首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using 1400 microsatellites, a genome-wide association study (GWAS) was performed to identify genomic regions associated with lifetime earnings and performance ranks, as determined by the Japan Racing Association (JRA). The minimum heritability (h(2) ) was estimated at 7-8% based on the quantitative trait model, suggesting that the racing performance is heritable. Following GWAS with microsatellites, fine mapping led to identification of three SNPs on ECA18, namely, g.65809482T>C (P=1.05E-18), g.65868604G>T (P=6.47E-17), and g.66539967A>G (P=3.35E-14) associated with these performance measures. The haplotype of these SNPs, together with a recently published nearby SNP, g.66493737C>T (P=9.06E-16) in strong linkage disequilibrium, also showed a very clear association with the performance (P<1E-05). The candidate genomic region contained eight genes annotated by ENSEMBL, including the myostatin gene (MSTN). These findings suggest the presence of a gene affecting the racing performance in Thoroughbred racehorses in this region on ECA18.  相似文献   

2.
One hundred and eighty-nine Thoroughbred horses that had won Graded Stakes races in North America were genotyped with the Illumina Equine SNP50 bead chip. Association tests using PLINK to determine whether any SNPs were associated with optimum racing distance (7 furlongs and under compared to 8-10 furlongs) identified a locus on ECA18 that was statistically significant (-log 10 EMP2=1.63) at the genome-wide level following permutation analysis (10,000 permutations). Bioinformatic analysis revealed that the two ECA18 SNPs with the highest statistical significance spanned the MSTN (myostatin) locus. Mutations in myostatin in several mammalian species have been associated with increased muscling, with a preferential increase in fast glycolytic type IIB fibres, which would increase power potential. Thoroughbred horses that race over sprint distances, which are 5-7 furlongs, are often characterized by impressive hind quarter musculature, strongly suggesting that the association observed between the ECA18 SNPs and optimum race distance is mediated through MSTN.  相似文献   

3.
Using 1710 Thoroughbred racehorses in Japan, a cohort study was performed to evaluate the influence of genotypes at four single nucleotide polymorphisms (SNPs) on equine chromosome 18 (ECA18), which were associated in a previous genome‐wide association study for racing performance with lifetime earnings and performance rank. In males, both g.65809482T>C and g.65868604G>T were related to performance rank (P = 0.005). In females, g.65809482T>C (P = 1.76E‐6), g.65868604G>T (P = 6.81E‐6) and g.66493737C>T (P = 4.42E‐5) were strongly related to performance rank and also to lifetime earnings (P < 0.05). When win‐race distance (WRD) among all winning racehorses and best race distance (BRD) among elite racehorses were considered as the phenotypes, significant associations (P < 0.001) were observed for all four SNPs. The favourable race distance of both elite (BRD) and novice racehorses (WRD) was also associated with genotypes in the ECA18 region, indicating the presence of a gene in this region influencing optimum race distance in Thoroughbred racehorses. Therefore, the association with performance rank is likely due to the bias in the race distances. The location of the SNPs within and proximal to the gene encoding myostatin (MSTN) strongly suggests that regulation of the MSTN gene affects racing performance. In particular, the g.65809482T>C, g.65868604G>T and g.66493737C>T SNPs, or their combinations, may be genetic diagnostic markers for racing performance indicators such as WRD and BRD.  相似文献   

4.
Variants of the MSTN gene encoding myostatin are associated with muscle hypertrophy phenotypes in a range of mammalian species, most notably cattle, dogs, mice, and humans. Using a sample of registered Thoroughbred horses (n = 148), we have identified a novel MSTN sequence polymorphism that is strongly associated (g.66493737C>T, P = 4.85×10−8) with best race distance among elite racehorses (n = 79). This observation was independently validated (P = 1.91×10−6) in a resampled group of Thoroughbreds (n = 62) and in a cohort of Thoroughbreds (n = 37, P = 0.0047) produced by the same trainer. We observed that C/C horses are suited to fast, short-distance races; C/T horses compete favorably in middle-distance races; and T/T horses have greater stamina. Evaluation of retrospective racecourse performance (n = 142) and stallion progeny performance predict that C/C and C/T horses are more likely to be successful two-year-old racehorses than T/T animals. Here we describe for the first time the identification of a gene variant in Thoroughbred racehorses that is predictive of genetic potential for an athletic phenotype.  相似文献   

