首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maternal inheritance,epigenetics and the evolution of polyandry   总被引:1,自引:1,他引:0  
Zeh JA  Zeh DW 《Genetica》2008,134(1):45-54
Growing evidence indicates that females actively engage in polyandry either to avoid genetic incompatibility or to bias paternity in favor of genetically superior males. Despite empirical support for the intrinsic male quality hypothesis, the maintenance of variation in male fitness remains a conundrum for traditional "good genes" models of sexual selection. Here, we discuss two mechanisms of non-Mendelian inheritance, maternal inheritance of mitochondria and epigenetic regulation of gene expression, which may explain the persistence of variation in male fitness traits important in post-copulatory sexual selection. The inability of males to transmit mitochondria precludes any direct evolutionary response to selection on mitochondrial mutations that reduce or enhance male fitness. Consequently, mitochondrial-based variation in sperm traits is likely to persist, even in the face of intense sperm competition. Indeed, mitochondrial nucleotide substitutions, deletions and insertions are now known to be a primary cause of low sperm count and poor sperm motility in humans. Paradoxically, in the field of sexual selection, female-limited response to selection has been largely overlooked. Similarly, the contribution of epigenetics (e.g., DNA methylation, histone modifications and non-coding RNAs) to heritable variation in male fitness has received little attention from evolutionary theorists. Unlike DNA sequence based variation, epigenetic variation can be strongly influenced by environmental and stochastic effects experienced during the lifetime of an individual. Remarkably, in some cases, acquired epigenetic changes can be stably transmitted to offspring. A recent study indicates that sperm exhibit particularly high levels of epigenetic variation both within and between individuals. We suggest that such epigenetic variation may have important implications for post-copulatory sexual selection and may account for recent findings linking sperm competitive ability to offspring fitness.  相似文献   

2.
The results of natural selection depend critically on whether variation in fitness is finegrained or coarse-grained with respect to dispersal, but little is known of the spatial scale of fitness variation in natural populations. For most evolutionary questions, environmental heterogeneity must be defined by reversals in the relative fitness of genotypes; absolute fitness may vary, but if genotypes respond in parallel then selection is uniform. Thus, measurements of genotype-by-environment (G × E) interactions for fitness are necessary to understand patterns of variation in natural selection.  相似文献   

3.
Intralocus sexual conflict occurs when populations segregate for alleles with opposing fitness consequences in the two sexes. This form of selection is known to be capable of maintaining genetic and fitness variation in nature, the extent of which is sensitive to the underlying genetics. We present a one-locus model of a haploid maternal effect that has sexually antagonistic consequences for offspring. The evolutionary dynamics of these maternal effects are distinct from those of haploid direct effects under sexual antagonism because the relevant genes are expressed only in females. Despite this, we find the same opportunity for sexually antagonistic polymorphism at the maternal effect locus as at a direct effect locus. Thus, sexually antagonistic maternal effects may underlie some natural genetic variation. The model we present permits alternative interpretations of how the genes are expressed and how the fitness variation is assigned, which invites a theoretical comparison to models of both imprinted genes and sex allocation.  相似文献   

4.
Darwinian evolution favours genotypes with high fitness (‘survival of the fittest’). Models of quasi‐species evolution, however, suggest that in some cases selection may favour genotypes that are more robust against the impact of mutations (‘survival of the flattest’) even if these genotypes have lower fitness. I show that the opposite effect will be observed if competition occurs during development (e.g. among embryos or ovules) or before the adult phase (e.g. among the progeny of an individual). If viability is not affected by selection at these initial stages (soft selection), the genotypes that are more sensitive to the effects of mutations may increase in frequency because they get rid more easily of deleterious mutations. In a simple theoretical model of mutation and selection, genotypes located in steeper regions of the fitness surface are favoured (‘survival of the steepest’) even if they do not have higher viability, and even if they have slightly deleterious effects. Hypersensitive genes are potentially harmful for the individual, but with soft selection during the juvenile phase they persist in the genome because they reduce competition with their mutants. Soft selection occurs in practically all vascular plants and in many animals, therefore antirobustness may be a very common feature of the genome of multicellular organisms.  相似文献   

