首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of initiator and effector caspases, mitochondrial changes involving a reduction in its membrane potential and release of cytochrome c (cyt c) into the cytosol, are characteristic features of apoptosis. These changes are associated with cell acidification in some models of apoptosis. The hierarchical relationship between these events has, however, not been deciphered. We have shown that somatostatin (SST), acting via the Src homology 2 bearing tyrosine phosphatase SHP-1, exerts cytotoxic action in MCF-7 cells, and triggers cell acidification and apoptosis. We investigated the temporal sequence of apoptotic events linking caspase activation, acidification, and mitochondrial dysfunction in this system and report here that (i) SHP-1-mediated caspase-8 activation is required for SST-induced decrease in pH(i). (ii) Effector caspases are induced only when there is concomitant acidification. (iii) Decrease in pH(i) is necessary to induce reduction in mitochondrial membrane potential, cyt c release and caspase-9 activation and (iv) depletion of ATP ablates SST-induced cyt c release and caspase-9 activation, but not its ability to induce effector caspases and apoptosis. These data reveal that SHP-1-/caspase-8-mediated acidification occurs at a site other than the mitochondrion and that SST-induced apoptosis is not dependent on disruption of mitochondrial function and caspase-9 activation.  相似文献   

2.
At least two mechanisms of early cytosolic acidification during apoptotic signaling have been described, one that involves caspase 8 activation downstream of receptor ligation and another dependent on mitochondria-derived hydrogen peroxide during merocil-induced apoptosis. Here, we show that Bcl-2 inhibits both mechanisms of acidification. Moreover, Bcl-2 overexpression resulted in a slightly elevated constitutive level of superoxide anion and pH in CEM leukemia cells. Interestingly, decreasing intracellular superoxide concentration with an inhibitor of the beta-nicotinamide adenine dinucleotide phosphate oxidase or by transient transfection with a dominant-negative form of the guanosine triphosphate-binding protein Rac1 resulted in a significant increase in the sensitivity of CEM/Bcl-2 cells to CD95- or merocil-induced apoptosis. This increase in sensitivity was a direct result of a significant increase in caspase 8 activation and caspase 8-dependent acidification in the absence of caspase 9 activity or cytochrome c release. These findings suggest a mechanism of switching from mitochondria-dependent to mitochondria-independent death signaling in the same cell, provided the intracellular milieu is permissive for upstream caspase 8 activation, and could have implications for favorably tailoring tumor cells for drug treatment even when the mitochondrial pathway is compromised by Bcl-2.  相似文献   

3.
Ceramide, a long chain sphingolipid that is generated intracellularly upon hydrolysis of membrane-associated sphingomyelin, has recently been implicated as a second messenger-like molecule that is produced distal to ligation of the tumour necrosis factor receptor type 1 (TNFR1), as well as the related Fas (CD95/Apo-1) molecule. It is well established that ligation of TNFR1 or Fas leads to apoptosis in most cases. Furthermore, it has also recently been demonstrated that exposure to cell-permeable synthetic ceramides can result in apoptosis in many cases. These and other observations have led to the hypothesis that accumulation of intracellular ceramide may be a common element of several pathways that result in apoptosis. Here we show that exposure to synthetic ceramides triggers apoptosis in the human T lymphoblastoid cell lines, CEM and Jurkat, and that overexpression of the apoptosis-repressor protein, Bcl-2, renders these cells resistant to the apoptosis-inducing effects of ceramide, as well as to several other stimuli. Since exposure to ceramides can result in either cell proliferation, differentiation, cycle arrest, or death, the level of Bcl-2 expression in a cell may be an important factor in determining the outcome of signals that result in intracellular generation of this sphingolipid.  相似文献   