5.
Adaptation to early training and racing (i.e. precocity), which is highly variable in racing Thoroughbreds, has implications for the selection and training of horses. We hypothesised that precocity in Thoroughbred racehorses is heritable. Age at first sprint training session (work day), age at first race and age at best race were used as phenotypes to quantify precocity. Using high‐density SNP array data, additive SNP heritability () was estimated to be 0.17, 0.14 and 0.17 for the three traits respectively. In genome‐wide association studies (GWAS) for age at first race and age at best race, a 1.98‐Mb region on equine chromosome 18 (ECA18) was identified. The most significant association was with the myostatin (MSTN) g.66493737C>T SNP (= 5.46 × 10?12 and = 1.89 × 10?14 respectively). In addition, two SNPs on ECA1 (g.37770220G>A and g.37770305T>C) within the first intron of the serotonin receptor gene HTR7 were significantly associated with age at first race and age at best race. Although no significant associations were identified for age at first work day, the MSTN:g.66493737C>T SNP was among the top 20 SNPs in the GWAS (= 3.98 × 10?5). Here we have identified variants with potential roles in early adaptation to training. Although there was an overlap in genes associated with precocity and distance aptitude (i.e. MSTN), the HTR7 variants were more strongly associated with precocity than with distance. Because HTR7 is closely related to the HTR1A gene, previously implicated in tractability in young Thoroughbreds, this suggests that behavioural traits may influence precocity.  相似文献   

6.
Two variants in the equine myostatin gene (MSTN), including a T/C SNP in the first intron and a 227‐bp SINE insertion in the promoter, are associated with muscle fiber type proportions in the Quarter Horse (QH) and with the prediction of race distance propensity in the Thoroughbred (TB). Genotypes from these loci, along with 18 additional variants surrounding MSTN, were examined in 301 horses of 14 breeds to evaluate haplotype relationships and diversity. The C allele of intron 1 was found in 12 of 14 breeds at a frequency of 0.27; the SINE was observed in five breeds, but common in only the TB and QH (0.73 and 0.48 respectively). Haplotype data suggest the SINE insertion is contemporary to and arose upon a haplotype containing the intron 1 C allele. Gluteal muscle biopsies of TBs showed a significant association of the intron 1 C allele and SINE with a higher proportion of Type 2B and lower proportion of Type 1 fibers. However, in the Belgian horse, in which the SINE is not present, the intron 1 SNP was not associated with fiber type proportions, and evaluation of fiber type proportions across the Belgian, TB and QH breeds shows the significant effect of breed on fiber type proportions is negated when evaluating horses without the SINE variant. These data suggest the SINE, rather than the intron 1 SNP, is driving the observed muscle fiber type characteristics and is the variant targeted by selection for short‐distance racing.  相似文献   

7.
Fractures are medical conditions that compromise the athletic potential of horses and/or the safety of jockeys. Therefore, the reduction of fracture risk is an important horse and human welfare issue. The present study used molecular genetic approaches to determine the effect of genetic risk for fracture at four candidate SNPs spanning the myostatin (MSTN) gene on horse chromosome 18. Among the 3706 Japanese Thoroughbred racehorses, 1089 (29.4%) had experienced fractures in their athletic life, indicating the common occurrence of this injury in Thoroughbreds. In the case/control association study, fractures of the carpus (carpal bones and distal radius) were statistically associated with g.65809482T/C (= 1.17 x 10-8), g.65868604G/T (= 2.66 x 10-9), and g.66493737C/T (= 6.41 x 10-8). In the retrospective cohort study using 1710 racehorses born in 2000, the relative risk (RR) was highest for male horses at g.65868604G/T, based on the dominant allele risk model (RR = 2.251, 95% confidence interval 1.407–3.604, = 0.00041), and for female horses at g.65868604G/T, based on the recessive allele risk model (RR = 2.313, 95% confidence interval 1.380–3.877, = 0.00163). Considering the association of these SNPs with racing performance traits such as speed, these genotypes may affect the occurrence of carpus fractures in Japanese Thoroughbred racehorses as a consequence of the non-genetic influence of the genotype on the distance and/or intensity of racing and training. The genetic information presented here may contribute to the development of strategic training programs and racing plans for racehorses that improve their health and welfare.  相似文献   