5.
Whether species exhibit significant heritable variation in fitness is central for sexual selection. According to good genes models there must be genetic variation in males leading to variation in offspring fitness if females are to obtain genetic benefits from exercising mate preferences, or by mating multiply. However, sexual selection based on genetic benefits is controversial, and there is limited unambiguous support for the notion that choosy or polyandrous females can increase the chances of producing offspring with high viability. Here we examine the levels of additive genetic variance in two fitness components in the dung beetle Onthophagus taurus. We found significant sire effects on egg-to-adult viability and on son, but not daughter, survival to sexual maturity, as well as moderate coefficients of additive variance in these traits. Moreover, we do not find evidence for sexual antagonism influencing genetic variation for fitness. Our results are consistent with good genes sexual selection, and suggest that both pre- and postcopulatory mate choice, and male competition could provide indirect benefits to females.  相似文献   

6.
P L Foster  J Cairns 《The EMBO journal》1994,13(21):5240-5244
A strain of Escherichia coli constructed by Shapiro has a segment of Mu bacteriophage DNA inserted between the araC and lacZ genes. Excision events that produce an in-frame fusion of lacZ to araB result in a cell (here designated Ara-Lac+) that can grow on lactose if arabinose is present as an inducer. Whether or not these excision events occur in the absence of selection for the Ara-Lac+ phenotype has figured prominently in the debate of the phenomenon known as 'directed' or 'adaptive' mutation. In an attempt to settle the issue, we have used classic fluctuation tests to show that cells capable of producing a clone of descendants that are phenotypically Ara-Lac+ do, indeed, arise in stationary phase cultures kept starving in depleted minimal medium. We found that Ara-Lac+ progenitors arise rapidly under these conditions, in contrast to the delayed appearance of Ara-Lac+ mutants when cells are incubated on lactose-arabinose minimal plates. Similar results are reported in the accompanying paper by Maenhaut-Michel and Shapiro, who used indirect selection to isolate Ara-Lac+ cells in the absence of selection. However, their sequencing data have introduced a new unexpected complication to the interpretation of all such experiments, and it is no longer clear exactly when the fusions arise.  相似文献   

7.
Infanticide by males is widespread across mammals and especially prevalent among primates. Considerable research has examined how fitness benefits can explain the occurrence of this behavior; less is known, however, about intrapopulation variation in its occurrence. We evaluated 10 infanticides by males in wild blue monkeys according to the sexual selection hypothesis. To explore intrapopulation variation in occurrence of infanticide, we compared these cases to 38 cases that were contextually similar but in which infanticide did not occur. We examined male reproductive benefit, infant age, maternal parity, postconception estrus, group defense, available mating partners, and context of takeover. We based comparisons on daily or near daily records of male presence in the study groups, infant birth dates, and male-female sexual interactions. Infanticides followed predictions of the sexual selection hypothesis: males were unlikely to kill their own offspring, the period for the mother’s return to conception was reduced by half, and males increased their chance of siring her next offspring. Difference in male reproductive benefit, costs, and motivation did not fully explain the observed variation in infanticide occurrence. Infants were more likely to be spared if they were older when a male first arrived, or if their mother had mated with the male in the second month after conception. The most important determinant of infant fate, however, was male identity, a finding consistent with 2 scenarios: 1) an infanticidal tendency may be influenced by a genetic polymorphism that is not fixed in this population or 2) infanticidal behavior may be a conditional male strategy. Further research on intrapopulation variation in infanticidal behavior should focus especially on characteristics of males.  相似文献   

8.
Palmer ME  Lipsitch M 《Genetics》2006,173(1):461-472
The question of how natural selection affects asexual mutation rates has been considered since the 1930s, yet our understanding continues to deepen. The distribution of mutation rates observed in natural bacteria remains unexplained. It is well known that environmental constancy can favor minimal mutation rates. In contrast, environmental fluctuation (e.g., at period T) can create indirect selective pressure for stronger mutators: genes modifying mutation rate may "hitchhike" to greater frequency along with environmentally favored mutations they produce. This article extends a well-known model of Leigh to consider fitness genes with multiple mutable sites (call the number of such sites alpha). The phenotypic effect of such a gene is enabled if all sites are in a certain state and disabled otherwise. The effects of multiple deleterious loci are also included (call the number of such loci gamma). The analysis calculates the indirect selective effects experienced by a gene inducing various mutation rates for given values of alpha, gamma, and T. Finite-population simulations validate these results and let us examine the interaction of drift with hitchhiking selection. We close by commenting on the importance of other factors, such as spatiotemporal variation, and on the origin of variation in mutation rates.  相似文献   