4.
Activation of protein kinase C (PKC) can protect cells from apoptosis induced by various agents, including Fas ligation. To elucidate a possible interaction between Fas-mediated apoptotic signals and activation-related protective signals, we investigated the impact of Fas ligation on PKC activity. We demonstrate that engagement of Fas on human lymphoid Jurkat cells triggered apoptosis, and Fas ligation resulted in partial blockade of cellular PKC activity. The phorbol 12-myristate 13-acetate-mediated translocation of PKCtheta from the cytoplasm to the membrane was inhibited by treatment with anti-Fas antibody, whereas the translocation of PKCalpha or epsilon was not affected. In vitro kinase assay of PKCalpha or epsilon phosphotransferase activity demonstrated that Fas ligation inhibited the ability of PKCalpha to phosphorylate histone H1 as substrate but did not inhibit epsilon isozyme activity. This inhibition of PKCalpha activity mediated by Fas ligation was reversed by okadaic acid, a phosphatase inhibitor, suggesting the involvement of a member of the protein phosphatase 2A subfamily in this component of Fas signaling. Identical patterns of PKC isozyme inhibition were obtained using mouse thymoma cells overexpressing the fas gene (LF(+)). These results suggest that the selective inhibition of a potentially protective, PKC-mediated pathway by Fas activation may, to some extent, contribute to Fas-induced apoptotic signaling.  相似文献   

5.
Mitochondria trigger apoptosis by releasing caspase activators, including cytochrome c (cytC). Here we show, using a pH-sensitive green fluorescent protein (GFP), that mitochondria-dependent apoptotic stimuli (such as Bax, staurosporine and ultraviolet irradiation) induce rapid, Bcl-2-inhibitable mitochondrial alkalinization and cytosol acidification, followed by cytC release, caspase activation and mitochondrial swelling and depolarization. These events are not induced by mitochondria-independent apoptotic stimuli, such as Fas. Activation of cytosolic caspases by cytC in vitro is minimal at neutral pH, but maximal at acidic pH, indicating that mitochondria-induced acidification of the cytosol may be important for caspase activation; this finding is supported by results obtained from cells using protonophores. Cytosol acidification and cytC release are suppressed by oligomycin, a FoF1-ATPase/H +-pump inhibitor, but not by caspase inhibitors. Ectopic expression of Bax in wild-type, but not FoF1/H+-pump-deficient, yeast cells similarly results in mitochondrial matrix alkalinization, cytosol acidification and cell death. These findings indicate that mitochondria-mediated alteration of intracellular pH may be an early event that regulates caspase activation in the mitochondrial pathway for apoptosis.  相似文献   

6.
Dual role for TGF-beta1 in apoptosis   总被引:6,自引:0,他引:6  
The exposure of cells to TGF-beta1 can trigger a variety of cellular responses including the inhibition of cell growth, migration, differentiation and apoptosis. TGF-beta1-regulated apoptosis is cell type and context-dependent, indeed TGF-beta1 provides signals for both cell survival or apoptosis. The molecular mechanisms underlying the role of TGF-beta1 in apoptosis remains unclear. The proteins that primarily mediate the intracellular signaling of TGF-beta1 are the members of the Smad family. Nevertheless, TGF-beta1 signaling can also cooperate with the death receptor apoptotic pathway (Fas, TNF), with the intracellular modulators of apoptosis JNK and p38 MAP kinases, Akt, NF-kappaB, and with the mitochondrial apoptotic pathway mediated by members of the Bcl-2 family. Moreover, the involvement of TGF-beta1 in the production of oxidative stress and in preventing the inflammatory processes required for the clearance of apoptotic bodies is further evidence of its integration into apoptotic pathways. The interaction and balance between different stimuli provides the basis for the pro- or anti-apoptotic output of TGF-beta1 signaling in a given cell.  相似文献   

