首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence suggests that small subpopulations of tumor cells maintain a unique self-renewing and differentiation capacity and may be responsible for tumor initiation and/or relapse. Clarifying the mechanisms by which these tumor-initiating cells (TICs) support tumor formation and progression could lead to the development of clinically favorable therapies. Ovarian cancer is a heterogeneous and highly recurrent disease. Recent studies suggest TICs may play an important role in disease biology. We have identified culture conditions that enrich for TICs from ovarian cancer cell lines. Growing either adherent cells or non-adherent ‘floater’ cells in a low attachment plate with serum free media in the presence of growth factors supports the propagation of ovarian cancer TICs with stem cell markers (CD133 and ALDH activity) and increased tumorigenicity without the need to physically separate the TICs from other cell types within the culture. Although the presence of floater cells is not common for all cell lines, this population of cells with innate low adherence may have high tumorigenic potential.Compared to adherent cells grown in the presence of serum, TICs readily form spheres, are significantly more tumorigenic in mice, and express putative stem cell markers. The conditions are easy to establish in a timely manner and can be used to study signaling pathways important for maintaining stem characteristics, and to identify drugs or combinations of drugs targeting TICs. The culture conditions described herein are applicable for a variety of ovarian cancer cells of epithelial origin and will be critical in providing new information about the role of TICs in tumor initiation, progression, and relapse.  相似文献   

2.
Due to their self-renewal and tumorigenic properties, tumor-initiating cells (TICs) have been hypothesized to be important targets for colorectal cancer (CRC). However the study of TICs is hampered by the fact that the identification and culturing of TICs is still a subject of extensive debate. Floating three-dimensional spheroid cultures (SC) that grow in serum-free medium supplemented with growth factors are supposed to be enriched in TICs. We generated SC from fresh clinical tumor specimens and compared them to SC isolated from CRC cell-lines as well as to adherent differentiated counterparts. Patient-derived SC display self-renewal capacity and can induce serial transplantable tumors in immuno-deficient mice, which phenotypically resemble the tumor of origin. In addition, the original tumor tissue and established SC retain several similar CRC-relevant mutations. Primary SC express key stemness proteins such as SOX2, OCT4, NANOG and LGR5 and importantly show increased chemoresistance ability compared to their adherent differentiated counterparts and to cell line-derived SC. Strikingly, cells derived from spheroid or adherent differentiating culture conditions displayed similar self-renewal capacity and equally formed tumors in immune-deficient mice, suggesting that self-renewal and tumor-initiation capacity of TICs is not restricted to phenotypically immature spheroid cells, which we describe to be highly plastic and able to reacquire stem-cell traits even after long differentiation processes. Finally, we identified two genes among a sphere gene expression signature that predict disease relapse in CRC patients. Here we propose that SC derived from fresh patient tumor tissue present interesting phenotypic features that may have clinical relevance for chemoresistance and disease relapse and therefore represent a valuable tool to test for new CRC-therapies that overcome drug resistance.  相似文献   

3.
WNT signaling plays a key role in the self-renewal of tumor initiation cells (TICs). In this study, we used pyrvinium pamoate (PP), an FDA-approved antihelmintic drug that inhibits WNT signaling, to test whether pharmacologic inhibition of WNT signaling can specifically target TICs of aggressive breast cancer cells. SUM-149, an inflammatory breast cancer cell line, and SUM-159, a metaplastic basal-type breast cancer cell line, were used in these studies. We found that PP inhibited primary and secondary mammosphere formation of cancer cells at nanomolar concentrations, at least 10 times less than the dose needed to have a toxic effect on cancer cells. A comparable mammosphere formation IC50 dose to that observed in cancer cell lines was obtained using malignant pleural effusion samples from patients with IBC. A decrease in activity of the TIC surrogate aldehyde dehydrogenase was observed in PP-treated cells, and inhibition of WNT signaling by PP was associated with down-regulation of a panel of markers associated with epithelial-mesenchymal transition. In vivo, intratumoral injection was associated with tumor necrosis, and intraperitoneal injection into mice with tumor xenografts caused significant tumor growth delay and a trend toward decreased lung metastasis. In in vitro mammosphere-based and monolayer-based clonogenic assays, we found that PP radiosensitized cells in monolayer culture but not mammosphere culture. These findings suggest WNT signaling inhibition may be a feasible strategy for targeting aggressive breast cancer. Investigation and modification of the bioavailability and toxicity profile of systemic PP are warranted.  相似文献   