9.
Since 1983, study of natural selection has relied heavily on multiple regression of fitness on the values for a set of traits via ordinary least squares (OLSs), as proposed by Lande and Arnold, to obtain an estimate of the quadratic relationship between fitness and the traits, the fitness surface. However, well‐known statistical problems with this approach can affect inferences about selection. One key concern is that measures of lifetime fitness do not conform to a normal or any other standard sampling distribution, as needed to justify the usual statistical tests. Another is that OLS may yield an estimate of the sign of the fitness function's curvature that is opposite to the truth. We here show that the recently developed aster modeling approach, which explicitly models the components of fitness as the basis for inferences about lifetime fitness, eliminates these problems. We illustrate selection analysis via aster using simulated datasets involving five fitness components expressed in each of four years. We demonstrate that aster analysis yields accurate estimates of the fitness function in cases in which OLS misleads, as well as accurate confidence regions for directional selection gradients. Further, to evaluate selection when many traits are under consideration, we recommend model selection by information criteria and frequentist model averaging.  相似文献   

10.
Connallon T  Clark AG 《Genetics》2012,190(4):1477-1489
Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.  相似文献   

11.
Pigmentation patterns are one of the most recognizable forms of phenotypic diversity and an important component of organismal fitness. While much progress has been made in understanding the genes controlling pigmentation in model systems, many questions remain about the genetic basis of pigment traits observed in nature. Lake Malawi cichlid fishes are known for their diversity of male pigmentation patterns, which have been shaped by sexual selection. To begin the process of identifying the genes underlying this diversity, we quantified the number of pigment cells on the body and fins of two species of the genus Metriaclima and their hybrids. We then used the Castle-Wright equation to estimate that differences in individual pigmentation traits between these species are controlled by one to four genes each. Different pigmentation traits are highly correlated in the F(2) , suggesting shared developmental pathways and genetic pleiotropy. Melanophore and xanthophore traits fall on opposite ends of the first principal component axis of the F(2) phenotypes, suggesting a tradeoff during the development of these two pigment cell types.  相似文献   

12.
The strength and extent of gene flow from crops into wild populations depends, in part, on the fitness of the crop alleles, as well as that of alleles at linked loci. Interest in crop-wild gene flow has increased with the advent of transgenic plants, but nontransgenic crop-wild hybrids can provide case studies to understand the factors influencing introgression, provided that the genetic architecture and the fitness effects of loci are known. This study used recombinant inbred lines (RILs) generated from a cross between crop and wild sunflowers to assess selection on domestication traits and quantitative trait loci (QTL) in two contrasting environments, in Indiana and Nebraska, USA. Only a small fraction of plants (9%) produced seed in Nebraska, due to adverse weather conditions, while the majority of plants (79%) in Indiana reproduced. Phenotypic selection analysis found that a mixture of crop and wild traits were favoured in Indiana (i.e. had significant selection gradients), including larger leaves, increased floral longevity, larger disk diameter, reduced ray flower size and smaller achene (seed) mass. Selection favouring early flowering was detected in Nebraska. QTLs for fitness were found at the end of linkage groups six (LG6) and nine (LG9) in both field sites, each explaining 11-12% of the total variation. Crop alleles were favoured on LG9, but wild alleles were favoured on LG6. QTLs for numerous domestication traits overlapped with the fitness QTLs, including flowering date, achene mass, head number, and disk diameter. It remains to be seen if these QTL clusters are the product of multiple linked genes, or individual genes with pleiotropic effects. These results indicate that crop trait values and alleles may sometimes be favoured in a noncrop environment and across broad geographical regions.  相似文献   

