首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guo X  Li YL 《生理科学进展》2005,36(3):204-208
间充质干细胞(mesenchymalstemcells,MSCs)主要存在于骨髓中,是多潜能干细胞,在脐血、外周血、脂肪、皮肤等多种组织中也相继分离出MSCs。MSCs具有独特的免疫特性,在异种异体环境内长期存在,使其临床应用前景更为广泛。目前,MSCs的分离培养、诱导分化及鉴定体系已趋成熟,理论上可分化为所有中胚层来源的细胞,内皮细胞来源于中胚层,因此MSCs具有分化为内皮细胞的可能性。本文对MSCs内皮分化意义和细胞学基础及其新近的研究进展作一综述。  相似文献   

2.
Mesenchymal stem cells (MSCs) are non-hematopoietic stem cells with the capacity to differentiate into tissues of both mesenchymal and non-mesenchymal origin. MSCs can differentiate into osteoblastic, chondrogenic, and adipogenic lineages, although recent studies have demonstrated that MSCs are also able to differentiate into other lineages, including neuronal and cardiomyogenic lineages. Since their original isolation from the bone marrow, MSCs have been successfully harvested from many other tissues. Their ease of isolation and ex vivo expansion combined with their immunoprivileged nature has made these cells popular candidates for stem cell therapies. These cells have the potential to alter disease pathophysiology through many modalities including cytokine secretion, capacity to differentiate along various lineages, immune modulation and direct cell-cell interaction with diseased tissue. Here we first review basic features of MSC biology including MSC characteristics in culture, homing mechanisms, differentiation capabilities and immune modulation. We then highlight some in vivo and clinical evidence supporting the therapeutic roles of MSCs and their uses in orthopedic, autoimmune, and ischemic disorders.  相似文献   

3.

Background  

Mesenchymal stem cells (MSCs) can be induced to differentiate into neuronal cells under appropriate cellular conditions and transplanted in brain injury and neurodegenerative diseases animal models for neuroregeneration studies. In contrast to the embryonic stem cells (ESCs), MSCs are easily subject to aging and senescence because of their finite ability of self-renewal. MSCs senescence seriously affected theirs application prospects as a promising tool for cell-based regenerative medicine and tissue engineering. In the present study, we established a reversible immortalized mesenchymal stem cells (IMSCs) line by using SSR#69 retrovirus expressing simian virus 40 large T (SV40T) antigen as an alternative to primary MSCs.  相似文献   

4.
Mesenchymal stem cells (MSCs) can be isolated from different adult sources and, even if the minimal criteria for defining MSCs have been reported, the scientific question about the potential distinctions among MSCs derived from different sources is still open. In particular, it is debated whether MSCs of different origin have the same grade of stemness or whether the source affects their undifferentiated status. Here, we report not only the isolation and the traditional characterization of MSCs derived from amniotic fluid (AF-MSCs) and skin (S-MSCs) but also a molecular characterization based on mRNAs and miRNAs profiling. Our results show that, even if both AF- and S-MSCs are mostly regulated by the same pathways (such as Wnt, MAPK and TGF-β), there are some important differences at the molecular level that directly affect important cellular features, such as the ability to differentiate into adipocytes. In conclusion, even if further studies are necessary to improve the knowledge about the role of each dysregulated miRNAs gene, these differences may actually strengthen the question about the importance of tissue origin.  相似文献   

5.
间充质干细胞对免疫细胞的抑制作用及其机制   总被引:1,自引:0,他引:1  
间充质干细胞是一群来源于发育早期中胚层的具有自我更新和多向分化潜能的干细胞,具有分化为脂肪细胞、肝细胞、成骨细胞、软骨细胞、神经细胞等多种细胞的能力.近年来的相关研究表明,间充质干细胞具有低免疫原性,它可以通过抑制淋巴细胞的增殖、抑制抗原呈递细胞分化成熟及功能发挥、抑制细胞毒性T淋巴细胞的形成、增加调节性T细胞比例等多种途径发挥免疫调节作用,从而成为移植领域、各种退行性和衰竭性疑难病症的替代治疗的研究热点.本文就间充质干细胞对免疫细胞的抑制作用及其机制的研究进展进行综述.  相似文献   

6.