8.
The effect of humid heat acclimation on thermoregulatory responses to humid and dry exercise-heat stress was studied in six exercise-trained Thoroughbred horses. Horses were heat acclimated by performing moderate-intensity exercise for 21 days in heat and humidity (HH) [34.2-35.7 degrees C; 84-86% relative humidity (RH); wet bulb globe temperature (WBGT) index approximately 32 degrees C]. Horses completed exercise tests at 50% of peak O(2) uptake until a pulmonary arterial temperature (T(pa)) of 41.5 degrees C was attained in cool dry (CD) (20-21.5 degrees C; 45-50% RH; WBGT approximately 16 degrees C), hot dry (HD 0) [32-34 degrees C room temperature (RT); 45-55% RH; WBGT approximately 25 degrees C], and HH conditions (HH 0), and during the second hour of HH on days 3, 7, 14, and 21, and in HD on the 18th day (HD 18) of heat acclimation. The ratios of required evaporative capacity to maximal evaporative capacity of the environment (E(req)/E(max)) for CD, HD, and HH were approximately 1.2, 1.6, and 2.5, respectively. Preexercise T(pa) and rectal temperature were approximately 0.5 degrees C lower (P < 0. 05) on days 7, 14, and 21 compared with day 0. With exercise in HH, there was no effect of heat acclimation on the rate of rise in T(pa) (and therefore exercise duration) nor the rate of heat storage. In contrast, exercise duration was longer, rate of rise in T(pa) was significantly slower, and rate of heat storage was decreased on HD 18 compared with HD 0. It was concluded that, during uncompensable heat stress in horses, heat acclimation provided modest heat strain advantages when E(req)/E(max) was approximately 1.6, but at higher E(req)/E(max) no advantages were observed.  相似文献   

9.
This study determined maximal O2 uptake (VO2max), maximal O2 deficit, and O2 debt in the Thoroughbred racehorse exercising on an inclined treadmill. In eight horses the O2 uptake (VO2) vs. speed relationship was linear until 10 m/s and VO2max values ranged from 131 to 153 ml.kg-1.min-1. Six of these horses then exercised at 120% of their VO2max until exhaustion. VO2, CO2 production (VCO2), and plasma lactate (La) were measured before and during exercise and through 60 min of recovery. Muscle biopsies were collected before and at 0.25, 0.5, 1, 1.5, 2, 5, 10, 15, 20, 40, and 60 min after exercise. Muscle concentrations of adenosine 5'-triphosphate (ATP), phosphocreatine (PC), La, glucose 6-phosphate (G-6-P), and creatine were determined, and pH was measured. The O2 deficit was 128 +/- 32 (SD) ml/kg (64 +/- 13 liters). The O2 debt was 324 +/- 62 ml/kg (159 +/- 37 liters), approximately two to three times comparative values for human beings. Muscle [ATP] was unchanged, but [PC] was lower (P less than 0.01) than preexercise values at less than or equal to 10 min of recovery. [PC] and VO2 were negatively correlated during both the fast and slow phases of VO2 during recovery. Muscle [La] and [G-6-P] were elevated for 10 min postexercise. Mean muscle pH decreased from 7.05 (preexercise) to 6.75 at 1.5 min recovery, and the mean peak plasma La value was 34.5 mmol/l.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Respiratory inductance plethysmographic (RIP) and pneumotachographic (Pn) flows were compared dynamically in horses with bronchoconstriction. On a breath-by-breath basis, RIP was normalized to inspiratory volume from Pn, and peak [peak of subtracted final exhalation waveform (SFE(max))] and selected area [integral of subtracted final waveform during first 25% of exhaled volume (SFE(int))] differences between RIP and Pn flows during early expiration were measured in three settings: 1) healthy horses (n = 8) undergoing histamine bronchoprovocation; 2) horses with naturally occurring lower airway obstruction (AO) (n = 7); and 3) healthy horses (n = 6) given lobeline. HCl to induce hyperpnea. In setting 1, histamine challenge induced a dose-dependent increase in SFE(max) and SFE(int) differences. A test index of airway reactivity (interpolated histamine dose that increased SFE(max) by 35%) closely correlated (r(s) = 0.93, P = 0.001) with a conventional index (histamine dose that induced a 35% decrease in dynamic compliance). In setting 2, in horses with AO, SFE(max) and SFE(int) were markedly elevated, and their absolute values correlated significantly (P < 0.005) with pulmonary resistance and the maximum change in transpulmonary pressure. The effects of bronchodilator treatment on the SFE(max) and SFE(int) were also highly significant (P < 0.0001). In setting 3, hyperpnea, but not tachypnea, caused significant (P < 0.01) increases in SFE(max) but not in SFE(int). In conclusion, dynamic comparisons between RIP and Pn provide a defensible method for quantifying AO during tidal breathing, without the need for invasive instrumentation.  相似文献   