7.
Restimulation of Ag receptors on peripheral T lymphocytes induces tyrosine phosphorylation-based signaling cascades that evoke Fas ligand expression and induction of Fas-mediated programmed cell death. In view of the role for the Src homology domain 2-bearing protein tyrosine phosphatase-1 (SHP-1) in modulating TCR signaling, we investigated the influence of SHP-1 on TCR-mediated apoptosis by assaying the sensitivity of peripheral T cells from SHP-1-deficient viable motheaten (mev) mice to cell death following TCR restimulation. The results of these studies revealed mev peripheral T cells to be markedly more sensitive than wild-type cells to induction of cell death following TCR stimulation. By contrast, PMA/ionophore and anti-Fas Ab-induced apoptotic responses were no different in mev compared with wild-type activated cells. Enhanced apoptosis of TCR-restimulated mev lymphocytes was associated with marked increases in Fas ligand expression as compared with wild-type cells, but was almost abrogated in both mev and wild-type cells by Fas-Fc treatment. Thus, the increased sensitivity of mev T cells to apoptosis following TCR restimulation appears to reflect a TCR-driven phenomenon mediated through up-regulation of Fas-Fas ligand interaction and induction of the Fas signaling cascade. These findings, together with the hyperproliferative responses of mev peripheral T cells to initial TCR stimulation, indicate that SHP-1 modulation of TCR signaling translates to the inhibition of both T cell proliferation and activation and, as such, is likely to play a pivotal role in regulating the expansion of Ag-stimulated T cells during an immune response.  相似文献   

8.
Previous studies suggest that apoptotic signaling may require proteins that are critical to cellular proliferation and cell cycle regulation. To further examine this question, proliferating, transiently growth-arrested, and senescent normal human fibroblasts were induced to undergo apoptosis in response to two distinct mediators of apoptosis-Fas (APO-1/CD95) death receptor and staurosporine. Ligation of the Fas receptor in the presence of cycloheximide or actinomycin D resulted in apoptosis of proliferating cells, cells transiently growth arrested by gamma-irradiation or serum starvation (i.e., G(0) arrest), and permanently growth-arrested senescent fibroblasts. Proliferating and G(0)-arrested cells were also susceptible to staurosporine-mediated apoptosis. Surprisingly, gamma-irradiated cells did not undergo staurosporine-mediated apoptosis, and remained viable for a prolonged time. Fas-mediated apoptosis of senescent fibroblasts was evidenced by chromosome condensation and by activation of caspase-8 and -3, proteases crucial for the execution of the Fas apoptosis pathway. In addition, ligation of the Fas receptor in G(0)-arrested cells did not result in the activation of p34(cdc2) kinase, arguing that activation of this kinase is not essential in this apoptotic process. From these studies we conclude that proliferating, transiently growth-arrested, and senescent normal human fibroblasts are susceptible to apoptotic signals and that apoptosis is not necessarily dependent upon cell cycle or proliferative state of the cell.  相似文献   

9.
Activation of the cell surface receptor Fas/APO-1 (CD95) induces apoptosis in lymphocytes and regulates immune responses. The cytoplasmic membrane protein Bcl-2 inhibits lymphocyte killing by diverse cytotoxic agents, but we found it provided little protection against Fas/APO-1-transduced apoptosis in B lymphoid cell lines, thymocytes and activated T cells. In contrast, the cowpox virus protease inhibitor CrmA blocked Fas/APO-1-transduced apoptosis, but did not affect cell death induced by gamma-radiation or serum deprivation. Signalling through Fas/APO-1 did not down-regulate Bcl-2 or induce its antagonists Bax and Bcl-xS. In Fas/APO-1-deficient lpr mice, Bcl-2 transgenes markedly augmented the survival of antigen-activated T cells and the abnormal accumulation of lymphocytes (although they did not interfere with deletion of auto-reactive cells in the thymus). These data raise the possibility that Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis.  相似文献   

10.
We previously demonstrated that the intracellular third loop (i3 loop) of angiotensin II type 2 receptor (AT2) plays a key role in mediating the biological functions of this receptor. To determine which residues are important for AT2 signaling, mutated receptors with serial deletions within the i3 loop were stably expressed in PC12 cells. Deletion of residues 240-244 within the intermediate portion of the i3 loop resulted in a complete loss of AT2-mediated apoptosis, inhibition of extracellular signal-regulated kinases (ERK), and SHP-1 activation. In contrast to well characterized heptahelical receptors, the AT2 functions were not affected by deletions of the amino- or carboxyl-terminal portions of the i3 loop. Alanine substitutions further demonstrated that lysine 240, asparagine 242, and serine 243 are key residues for AT2-induced apoptosis, ERK inhibition, and SHP-1 activation. To examine whether a functional link exists between activation of SHP-1 and apoptosis, we used a catalytically inactive SHP-1 mutant and demonstrated that preventing SHP-1 activation strongly attenuates AT2-induced ERK inhibition and apoptosis. Our data demonstrate that the intermediate portion of the i3 loop is important for AT2 function and that SHP-1 is a proximal effector of the AT2 receptor that is implicated in the inhibition of ERKs and in the apoptotic effect of this receptor.  相似文献   