Background  

Mesenchymal stem cells (MSCs) have been recently investigated for their potential use in regenerative medicine. MSCs, in particular, have great potential, as in various reports they have shown pluripotency for differentiating into many different cell types. However, the ability of MSCs to differentiate into tendon cells in vitro has not been fully investigated.  相似文献   

7.
The considerable therapeutic potential of human multipotent mesenchymal stromal cells or mesenchymal stem cells (MSCs) has generated increasing interest in a wide variety of biomedical disciplines. Nevertheless, researchers report studies on MSCs using different methods of isolation and expansion, as well as different approaches to characterize them; therefore, it is increasingly difficult to compare and contrast study outcomes. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposed minimal criteria to define human MSCs. First, MSCs must be plastic-adherent when maintained in standard culture conditions (α minimal essential medium plus 20% fetal bovine serum). Second, MSCs must express CD105, CD73 and CD90, and MSCs must lack expression of CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR surface molecules. Third, MSCs must differentiate into osteoblasts, adipocytes and chondroblasts in vitro. MSCs are isolated from many adult tissues, in particular from bone marrow and adipose tissue. Along with their capacity to differentiate and transdifferentiate into cells of different lineages, these cells have also generated great interest for their ability to display immunomodulatory capacities. Indeed, a major breakthrough was the finding that MSCs are able to induce peripheral tolerance, suggesting that they may be used as therapeutic tools in immune-mediated disorders. Although no significant adverse events have been reported in clinical trials to date, all interventional therapies have some inherent risks. Potential risks for undesirable events, such as tumor development, that might occur while using these stem cells for therapy must be taken into account and contrasted against the potential benefits to patients.  相似文献   

8.
Mesenchymal stem cells (MSCs) are a diverse subset of multipotent precursors present in the stromal fraction of many adult tissues and have drawn intense interest from translational and basic investigators. MSCs have been operationally defined by their ability to differentiate into osteoblasts, adipocytes and chondrocytes after in vitro expansion. Nevertheless, their identity in vivo, heterogeneity, anatomical localization and functional roles in adult tissue homeostasis have remained enigmatic and are only just starting to be uncovered.  相似文献   

9.
Mesenchymal stem cells (MSCs) were discovered as a rare population of non-hematopoietic stem cells that reside in the bone marrow and interact closely with hematopoietic stem cells to support their growth and differentiation. MSCs are multipotent cells that have the ability to differentiate into cells of the mesenchymal lineage including adipocytes, osteocytes and chondrocytes and they have been reported to home to areas of tissue injury and participate in tissue repair. More recently, MSCs have also been described to possess anti-inflammatory and immunomodulatory properties that can affect multiple arms of the immune system. MSCs have been shown to inhibit T and B cell proliferation, downregulate the lytic activity of cytotoxic T lymphocytes and NK cells, inhibit the maturation and antigen-presenting function of dendritic cells and modulate macrophage function through both contact-dependent and contact-independent mechanisms. The administration of MSCs in models of autoimmune disease such as collagen-induced arthritis, EAE and autoimmune diabetes has provided additional evidence for an immunoregulatory role of MSCs supporting their use in controlling autoimmunity. The administration of allogeneic MSCs as immunosuppressive agents represents a viable approach as they appear to be largely non-immunogenic and clinical trials with allogeneic MSCs are currently underway in graftversus- host disease, Crohn's disease and type I diabetes indications. The immunomodulatory properties, mechanism of action and potential clinical utility of MSCs are reviewed herein.  相似文献   

10.
Mesenchymal stem cells (MSCs) are currently being tested in clinical trials for the treatment of various diseases owing to the ease of generating and expanding these cells, the ability to differentiate them into various specialized mesenchymal tissue types and their immunosuppressive properties. However, their immunomodulatory potential remains controversial. This review describes the constitutive and regulated expression of molecules of the major histocompatibility complex (MHC) class I antigen processing machinery (APM), co-stimulatory B7 molecules and HLA-G. Furthermore, this review focuses on the secretion of factors, such as cytokines, in mesenchymal stem cells, their functional role in mounting and controlling immune responses mediated by different immune cell subpopulations, their medical significance, and the obstacles that limit their clinical application.  相似文献   

11.
Mesenchymal stem cells (MSCs) can be isolated from almost all tissues and effectively expanded in vitro. Although their true in situ properties and biological functions remain to be elucidated, these in vitro expanded cells have been shown to possess potential to differentiate into specific cell lineages. It is speculated that MSCs in situ have important roles in tissue cellular homeostasis by replacing dead or dysfunctional cells. Recent studies have demonstrated that in vitro expanded MSCs of various origins have great capacity to modulate immune responses and change the progression of different inflammatory diseases. As tissue injuries are often accompanied by inflammation, inflammatory factors may provide cues to mobilize MSCs to tissue sites with damage. Before carrying out tissue repair functions, MSCs first prepare the microenvironment by modulating inflammatory processes and releasing various growth factors in response to the inflammation status. In this review, we focus on the crosstalk between MSCs and immune responses and their potential clinical applications, especially in inflammatory diseases.  相似文献   

12.
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton''s jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.  相似文献   