4.
Epithelial cell adhesion molecule (EpCAM) is highly expressed in epithelial-transformed neoplasia and tumor-initiated cells (TICs), but the role that EpCAM plays in the stemness properties of TICs is still unclear. Here we show that EpCAM and reprogramming factors (c-Myc, Oct4, Nanog, and Sox2) were concomitantly elevated in TICs, which were shown to have superior self-renewal, invasiveness, and tumor-initiating abilities. Elevation of EpCAM enhanced tumorsphere formation and tumor initiation. Knockdown of EpCAM inhibited the expressions of reprogramming factors and epithelial-mesenchymal transition genes, thereby suppressing tumor initiation, self-renewal, and invasiveness. In addition, EpCAM, especially intracellular domain of EpCAM (EpICD), bound to and activated the promoter of reprogramming factors. Treatment with the inhibitor of γ-secretase (DAPT) led to the blockage of the expressions of reprogramming factors and epithelial-mesenchymal transition genes, which was accompanied by the reduction of tumor self-renewal and invasion. Furthermore, the increased release of EpEX enhanced production of EpICD and regulated the expression of reprogramming factors. Together, these findings suggest that EpCAM plays an important role in regulating cancer-initiating abilities in TICs of colon cancer. This discovery can be used in the development of new strategies for cancer therapy.  相似文献   

5.
Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs.  相似文献   

6.
Pancreatic cancer is an aggressive solid tumour characterized by its local invasion, early metastasis and resistance to standard chemotherapy or radiation therapy. Tumour initiating cells (TICs) are not only capable of self-renewal and differentiation, but also play an important role in multi-drug resistance, and thus become a popular topic in cancer research especially in pancreatic cancer. In this review, we summarize the current progress of TICs in tumourigenesis, various newly identified surface markers of pancreatic TICs, and the signalling pathways such as epithelial-mesenchymal transition, sonic hedgehog and Notch that regulate TICs. We also discuss the role which microRNA plays in TICs as well as its application in TIC-targeted therapy along with other approaches.  相似文献   

7.
Mammary cancer stem cells (MaCSCs) have been identified as a rare population of cells capable of self-renewal to drive mammary tumorigenesis and metastasis. Nevertheless, relatively little is known about the intracellular signaling pathways regulating self-renewal and metastatic activities of MaCSCs in vivo. Using a recently developed breast cancer mouse model with focal adhesion kinase (FAK) deletion in mammary tumor cells (MFCKO-MT mice), here we present evidence suggesting a compensatory function of Pyk2, a FAK-related kinase, in the regulation of MaCSCs and metastasis in these mice. Increased expression of Pyk2 was found selectively in pulmonary metastatic nodules of MFCKO-MT mice, and its inhibition significantly reduced mammary tumor development and metastasis in these mice. Consistent with the idea of metastasis driven by MaCSCs, we detected selective up-regulation of Pyk2 in MaCSCs, but not bulk mammary tumor cells, of primary tumors developed in MFCKO-MT mice. We further showed that inhibition of Pyk2 in FAK-null MaCSCs significantly decreased their tumorsphere formation and migration in vitro as well as self-renewal, tumorigenicity, and metastatic activity in vivo. Last, we identified PI3K/Akt signaling as a major mediator of FAK regulation of MaCSCs as well as a target for the compensatory function of Pyk2 in FAK-null MaCSCs. Together, these results further advance our understanding of FAK and its related tyrosine kinase Pyk2 in regulation of MaCSCs in breast cancer and suggest that pharmaceutically targeting these kinases may hold promise as a novel treatment for the disease by targeting and eradicating MaCSCs.  相似文献   

8.
ABSTRACT

In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously established, TIC-enrichedpatient-derived colorectal cancer (CRC) cultures, we show that hypoxia increases the self-renewal capacity of TICs while inducing proliferation arrest in their more differentiated counterpart cultures. Gene expression data revealed macroautophagy/autophagy as one of the major pathways induced by hypoxia in TICs. Interestingly, hypoxia-induced autophagy was found to induce phosphorylation of EZR (ezrin) at Thr567 residue, which could be reversed by knocking down ATG5, BNIP3, BNIP3L, or BECN1. Furthermore, we identified PRKCA/PKCα as a potential kinase involved in hypoxia-induced autophagy-mediated TIC self-renewal. Genetic targeting of autophagy or pharmacological inhibition of PRKC/PKC and EZR resulted in decreased tumor-initiating potential of TICs. In addition, we observed significantly reduced in vivo tumor initiation and growth after a stable knockdown of ATG5. Analysis of human CRC samples showed that p-EZR is often present in TICs located in the hypoxic and autophagic regions of the tumor. Altogether, our results establish the hypoxia-autophagy-PKC-EZR signaling axis as a novel regulatory mechanism of TIC self-renewal and CRC progression. Autophagy inhibition might thus represent a promising therapeutic strategy for cancer patients.  相似文献   