11.
Normal tension glaucoma (NTG) is a major form of glaucoma, associated with intraocular pressures that are within the statistically normal range of the population. OPA1, the gene responsible for autosomal dominant optic atrophy represents an excellent candidate gene for NTG, as the clinical phenotypes are similar and OPA1 is expressed in the retina and optic nerve. Eighty-three well-characterized NTG patients were screened for mutations in OPA1 by heteroduplex analysis and bi-directional sequencing. Sequences found to be altered in NTG subjects were examined for variations in 100 population controls. A second cohort of 80 NTG patients and 86 population controls was subsequently screened to determine whether the initial findings could be replicated. A single nucleotide polymorphism (SNP) on intervening sequence (IVS) 8 (IVS8 + 4 C/T) was found to be strongly associated with the occurrence of NTG in both cohorts (chi(2)=7.97, P=0.005 in the first cohort, chi(2)=9.93, P=0.002 in the second cohort; odds ratio 3.1 (95% CI: 1.8-5.6). A second SNP (IVS8 + 32 T/C) appeared to be associated with disease in the first cohort (chi(2)=4.71, P=0.030), but this finding could not be replicated in the second cohort. In the combined cohort, the compound at-risk genotype IVS8 + 4 C/T, + 32 T/C was strongly associated with the occurrence of NTG (chi(2)=22.04, P=0.00001 after correcting for testing four genotypes). These results indicate that polymorphisms in the OPA1 gene are associated with NTG and may be a marker for the disease.  相似文献   

12.
13.
Despite strong selection for athletic traits in Thoroughbred horses, there is marked variation in speed and aptitude for racing performance within the breed. Using global positioning system monitoring during exercise training, we measured speed variables and temporal changes in speed with age to derive phenotypes for GWAS. The aim of the study was to test the hypothesis that genetic variation contributes to variation in end‐point physiological traits, in this case galloping speed measured during field exercise tests. Standardisation of field‐measured phenotypes was attempted by assessing horses exercised on the same gallop track and managed under similar conditions by a single trainer. PCA of six key speed indices captured 73.9% of the variation with principal component 1 (PC1). Verifying the utility of the phenotype, we observed that PC1 (median) in 2‐year‐old horses was significantly different among elite, non‐elite and unraced horses (P < 0.001) and the temporal change with age in PC1 varied among horses with different myostatin (MSTN) g.66493737C>T SNP genotypes. A GWAS for PC1 in 2‐year‐old horses (= 122) identified four SNPs reaching the suggestive threshold for association (< 4.80 × 10?5), defining a 1.09 Mb candidate region on ECA8 containing the myosin XVIIIB (MYO18B) gene. In a GWAS for temporal change in PC1 with age (= 168), five SNPs reached the suggestive threshold for association and defined candidate regions on ECA2 and ECA11. Both regions contained genes that are significantly differentially expressed in equine skeletal muscle in response to acute exercise and training stimuli, including MYO18A. As MYO18A plays a regulatory role in the skeletal muscle response to exercise, the identified genomic variation proximal to the myosin family genes may be important for the regulation of the response to exercise and training.  相似文献   

14.
The effect of warm-up exercise on energy metabolism and muscle glycogenolysis during sprint exercise (Spr) was examined in six fit Standardbred horses exercised at 115% of maximal O(2) consumption (VO(2 max)) until fatigued, 5 min after each of three protocols: 1) no warm-up (NWU); 2) 10 min at 50% of VO(2 max) [low-intensity warm-up (LWU)]; and 3) 7 min at 50% VO(2 max) followed by 45-s intervals at 80, 90, and 100% VO(2 max) [high-intensity warm-up (HWU)]. Warm-up increased (P < 0.0001) muscle temperature (T(m)) at the onset of Spr in LWU (38.3 +/- 0.2 degrees C) and HWU (40.0 +/- 0. 3 degrees C) compared with NWU (36.6 +/- 0.2 degrees C), and the rate of rise in T(m) during Spr was greater in NWU than in LWU and HWU (P < 0.01). Peak VO(2) was higher and O(2) deficit lower (P < 0. 05) when Spr was preceded by warm-up. Rates of muscle glycogenolysis were lower (P < 0.05) in LWU, and rates of blood and muscle lactate accumulation and anaerobic ATP provision during Spr were lower in LWU and HWU compared with NWU. Mean runtime (s) in LWU (173 +/- 10 s) was greater than HWU (142 +/- 11 s) and NWU (124 +/- 4 s) (P < 0. 01). Warm-up was associated with augmentation of aerobic energy contribution to total energy expenditure, decreased glycogenolysis, and longer run time to fatigue during subsequent sprint exercise, with no additional benefit from HWU vs. LWU.  相似文献   