13.
间充质干细胞特性与应用前景   总被引:3,自引:0,他引:3  
仵敏娟  刘善荣  刘厚奇 《生命科学》2004,16(3):135-137,169
间充质干细胞是中胚层发育的早期细胞,具备干细胞的基本特性。在发育的不同阶段和特定环境条件下,间充质干细胞可向骨、软骨、肌肉、神经、血管及血液细胞等多种方向分化。在成体的很多器官和组织中也存在着间充质干细胞,以备修复和再生所用。间充质干细胞易于体外培养,扩增迅速,可以分化为多种细胞,为干细胞生物工程提供了一个很好的种子细胞。在明确间充质干细胞生物学特性和分化的机制后,可在体外和体内将其定向诱导分化为多种细胞。间充质干细胞具有巨大的临床应用价值和科学研究价值。  相似文献   

14.
间充质干细胞(mesenchymal stem cells,MSCs)可以诱导分化成脂肪、软骨、骨骼和骨骼肌细胞,并可作为骨骼、软骨或肌肉移植中的再生干细胞,广泛应用于细胞治疗和组织工程。胚胎干细胞(embryonic stem cells,ESCs)具有体外培养无限增殖和多向分化的特性,能被诱导分化为机体几乎所有的细胞类型。该研究通过无血清条件下诱导食蟹猴ESCs形成类胚体(embryoid bodies,EBs),然后在血清条件下贴壁分化EBs成间充质前体细胞(mesenchymal precursor cells,MPCs),再经过长期体外培养,纯化和扩增MPCs。结果显示,纯化后的MPCs具有MSCs生物学特征,并能在体外诱导分化成脂肪细胞和骨细胞。将这些细胞皮下注射给SCID小鼠,并未发现形成肿瘤,提示食蟹猴ESCs来源的MPCs具有一定的安全性。  相似文献   

15.
16.
Mesenchymal stem cells (MSCs) are a heterogeneous population of stem/progenitor cells with pluripotent capacity to differentiate into mesodermal and non‐mesodermal cell lineages, including osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes, fibroblasts, myofibroblasts, epithelial cells, and neurons. MSCs reside primarily in the bone marrow, but also exist in other sites such as adipose tissue, peripheral blood, cord blood, liver, and fetal tissues. When stimulated by specific signals, these cells can be released from their niche in the bone marrow into circulation and recruited to the target tissues where they undergo in situ differentiation and contribute to tissue regeneration and homeostasis. Several characteristics of MSCs, such as the potential to differentiate into multiple lineages and the ability to be expanded ex vivo while retaining their original lineage differentiation commitment, make these cells very interesting targets for potential therapeutic use in regenerative medicine and tissue engineering. The feasibility for transplantation of primary or engineered MSCs as cell‐based therapy has been demonstrated. In this review, we summarize the current knowledge on the signals that control trafficking and differentiation of MSCs. J. Cell. Biochem. 106: 984–991, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy.  相似文献   

18.
《Cytotherapy》2014,16(1):3-16
Mesenchymal stromal cells (MSCs) are multipotent, plastic, adherent cells able to differentiate into osteoblasts, chondroblasts and adipocytes. MSCs can be isolated from many different body compartments of adult and fetal individuals. The most commonly studied MSCs are isolated from humans, mice and rats. However, studies are also being conducted with the use of MSCs that originate from different model organisms, such as cats, dogs, guinea pigs, ducks, chickens, buffalo, cattle, sheep, goats, horses, rabbits and pigs. MSCs derived from unconventional model organisms all present classic fibroblast-like morphology, the expression of MSC-associated cell surface markers such as CD44, CD73, CD90 and CD105 and the absence of CD34 and CD45. Moreover, these MSCs have the ability to differentiate into osteoblasts, chondroblasts and adipocytes. The MSCs isolated from unconventional model organisms are being studied for their potential to heal different tissue defects and injuries and for the development of scaffold compositions that improve the proliferation and differentiation of MSCs for tissue engineering.  相似文献   

19.
Mesenchymal stem cells (MSCs) have various roles in the body and cellular environment, and the cellular phenotypes of MSCs changes in different conditions. MSCs support the maintenance of other cells, and the capacity of MSCs to differentiate into several cell types makes the cells unique and full of possibilities. The involvement of MSCs in the epithelial-mesenchymal transition is an important property of these cells. In this review, the role of MSCs in cell life, including their application in therapy, is first described, and the signaling mechanism of MSCs is investigated for a further understanding of these cells.  相似文献   

20.
Mesenchymal stem cells(MSCs) have various roles in the body and cellular environment, and the cellular phenotypes of MSCs changes in different conditions. MSCs support the maintenance of other cells, and the capacity of MSCs to differentiate into several cell types makes the cells unique and full of possibilities. The involvement of MSCs in the epithelial-mesenchymal transition is an important property of these cells. In this review, the role of MSCs in cell life, including their application in therapy, is first described, and the signaling mechanism of MSCs is investigated for a further understanding of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号