9.
文彬  陈蔚文 《生命科学》2007,19(3):321-325
肠道上皮细胞系是人体细胞更新最快的组织,更新速率甚至远远超过了肿瘤组织,这种无与伦比的更新速率如同一把双刃剑,一方面可以迅速的更新和修复肠粘膜,另一方面却大大增加了肠道细胞恶化的易感性。Wnt信号、Notch信号、BMP信号都参与了隐窝干细胞增殖分化的平衡,它们中任何一个组分发生突变或异常都将会导致结肠癌的发生。结肠癌的发生很可能是肠隐窝干细胞分化受阻的结果,隐窝干细胞是致瘤起始事件或突变的标靶。  相似文献   

10.
Background: EpCAM or CD133 has been used as the tumor initiating cells (TICs) marker in hepatocellular carcinoma (HCC). We investigated whether cells expressing with both EpCAM and CD133 surface marker were more representative for TICs in hepatocellular carcinoma Huh7 cells.Methods: Four different phenotypes of CD133+EpCAM+, CD133+EpCAM-, CD133-EpCAM+ and CD133-EpCAM- in Huh7 cells were sorted by flow cytometry. Then cell differentiation, self-renewal, drug-resistance, spheroid formation and the levels of stem cell-related genes were detected to compare the characteristics of TICs. The ability of tumorigenicity was measured in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice to verify TICs.Results: CD133+EpCAM+ cells have many characteristics of TICs in Huh7 cells compared with CD133+EpCAM-, CD133-EpCAM+, CD133-EpCAM- cells, including enrichment in side population cells, higher differentiation capacity, increased colony-formation ability, preferential expression of stem cell-related genes, appearance of drug-resistant to some chemotherapeutics, more spheroid formation of culture cells and stronger tumorigenicity in NOD/SCID mice.Conclusion: CD133+EpCAM+ phenotype is precisely represented TICs in Huh7 cells. It might be useful for studying biology mechanism of TICs in hepatocellular carcinoma and screening new targets for cancer therapy.  相似文献   

11.
Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24-/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24-/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors.  相似文献   

12.
Accumulating evidence indicates that cancer-initiating cells (CICs) are responsible for cancer initiation, relapse, and metastasis. Colorectal carcinoma (CRC) is typically classified into proximal colon, distal colon, and rectal cancer. The gradual changes in CRC molecular features within the bowel may have considerable implications in colon and rectal CICs. Unfortunately, limited information is available on CICs derived from rectal cancer, although colon CICs have been described. Here we identified rectal CICs (R-CICs) that possess differentiation potential in tumors derived from patients with rectal adenocarcinoma. The R-CICs carried both CD44 and CD54 surface markers, while R-CICs and their immediate progenies carried potential epithelial–mesenchymal transition characteristics. These R-CICs generated tumors similar to their tumor of origin when injected into immunodeficient mice, differentiated into rectal epithelial cells in vitro, and were capable of self-renewal both in vitro and in vivo. More importantly, subpopulations of R-CICs resisted both 5-fluorouracil/calcium folinate/oxaliplatin (FolFox) and cetuximab treatment, which are the most common therapeutic regimens used for patients with advanced or metastatic rectal cancer. Thus, the identification, expansion, and properties of R-CICs provide an ideal cellular model to further investigate tumor progression and determine therapeutic resistance in these patients.  相似文献   