11.
We have investigated the relative contribution of apoptosis or programmed cell death (PCD) to cell killing during acute infection with T-cell-tropic, cytopathic human immunodeficiency virus type 1 (HIV-1), by employing diverse strategies to inhibit PCD or to detect its common end-stage sequelae. When Bcl-2-transfected cell lines were infected with HIV-1, their viability was only slightly higher than that of control infections. Although the adenovirus E1B 19-kDa protein has been reported to be a stronger competitor of apoptosis than Bcl-2, it did not inhibit HIV-mediated cell death better than Bcl-2 protein. Competition for Fas ligand or inactivation of the Fas pathway secondary to intracellular mutation (MOLT-4 T cells) also had modest effects on overall cell death during acute HIV infection. In contrast to these observations with HIV infection or with HIV envelope-initiated cell death, Tat-expressing cell lines were much more susceptible (200% enhancement) to Fas-induced apoptosis than controls and Bcl-2 overexpression strongly (75%) inhibited this apoptotic T-cell death. PCD associated with FasR ligation resulted in the cleavage of common interleukin-1beta-converting enzyme (ICE)-protease targets, poly(ADP-ribose) polymerase (PARP) and pro-ICE, whereas cleaved products were not readily detected during HIV infection of peripheral blood mononuclear cells or T-cell lines even during periods of extensive cell death. These results indicate that one important form of HIV-mediated cell killing proceeds by a pathway that lacks the characteristics of T-cell apoptosis. Our observations support the conclusion that at least two HIV genes (env and tat) can kill T cells by distinct pathways and that an envelope-initiated process of T-cell death can be discriminated from apoptosis by many of the properties most closely associated with apoptotic cell death.  相似文献   

12.
Fas triggers apoptosis via the caspase cascade when bound to its ligand FasL. In type I cells, Fas is concentrated into the plasma membrane lipid rafts, and these domains are required for the apoptotic signal to occur. In contrast, Fas is excluded from the microdomains in type II cells. We report that the coligation with Fas of the membrane receptor CD28 strongly increases Fas-induced apoptosis in type II T lymphocytes, whereas it has no effect in a type I cell line. The effect of CD28 is independent of its intracellular region and requires the recruitment of the microdomains. Indeed, upon CD28 costimulation, Fas is redistributed in the lipid rafts, and their disruption with a cholesterol chelator abrogates the effect of CD28. The microdomain-mediated cell death amplification does not alter death-induced signaling complex formation and is mediated by the enhancement of the mitochondrial apoptotic pathway. These findings indicate that the sensitivity to Fas-induced apoptosis of type II cells can be amplified in vivo by the recruitment of lipid rafts following interactions between nonapoptotic ligand/receptor pairs during cell-to-cell contacts.  相似文献   

13.
14.
Although ischemia-reperfusion (I/R) of small intestine is known to induce lung cell apoptosis, there is little information on intracellular and extracellular molecular mechanisms. Here, we investigated the mechanisms of apoptosis including the expression of Fas, Fas ligand (FasL), Bid, Bax, Bcl-2, cytochrome c, and activated caspase-3 in the rat lung at various time-points (0–24 h) of reperfusion after 1-h ischemia of small intestine. As assessed by TUNEL, the number of apoptotic epithelial cells, which were subsequently identified as type II alveolar epithelial cells by electron microscopy and immunohistochemical double-staining, increased at 3 h of reperfusion in the lung. However, intravenous injections of anti-TNF-α antibody decreased the number of TUNEL-positive cells, indicating involvement of tumor necrosis factor-α (TNF-α) in the induction of lung cell apoptosis. Western blotting and/or immunohistochemistry revealed a marked up-regulation of Fas, FasL, Bid, Bax, cytochrome c and activated caspase-3 and down-regulation of Bcl-2 in lung epithelial and stromal cells at 3 h of reperfusion. Our results indicate that I/R of small intestine results in apoptosis of rat alveolar type II cells through a series of events including systemic TNF-α, activation of two apoptotic signaling pathways and mitochondrial translocation of Bid.  相似文献   