15.
Changes in the inbreeding coefficient, F, in the Thoroughbred horse over the past 45 years have been investigated by genotyping 467 Thoroughbred horses (born between 1961 and 2006) using the Illumina Equine SNP50 bead chip, which comprises 54,602 SNPs uniformly distributed across the equine genome. The Spearman rank correlation coefficient, r, between the year of birth and F was estimated. The results indicate that inbreeding in Thoroughbreds has increased over the past 40 years, with r = 0.24, P < 0.001 demonstrating that there is a highly significant, though relatively weak correlation between the year of birth and inbreeding coefficients. Interestingly, the majority of the increase in inbreeding is post-1996 and coincides with the introduction of stallions covering larger numbers of mares.  相似文献   

16.
This study investigated the individual and combined effects of water and carbohydrate ingestion during prolonged cycling on maximal neuromuscular power (P(max)), thermoregulation, cardiovascular function, and metabolism. Eight endurance-trained cyclists exercised for 122 min at 62% maximal oxygen uptake in a 35 degrees C environment (50% relative humidity, 2 m/s fan speed). P(max) was measured in triplicate during 6-min periods beginning at 26, 56, 86, and 116 min. On four different occasions, immediately before and during exercise, subjects ingested 1) 3.28 +/- 0.21 liters of water with no carbohydrate (W); 2) 3.39 +/- 0.23 liters of a solution containing 204 +/- 14 g of carbohydrate (W+C); 3) 204 +/- 14 g of carbohydrate in only 0.49 +/- 0.03 liter of solution (C); and 4) 0. 37 +/- 0.02 liter of water with no carbohydrate (placebo; Pl). These treatments were randomized, disguised, and presented double blind. At 26 min of exercise, P(max) was similar in all trials. From 26 to 116 min, P(max) declined 15.2 +/- 3.3 and 14.5 +/- 2.1% during C and Pl, respectively; 10.4 +/- 1.9% during W (W > C, W > Pl; P < 0.05); and 7.4 +/- 2.2% during W+C (W+C > W, W+C > C, and W+C > Pl; P < 0. 05). As an interesting secondary findings, we also observed that carbohydrate ingestion increased heat production, final core temperature, and whole body sweating rate. We conclude that, during prolonged moderate-intensity exercise in a warm environment, ingestion of W attenuates the decline in P(max). Furthermore, ingestion of W+C attenuates the decline in maximal power more than does W alone, and ingestion of C alone does not attenuate the decline in P(max) compared with Pl.  相似文献   

17.
Exercise increases mean body temperature (T(body)) and cytokine concentrations in plasma. Cytokines facilitate PG production via cyclooxygenase (COX) enzymes, and PGE(2) can mediate fever. Therefore, we used a COX-2 inhibitor to test the hypothesis that PG-mediated pyrogenicity may contribute to the raised T(body) in exercising humans. In a double-blind, cross-over design, 10 males [age: 23 yr (SD 5), Vo(2 max): 53 ml x kg(-1) x min(-1) (SD 5)] consumed rofecoxib (50 mg/day; NSAID) or placebo (PLAC) for 6 days, 2 wk apart. Exercising thermoregulation was measured on day 6 during 45-min running ( approximately 75% Vo(2 max)) followed by 45-min cycling and 60-min seated recovery (28 degrees C, 50% relative humidity). Plasma cytokine (TNF-alpha, IL-10) concentrations were measured at rest and 30-min recovery. T(body) was similar at rest in PLAC (35.59 degrees C) and NSAID (35.53 degrees C) and increased similarly during running, but became 0.33 degrees C (SD 0.26) lower in NSAID during cycling (37.39 degrees C vs. 37.07 degrees C; P = 0.03), and remained lower throughout recovery. Sweating was initiated at T(body) of approximately 35.6 degrees C in both conditions but ceased at higher T(body) in PLAC than NSAID during recovery [36.66 degrees C (SD 0.36) vs. 36.39 degrees C (SD 0.27); P = 0.03]. Cardiac frequency averaged 6 x min(-1) higher in PLAC (P < 0.01), whereas exercising metabolic rate was similar (505 vs. 507 W x m(-2); P = 0.56). A modest increase in both cytokines across exercise was similar between conditions. COX-2 specific NSAID lowered exercising heat and cardiovascular strain and the sweating (offset) threshold, independently of heat production, indicating that PGE-mediated inflammatory processes may contribute to exercising heat strain during endurance exercise in humans.  相似文献   