13.
Identification of gastric tumor-initiating cells (TICs) is essential to explore new therapies for gastric cancer patients. There are reports that gastric TICs can be identified using the cell surface marker CD44 and that they form floating spheres in culture, but we could not obtain consistent results with our patient-derived tumor xenograft (PDTX) cells. We thus searched for another marker for gastric TICs, and found that CD49fhigh cells from newly-dissected gastric cancers formed tumors with histological features of parental ones while CD49flow cells did not when subcutaneously injected into immunodeficient mice. These results indicate that CD49f, a subunit of laminin receptors, is a promising marker for human gastric TICs. We established a primary culture system for PDTX cells where only CD49fhigh cells could grow on extracellular matrix (ECM) to form ECM-attaching spheres. When injected into immunodeficient mice, these CD49fhigh sphere cells formed tumors with histological features of parental ones, indicating that only TICs could grow in the culture system. Using this system, we found that some sphere-forming TICs were more resistant than gastric tumor cell lines to chemotherapeutic agents, including doxorubicin, 5-fluorouracil and doxifluridine. There was a patient-dependent difference in the tumorigenicity of sphere-forming TICs and their response to anti-tumor drugs. These results suggest that ECM plays an essential role for the growth of TICs, and that this culture system will be useful to find new drugs targeting gastric TICs.  相似文献   

14.
With their resistance to genotoxic and anti-proliferative drugs and potential to grow tumors and metastases from very few cells, cancer stem or tumor-initiating cells (TICs) are a severe limitation for the treatment of cancer by conventional therapies. Here, we explored whether human T cells that are redirected via an EpCAM/CD3-bispecific antibody called MT110 can lyse colorectal TICs and prevent tumor growth from TICs. MT110 recognizes EpCAM, a cell adhesion molecule expressed on TICs from diverse human carcinoma, which was recently shown to promote tumor growth through engagement of elements of the wnt pathway. MT110 was highly potent in mediating complete redirected lysis of KRAS-, PI3 kinase- and BRAF-mutated colorectal TICs, as demonstrated in a soft agar assay. In immunodeficient mice, MT110 prevented growth of tumors from a 5,000-fold excess of a minimally tumorigenic TIC dose. T cells engaged by MT110 may provide a potent therapeutic means to eradicate TICs and bulk tumor cells derived thereof.  相似文献   

15.
Zhao JS  Li WJ  Ge D  Zhang PJ  Li JJ  Lu CL  Ji XD  Guan DX  Gao H  Xu LY  Li EM  Soukiasian H  Koeffler HP  Wang XF  Xie D 《PloS one》2011,6(6):e21419

Background

Esophageal Squamous Cell Carcinoma (ESCC) is a major subtype of esophageal cancer causing significant morbility and mortality in Asia. Mechanism of initiation and progression of this disease is unclear. Tumor initiating cells (TICs) are the subpopulation of cells which have the ability to self-renew, as well as, to drive initiation and progression of cancer. Increasing evidence has shown that TICs exist in a variety of tumors. However, the identification and characterization of TICs in esophageal carcinoma has remained elusive.

Methodology/Principal Findings

to identify TICs in ESCC, ESCC cell lines including two primary cells were used for screening suitable surface marker. Then colony formation assay, drug resistant assay and tumorigenicity assay in immune deficient mice were used to characterize TICs in ESCC. We found that just the CD44 expression correlated with tumorigenicity in ESCC cell lines. And then induced differentiation of ESCC cells by all-trans retinoic acid treatment led to decreased expression of CD44. The FACS isolated cell subpopulations with high CD44 expression showed increased colony formation and drug resistance in vitro, as well as significantly enhanced tumorigenicity in NOD/SICD mice, as compared to the low expressing CD44 ESCC cells.

Conclusions/Significance

our study has discovered a novel TIC surface marker, CD44, which can be utilized to enrich efficiently the TICs in ESCC. These findings will be useful for further studies of these cells and exploring therapeutic approaches.  相似文献   

16.
TICs are characterized by their ability to self-renew, differentiate and initiate tumor formation. miRNAs are small noncoding RNAs that bind to mRNAs resulting in regulation of gene expression and biological functions. The role of miRNAs and TICs in cancer progression led us to hypothesize that miRNAs may regulate genes involved in TIC maintenance. Using whole genome miRNA and mRNA expression profiling of TICs from primary prostate cancer cells, we identified a set of up-regulated miRNAs and a set of genes down-regulated in PSs. Inhibition of these miRNAs results in a decrease of prostatosphere formation and an increase in target gene expression. This study uses genome-wide miRNA profiling to analyze expression in TICs. We connect aberrant miRNA expression and deregulated gene expression in TICs. These findings can contribute to a better understanding of the molecular mechanisms governing TIC development/maintenance and the role that miRNAs have in the fundamental biology of TICs.  相似文献   