15.
In addition to cell shrinkage, membrane blebbing, DNA fragmentation and phosphatidylserine exposure, intracellular acidification represents a hallmark of apoptosis. Although the mechanisms underlying cytosolic acidification during apoptosis remained largely elusive, a pivotal role of mitochondria has been proposed. In order to investigate the involvement of mitochondria in cytosolic acidification during apoptosis, we blocked the mitochondrial death pathway by overexpression of Bcl-2 and subsequently activated the death receptor pathway by anti-CD95 or TRAIL or the mitochondrial pathway by staurosporine. We show that Bcl-2 but not caspase inhibition prevented staurosporine-induced intracellular acidification. Thus, intracellular acidification in mitochondrial apoptosis is a Bcl-2-inhibitable, but caspase-independent process. In contrast, Bcl-2 only slightly delayed, but did not prevent intracellular acidification upon triggering of death receptors. The Na+/H+ exchanger NHE1 was partially degraded during apoptosis but only to a small extent and and at a delayed time point when cytosolic acidification was almost completed. We therefore conclude that cytosolic acidification is mitochondrially controlled in response to mitochondria-dependent death stimuli, but requires additional caspase-dependent mechanisms during death receptor-mediated apoptosis. Michaela Waibel, Stefan Kramer and Kirsten Lauber share equal first authorship.  相似文献   

16.
Diabetic retinopathy (DR) is one of the most serious complications of diabetes mellitus (DM), however, the contribution of high glucose (HG) or hyperglycemia to DR is far from fully understanding. In the present study, we examined the expression of Fas/FasL signaling and suppressors of cytokine signaling (SOCS)1 and 3 in HG-induced human retinal pigment epithelium cells (ARPE-19 cells). And then we investigated the regulatory role of both Fas and SOCS1 in HG-induced mitochondrial dysfunction and apoptosis. Results demonstrated that HG with more than 40 mM induced mitochondrial dysfunction via reducing mitochondrial membrane potential (MMP) and via inhibiting the Bcl-2 level, which is the upstream signaling of mitochondria in ARPE-19 cells. HG also upreuglated the Fas signaling and SOCS levels probably via promoting JAK/STAT signaling in ARPE-19 cells. Moreover, the exogenous Fas or entogenous overexpressed SOCS1 accentuated the HG-induced mitochondrial dysfunction and apoptosis, whereas the knockdown of either Fas or SOCS1 reduced the HG-induced mitochondria dysfunction and apoptosis. Thus, the present study confirmed that both Fas/FasL signaling and SOCS1 promoted the HG-induced mitochondrial dysfunction and apoptosis. These results implies the key regulatory role of Fas signaling and SOCS in DR.  相似文献   

17.
Human thymocytes at several stages of maturation express Fas, yet resist apoptosis induction through its ligation. A proximal step in apoptotic signaling through Fas is implicated in this resistance, as these cells undergo normal levels of apoptosis induction after exposure to tumor necrosis factor-alpha. We studied the Fas receptors expressed in human thymocytes to search for mechanisms of receptor-mediated inhibition of Fas signaling in these cells. We describe here a unique, membrane-bound form of Fas receptor that contained a complete extracellular domain of Fas but that lacked a death domain due to alternative splicing of exon 7. This Fas decoy receptor (FDR) was shown to have nearly wild-type ability to bind native human Fas ligand and was expressed predominantly at the plasma membrane. Unlike soluble forms of Fas receptor, FDR dominantly inhibited apoptosis induction by Fas ligand in transfected human embryonic kidney cells. Titration of FDR in Fas-expressing cells suggests that FDR may operate through the formation of mixed receptor complexes. FDR also dominantly inhibited Fas-induced apoptosis in Jurkat T cells. In mixing experiments with wild-type Fas, FDR was capable of inhibiting death signaling at molar ratios less than 0.5, and this relative level of FDR:wild type message was observed in at least some thymocytes tested. The data suggest that Fas signal pathways in primary human cells may be regulated by expression of a membrane-bound decoy receptor, analogous to the regulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis by decoy receptors.  相似文献   

