treatments: Antarelix; Antarelix + 50 microg LHRH on day 4; Antarelix + 150 microg LHRH on day 4 or control, 50 microg LHRH only on day 4. Blood samples were collected daily and every 20 min for 6h on days 2, 4 and 6 to assess LH pulsatility. Ovarian follicular development was evaluated at slaughter.Antarelix suppressed (P<0.05) serum LH concentrations. The amount of LH released on days 4-9 (experiment 1) was 8.80 versus 36.54 ngml(-1) (S.E.M.=6.54). The pattern of FSH, and the preovulatory oestradiol rise was not affected by GnRH antagonist. Suppression of LH resulted in a failure (P<0.05) of postovulatory progesterone secretion. Exogenous LHRH (experiment 2) induced a preovulatory-like LH peak, however in Antarelix treated gilts the LH surge started earlier and its duration was less compared to controls (P<0.01). Furthermore, the amount of LH released from day 4 to 5 was lower (P<0.01) in Antarelix, Antarelix + 50 and Antarelix + 150 treated animals compared to controls. No differences were estimated in the number of LH pulses between days and treatment. Pulsatile FSH was not affected by treatment. Mean basal LH levels were lower (P<0.05) after antagonist treatment compared to controls. Antarelix blocked the preovulatory LH surge and ovulation, but the effects of Antarelix were reduced by exogenous LHRH treatment. The development of follicles larger than 4mm was suppressed (P<0.05) by antagonist treatment.In conclusion, Antarelix treatment during the follicular phase blocked preovulatory LH surge, while FSH and oestradiol secretion were not affected. Antarelix failed to alter pulsatile LH and FSH secretor or pituitary responsiveness to LHRH during the preovulatory period.  相似文献   

13.
To study the role of androgens in the control of gonadotropin and prolactin secretion in ther ewe, we have characterized androgen receptors in pituitary cytosol, and investigated the effect of androgens on pituitary hormone release in vivo and in vitro. High affinity, low capacity receptors, with an affinity for methyltrienolone (R1881) greater than 5 alpha-dihydrotestosterone (5 alpha-DHT) greater than testosterone (T) much greater than androstenedione (A4), estradiol-17 beta (E2) and progesterone (P), were identified in pituitary cytosol. Addition of 1 nM 5 alpha-DHT, but not A4, inhibited luteinizing hormone (LH) release from pituitary cells in vitro, induced by 10(10) to 10(-7) M luteinizing hormone releasing hormone (LHRH). The release of follicle-stimulating hormone (FSH) with 10(-9) M LHRH was inhibited when cells were incubated with 1 nM 5 alpha-DHT. 5 alpha-DHT had no effect when higher or lower doses of LHRH were used. In ovariectomized ewes, neither an i.v. injection of 1 mg, nor intracarotid injections of up to 1 mg, 5 alpha-DHT affected plasma LH, FSH or prolactin levels, despite dose-related increases in plasma 5 alpha-DHT levels. Daily or twice daily i.m. injections of 5 mg 5 alpha-DHT in oil did not affect LH or FSH levels, but daily injections of 20 mg significantly reduced plasma LH levels within 4 days and plasma FSH levels within 6 days. Thus, despite the presence of androgen receptors in the ewe pituitary, we conclude that androgens per se are of minimal importance in the regulation of pituitary LH, FSH and prolactin secretion in the ewe. The low binding affinity of A4 and the lack of its effect on hormone secretion in vitro suggests that A4 may act as an estrogen precursor rather than an androgenic hormone. The function of the pituitary androgen receptor remains to be established.  相似文献   