17.
Epithelial cell adhesion molecule EpCAM is expressed on a subset of normal epithelia and overexpressed on malignant cells from a variety of different tumor entities. This overexpression is even more pronounced on so-called tumor-initiating cells (TICs) of many carcinomas. Taking this rather ubiquitous expression of EpCAM in carcinomas and TICs into account, the question arises how EpCAM can serve as a reliable marker for tumor-initiating cells and what might be the advantage for TICs to express this molecule. Furthermore, several approaches for therapeutic strategies targeting exclusively EpCAM on cancer cells were undertaken over the past decades and have recently been transferred to pre-clinical attempts to eradicate TICs. In the present review, we will depict potential functions of EpCAM in tumor cells with a special focus on TICs and therapeutic implications.  相似文献   

18.
Epithelial cell adhesion molecule EpCAM is expressed on a subset of normal epithelia and overexpressed on malignant cells from a variety of different tumor entities. This overexpression is even more pronounced on so-called tumor-initiating cells (TICs) of many carcinomas. Taking this rather ubiquitous expression of EpCAM in carcinomas and TICs into account, the question arises how EpCAM can serve as a reliable marker for tumor-initiating cells and what might be the advantage for TICs to express this molecule. Furthermore, several approaches for therapeutic strategies targeting exclusively EpCAM on cancer cells were undertaken over the past decades and have recently been transferred to pre-clinical attempts to eradicate TICs. In the present review, we will depict potential functions of EpCAM in tumor cells with a special focus on TICs and therapeutic implications.  相似文献   

19.
Intratumoral heterogeneity challenges existing paradigms for anti-cancer therapy. We have previously demonstrated that the human embryonic stem cells (hESC)-derived cellular microenvironment in immunocompromised mice, enables functional distinction of heterogeneous tumor cells, including cells which do not grow into a tumor in a conventional direct tumor xenograft platform. We have identified and characterized six cancer cell subpopulations each clonally expanded from a single cell, derived from human ovarian clear cell carcinoma of a single tumor, to demonstrate striking intratumoral phenotypic heterogeneity that is dynamically dependent on the tumor growth microenvironment. These cancer cell subpopulations, characterized as cancer stem cell subpopulations, faithfully recapitulate the full spectrum of histological phenotypic heterogeneity known for human ovarian clear cell carcinoma. Each of the six subpopulations displays a different level of morphologic and tumorigenic differentiation wherein growth in the hESC-derived microenvironment favors growth of CD44+/aldehyde dehydrogenase positive pockets of self-renewing cells that sustain tumor growth through a process of tumorigenic differentiation into CD44-/aldehyde dehydrogenase negative derivatives. Strikingly, these derivative cells display microenvironment-dependent plasticity with the capacity to restore self-renewal markers and CD44 expression. In the current study, we delineate the distinct gene expression and epigenetic profiles of two such subpopulations, representing extremes of phenotypic heterogeneity in terms of niche-dependent self-renewal and tumorigenic differentiation. By combining Gene Set Enrichment, Gene Ontology and Pathway-focused array analyses with methylation status, we propose a suite of robust differences in tumor self-renewal and differentiation pathways that underlie the striking intratumoral phenotypic heterogeneity which characterize this and other solid tumor malignancies.  相似文献   

20.
Akunuru S  Palumbo J  Zhai QJ  Zheng Y 《PloS one》2011,6(2):e16951
The cancer stem cell (CSC) theory predicts that a small fraction of cancer cells possess unique self-renewal activity and mediate tumor initiation and propagation. However, the molecular mechanisms involved in CSC regulation remains unclear, impinging on effective targeting of CSCs in cancer therapy. Here we have investigated the hypothesis that Rac1, a Rho GTPase implicated in cancer cell proliferation and invasion, is critical for tumor initiation and metastasis of human non-small cell lung adenocarcinoma (NSCLA). Rac1 knockdown by shRNA suppressed the tumorigenic activities of human NSCLA cell lines and primary patient NSCLA specimens, including effects on invasion, proliferation, anchorage-independent growth, sphere formation and lung colonization. Isolated side population (SP) cells representing putative CSCs from human NSCLA cells contained elevated levels of Rac1-GTP, enhanced in vitro migration, invasion, increased in vivo tumor initiating and lung colonizing activities in xenografted mice. However, CSC activity was also detected within the non-SP population, suggesting the importance of therapeutic targeting of all cells within a tumor. Further, pharmacological or shRNA targeting of Rac1 inhibited the tumorigenic activities of both SP and non-SP NSCLA cells. These studies indicate that Rac1 represents a useful target in NSCLA, and its blockade may have therapeutic value in suppressing CSC proliferation and metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号