18.
SUMMARY. 1. Field experiments were performed in the day and night at six modal water velocities (range 10–52cm s−1), using: (i) newly- emerged fry without neutral buoyancy; (ii) older fry in poor condition (weight well below that expected for resident fry); (iii) older fry in good condition (weight similar to that of resident fry); (iv) dead fry.
2. An exponential model described the return rate of fry to the stream bottom; the mean distance travelled downstream varied considerably between the four fry categories, but always increased linearly with increasing water velocity.
3. Results were similar for dead fry and newly-emerged fry released at night; 50% of the fry returned to the bottom in 10–11 s and nearly all returned in c . 70s, the maximum distance travelled ranging from c . 7 m at 10 cm s−1 to c . 37m at 52cm s−1, Newly-emerged fry released in the day returned slightly faster (54s for 99% return to bottom).
4. Older fry in poor condition returned to the bottom slightly faster in the day than at night, but took about 2 min and travelled about twice the distance covered by dead fry. Older fry in good condition returned to the bottom at the fastest rate (3–6s for 50% and c . 30s for the rest), and travelled only about half (at night) or a third (in day) of the distance covered by dead fry.
5. The implications of this investigation are discussed and it is concluded that, apart from water velocity, the age and condition of the fry were the two most important factors affecting their downstream movement.  相似文献   

19.
To assess whether preload-adjusted maximal power (PAMP), which is calculated as W(max)/V (where W(max) is maximal power and V(ed) is end-diastolic volume with beta = 2) is an index of right ventricular (RV) contractility, we measured RV pressure (P) and volume (V) and pulmonary artery pressure and flow in 10 dogs at baseline and after inotropic stimulation. PAMP was derived from steady-state data, whereas the slope (E(es)) and intercept (V(d)) of the end-systolic P-V relationship were derived from data obtained during vena caval occlusion. Inotropic stimulation increased E(es) (from 0.96 +/- 0.25 to 1.62 +/- 0.28 mmHg/ml; P < 0.001) and V(d) (from -3.0 +/- 17.2 to 12.4 +/- 10.8 ml; P < 0.05) but not PAMP (from 0.24 +/- 0.10 to 0.36 +/- 0.22 mW/ml(2); P = 0.09). We found a strong relationship between the optimal beta-factor for preload adjustment and V(d). A corrected PAMP, PAMP(c) = W(max)/(V(ed) - V(d))(2), which incorporated the V(d) dependency, was sensitive to the inotropic changes (from 0.23 +/- 0.12 to 0.54 +/- 0.17 mW/ml(2); P < 0.001) with a good correlation with E(es) (r = 0.88; P < 0.001).  相似文献   

20.
Osteochondrosis (OC), a disturbance in the process of endochondral ossification, is by far the most important equine developmental orthopaedic disease and is also common in other domestic animals and humans. The purpose of this study was to identify quantitative trait loci (QTL) associated with osteochondrosis dissecans (OCD) at the intermediate ridge of the distal tibia in Norwegian Standardbred (SB) using the Illumina Equine SNP50 BeadChip whole-genome single-nucleotide polymorphism (SNP) assay. Radiographic data and blood samples were obtained from 464 SB yearlings. Based on the radiographic examination, 162 horses were selected for genotyping; 80 of these were cases with an OCD at the intermediate ridge of the distal tibia, and 82 were controls without any developmental lesions in the joints examined. Genotyped horses descended from 22 sires, and the number of horses in each half-sib group ranged from 3 to 14. The population structure necessitated statistical correction for stratification. When conducting a case-control genome-wide association study (GWAS), mixed-model analyses displayed regions on chromosomes (Equus callabus chromosome - ECA) 5, 10, 27 and 28 that showed moderate evidence of association (P ≤ 5 × 10(-5); this P-value is uncorrected i.e. not adjusted for multiple comparisons) with OCD in the tibiotarsal joint. Two SNPs on ECA10 represent the most significant hits (uncorrected P=1.19 × 10(-5) in the mixed-model). In the basic association (chi-square) test, these SNPs achieved statistical significance with the Bonferroni correction (P=0.038) and were close in the permuted logistic regression test (P=0.054). Putative QTL on ECA 5, 10, 27 and 28 represent interesting areas for future research, validation studies and fine mapping of candidate regions. Results presented here represent the first GWAS of OC in horses using the recently released Illumina Equine SNP50 BeadChip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号