14.
The GnRH-antagonist suppression-ovarian autotransplant model (n = 18) was used to examine the relative roles of temporal changes in FSH and LH stimulation on follicle development and selection. Follicle development was stimulated by infusion with oFSH for 3 days and treatments applied for 60 h after progestagen sponge withdrawal and before delivery of an ovulatory stimulus. In Expt 1, there was continuous infusion of FSH with or without small amplitude high frequency LH pulses, or withdrawal of FSH with or without pulsatile LH. In Expt 2, there was acute or gradual withdrawal of FSH at sponge withdrawal with pulsatile LH. The patterns of follicle development and basal and pulsatile ovarian hormone secretion were determined. The maintenance of FSH throughout the artificial follicular phase resulted in multiple follicle development and ovulation (3.3 +/- 0.3). Pulsatile LH stimulated steroid secretion (P < 0.001) but had little effect on ovulation rates (3.8 +/- 0.8) when FSH was maintained. However, withdrawal of FSH in the absence of LH resulted in atresia of the ovulatory follicles and anovulation whereas, when FSH was withdrawn in the presence of LH, preovulatory follicle development was maintained in some animals (3/6 and 5/9 in Expts 1 and 2, respectively) and these ewes had lower (P < 0.05) ovulation rates (1-2 ovulations per ewe). When FSH was withdrawn gradually in the presence of pulsatile LH, 9/9 animals ovulated with ovulation rates in the normal range. These results indicate that ovulatory follicles can transfer their gonadotrophic dependence from FSH to LH. It is hypothesized that the ability of a follicle to respond to this switch in gonadotrophic support is central to the mechanism of follicle selection.  相似文献   

15.
16.
K Kato  M R Sairam 《Life sciences》1983,32(3):263-270
The effect of luteinizing hormone releasing hormone (LHRH) and its analogs on the release of FSH and LH by 20 day old whole mouse pituitary incubated in vitro for 3-4 hrs was investigated. Three agonistic analogs (AY 25650, 25205 and Buserelin) all of which are reported to be superactive in vivo showed approximately the same potency in this in vitro test system. Preincubation of the pituitaries for 1 h with the antagonistic analogs [Ac Dp Cl Phe1,2, D Trp3, D Phe6, D Ala10] LHRH and [Ac Dp Cl Phe1,2, D Trp3, D Arg6, D Ala10] LHRH inhibited the secretion of LH and FSH induced by 2.5 x 10(-9)M LHRH. The inhibitory response was dose dependent. The continued presence of the antagonists was not required for effective suppression of the LHRH effect. Experiments designed to find out the minimum time required for eliciting suppression of LHRH revealed that preincubation of the pituitary with the second antagonist for 5 mins followed by removal was adequate to produce effective inhibition of gonadotropin release. At lower doses of the antagonist, LH release was more effectively inhibited than FSH release. The results suggest that antagonistic analogs can effectively bind to LHRH receptors in the whole pituitary incubation preventing the subsequent action of LHRH. With the present incubation system assessment of bioactive LH and FSH release is possible within 24 hrs.  相似文献   

17.
Negative feedback of estrogen was investigated in ovariectomized female guinea pigs. Two weeks after ovariectomy, indwelling catheters were inserted into the jugular vein, and 3 days later, blood samples were taken every 10 min to determine the pattern of luteinizing hormone (LH) secretion. LH secretion in these guinea pigs was episodic, with a mean pulse period of 32 min. The mean pulse amplitude was 2.1 ng/ml, with mean plasma LH levels of 1.8 ng/ml. Twenty-five micrograms 17 beta-estradiol (E2), given i.v., caused a pronounced inhibition of pulsatile LH release. Twenty-five microliters of 100% ethanol (vehicle) had no effect on plasma LH values. In a second set of experiments, ovariectomized female guinea pigs were given two injections of luteinizing hormone-releasing hormone (LHRH) (1 microgram/kg BW, i.v.) separated by 30 min. Sharp rises in serum LH values were detected after each injection. A third injection of LHRH was administered after an injection of either 25 micrograms E2 or 25 microliters vehicle. In the presence of E2, the LH response was significantly (p less than 0.005) diminished, whereas the vehicle did not change the LH response to LHRH. These rapid effects of E2 on LH secretion and the pituitary responsiveness to LHRH infusion indicate that in the ovariectomized guinea pig E2 can directly block gonadotropin secretion. These findings are consistent with the hypothesis that negative feedback actions of E2 are directly on the membrane of the gonadotrope.  相似文献   