18.
Apoptosis by a cytosolic extract from Fas-activated cells.   总被引:9,自引:1,他引:8       下载免费PDF全文
M Enari  A Hase    S Nagata 《The EMBO journal》1995,14(21):5201-5208
Fas is a type I membrane protein and its activation by binding of the Fas ligand or an agonistic anti-Fas antibody induces apoptosis in Fas-bearing cells. In this report we prepared lysates from cells treated with anti-Fas antibody. The lysates induced apoptotic morphological changes in nuclei from normal mouse liver, accompanied by DNA degradation. The apoptosis-inducing activity was quickly generated in cells by anti-Fas antibody and was found in the soluble cytosolic fraction. Induction of the activity in cells was inhibited by a tetrapeptide, acetyl-Tyr-Val-Ala-Asp-chloromethylketone, a specific inhibitor of interleukin-1 beta converting enzyme. Addition of COS cell lysates containing Bcl-2 to the assay significantly inhibited the apoptotic process, indicating that the in vitro process reflected apoptosis that occurs in intact cells.  相似文献   

19.
We compared the biological mechanism of cell death during hepatotoxicity induced by ligation of the Fas receptor in wild-type and liver-specific bcl-2 transgenic mice. Transgenic overexpression of Bcl-2 in mouse hepatocytes can prevent lethal hepatitis induced by agonistic anti-Fas antibodies. In contrast, Fas ligand (FasL)-induced death cannot be overcome in bcl-2 transgenic mice, indicating that anti-Fas antibodies do not reliably mimic the more physiological ligand. Different apoptotic parameters, viz. caspase activation, cytochrome c release and nuclear DNA degradation were analysed. No differences, however, could be observed between wild-type and bcl-2 transgenic mice after injection with a lethal dose of soluble FasL, indicating that apoptosis by FasL-dependent ligation is not modulated by Bcl-2 in vivo. These results demonstrate that the stimulus determines the outcome between type I mitochondria-independent apoptosis, in the case of FasL, or type II mitochondria-dependent and Bcl-2-inhibitable apoptosis, in the case of anti-Fas antibodies.  相似文献   

20.
While investigating the mechanism of action of the novel antitumor drug Aplidin, we have discovered a potent and novel cell-killing mechanism that involves the formation of Fas/CD95-driven scaffolds in membrane raft clusters housing death receptors and apoptosis-related molecules. Fas, tumor necrosis factor-receptor 1, and tumor necrosis factor-related apoptosis-inducing ligand receptor 2/death receptor 5 were clustered into lipid rafts in leukemic Jurkat cells following Aplidin treatment, the presence of Fas being essential for apoptosis. Preformed membrane-bound Fas ligand (FasL) as well as downstream signaling molecules, including Fas-associated death domain-containing protein, procaspase-8, procaspase-10, c-Jun amino-terminal kinase, and Bid, were also translocated into lipid rafts, connecting death receptor extrinsic and mitochondrial intrinsic apoptotic pathways. Blocking Fas/FasL interaction partially inhibited Aplidin-induced apoptosis. Aplidin was rapidly incorporated into membrane rafts, and drug uptake was inhibited by lipid raft disruption. Actin-linking proteins ezrin, moesin, RhoA, and RhoGDI were conveyed into Fas-enriched rafts in drug-treated leukemic cells. Disruption of lipid rafts and interference with actin cytoskeleton prevented Fas clustering and apoptosis. Thus, Aplidin-induced apoptosis involves Fas activation in both a FasL-independent way and, following Fas/FasL interaction, an autocrine way through the concentration of Fas, membrane-bound FasL, and signaling molecules in membrane rafts. These data indicate a major role of actin cytoskeleton in the formation of Fas caps and highlight the crucial role of the clusters of apoptotic signaling molecule-enriched rafts in apoptosis, acting as concentrators of death receptors and downstream signaling molecules and as the linchpin from which a potent death signal is launched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号