18.
Active immunization of 6 Damline ewes against LHRH during seasonal anoestrus resulted in an inhibition of ovarian cyclicity throughout 2 subsequent breeding seasons. This was associated with a significant suppression of plasma LH and FSH concentrations but no significant effect on prolactin. The ovaries of LHRH-immunized ewes 30 months after primary immunization contained no follicles greater than 2.5 mm in diameter and a greater proportion of follicles between 1 and 2 mm were atretic than in control ewes (N = 8). In-vitro production of testosterone and androstenedione were similar in follicles 1-2 mm in both control and LHRH-immunized ewes (N = 6) and all had little or no ability to secrete oestradiol. However, basal and hCG-stimulated progesterone secretion was suppressed in the follicles from LHRH-immunized ewes. These results show that follicular development beyond 2.5 mm in the ewe is dependent on adequate stimulation by both LH and FSH.  相似文献   

19.
We have shown that 4 ng luteinizing hormone releasing hormone (LHRH) pulses induced significantly greater luteinizing hormone (LH) release from proestrous rat superfused anterior pituitary cells with no cycle related differences in follicle stimulating hormone (FSH). Current studies gave 8 ng LHRH in various pulse regimens to study amplitude, duration and frequency effects on LH and FSH secretion from estrous 0800, proestrous 1500 and proestrous 1900 cells. Regimen 1 gave 8 ng LHRH as a single bolus once/h; regimen 2 divided the 8 ng into 3 equal 'minipulses' given at 4 min intervals to extend duration; regimen 3 gave the 3 'minipulses' at 10 min intervals, thereby further extending duration: regimen 4 was the same as regimen 2, except that the 3 'minipulses' were given at a pulse frequency of 2 h rather than 1 h. In experiment 1, all four regimens were employed at proestrus 1900. FSH was significantly elevated by all 8 ng regimens as compared to 4 ng pulses; further, 8 ng divided into 3 equal 'minipulses' separated by 4 min at 1 and 3 h frequencies (regimens 2 and 4) resulted in FSH secretion that was significantly greater than with either a single 8 ng bolus (regimen 1) or when the 'minipulses' were separated by 10 min (regimen 3). In experiment 2, at proestrus 1500, FSH response to the second pulse of regimen 4 was significantly greater than in regimen 2; LH release was significantly suppressed at pulse 2 compared to regimen 2 accentuating divergent FSH secretion. At estrus 0800, FSH response to the second pulse of regimen 4 was significantly stimulated FSH at proestrus 1900, 1500 and estrus 0800, FSH divergence was most marked at proestrus 1500. These data indicate a potential role for hypothalamic LHRH secretory pattern in inducing divergent gonadotropin secretion in the rat.  相似文献   

20.
We have combined for modifications of common radioimmunoassay (RIA) techniques to increase the sensitivity of the gonadotropin assays by an order of magnitude compared with those generated according to the instructions provided by the National Pituitary Agency. The four modifications are: a) enzymatic radioiodination, b) purification of radiolabeled hormones by Sephadex and concanavalin A chromatography, c) reduced first antibody concentration, and d) a prolonged incubation time. These methods increase the sensitivities of the RIAs and allow for the quantitation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels in small volumes of plasma. We have used these methods to measure the changes in pulse frequency and amplitude of LH and FSH in ovariectomized hamsters after a variety of neuroendocrine manipulations. Alterations in catecholaminergic neurotransmission affect the frequency and amplitude of LH but not FSH release, and suggest that the hypothalamic mechanisms responsible for LH releasing hormone (LHRH)-mediated LH release are distinct from those that regulate FSH secretion. Further, alterations in LHRH-pituitary interactions (elicited by injections of LHRH antisera or a potent LHRH agonist), suggest the existence of separate control mechanisms responsible for LH and FSH release at the level of the adenohypophysis. Combined, these studies provide further evidence for complex and separate neuroendocrine regulatory control over the secretion of each gonadotropin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号