13.
Genetic variation can be beneficial to one sex yet harmful when expressed in the other—a condition referred to as sexual antagonism. Because X chromosomes are transmitted from fathers to daughters, and sexually antagonistic fitness variation is predicted to often be X-linked, mates of relatively low-fitness males might produce high-fitness daughters whereas mates of high-fitness males produce low-fitness daughters. Such fitness consequences have been predicted to influence the evolution of female mating biases and the offspring sex ratio. Females might evolve to prefer mates that provide good genes for daughters or might adjust offspring sex ratios in favor of the sex with the highest relative fitness. We test these possibilities in a laboratory-adapted population of Drosophila melanogaster , and find that females preferentially mate with males carrying genes that are deleterious for daughters. Preferred males produce equal numbers of sons and daughters, whereas unpreferred males produce female-biased sex ratios. As a consequence, mean offspring fitness of unpreferred males is higher than offspring fitness of preferred males. This observation has several interesting implications for sexual selection and the maintenance of population genetic variation for fitness.  相似文献   

14.
The wealth of available genomic data has spawned a corresponding interest in computational methods that can impart biological meaning and context to these experiments. Traditional computational methods have drawn relationships between pairs of proteins or genes based on notions of equality or similarity between their patterns of occurrence or behavior. For example, two genes displaying similar variation in expression, over a number of experiments, may be predicted to be functionally related. We have introduced a natural extension of these approaches, instead identifying logical relationships involving triplets of proteins. Triplets provide for various discrete kinds of logic relationships, leading to detailed inferences about biological associations. For instance, a protein C might be encoded within an organism if, and only if, two other proteins A and B are also both encoded within the organism, thus suggesting that gene C is functionally related to genes A and B. The method has been applied fruitfully to both phylogenetic and microarray expression data, and has been used to associate logical combinations of protein activity with disease state phenotypes, revealing previously unknown ternary relationships among proteins, and illustrating the inherent complexities that arise in biological data.  相似文献   

15.
Comparing Evolvability and Variability of Quantitative Traits   总被引:35,自引:0,他引:35       下载免费PDF全文
D. Houle 《Genetics》1992,130(1):195-204
There are two distinct reasons for making comparisons of genetic variation for quantitative characters. The first is to compare evolvabilities, or ability to respond to selection, and the second is to make inferences about the forces that maintain genetic variability. Measures of variation that are standardized by the trait mean, such as the additive genetic coefficient of variation, are appropriate for both purposes. Variation has usually been compared as narrow sense heritabilities, but this is almost always an inappropriate comparative measure of evolvability and variability. Coefficients of variation were calculated from 842 estimates of trait means, variances and heritabilities in the literature. Traits closely related to fitness have higher additive genetic and nongenetic variability by the coefficient of variation criterion than characters under weak selection. This is the reverse of the accepted conclusion based on comparisons of heritability. The low heritability of fitness components is best explained by their high residual variation. The high additive genetic and residual variability of fitness traits might be explained by the great number of genetic and environmental events they are affected by, or by a lack of stabilizing selection to reduce their phenotypic variance. Over one-third of the quantitative genetics papers reviewed did not report trait means or variances. Researchers should always report these statistics, so that measures of variation appropriate to a variety of situations may be calculated.  相似文献   

16.
Earth's biodiversity is undergoing mass extinction due to anthropogenic compounding of environmental, demographic and genetic stresses. These different stresses can trap populations within a reinforcing feedback loop known as the extinction vortex, in which synergistic pressures build upon one another through time, driving down population viability. Sexual selection, the widespread evolutionary force arising from competition, choice and reproductive variance within animal mating patterns could have vital consequences for population viability and the extinction vortex: (a) if sexual selection reinforces natural selection to fix ‘good genes’ and purge ‘bad genes’, then mating patterns encouraging competition and choice may help protect populations from extinction; (b) by contrast, if mating patterns create load through evolutionary or ecological conflict, then population viability could be further reduced by sexual selection. We test between these opposing theories using replicate populations of the model insect Tribolium castaneum exposed to over 10 years of experimental evolution under monogamous versus polyandrous mating patterns. After a 95‐generation history of divergence in sexual selection, we compared fitness and extinction of monogamous versus polyandrous populations through an experimental extinction vortex comprising 15 generations of cycling environmental and genetic stresses. Results showed that lineages from monogamous evolutionary backgrounds, with limited opportunities for sexual selection, showed rapid declines in fitness and complete extinction through the vortex. By contrast, fitness of populations from the history of polyandry, with stronger opportunities for sexual selection, declined slowly, with 60% of populations surviving by the study end. The three vortex stresses of (a) nutritional deprivation, (b) thermal stress and (c) genetic bottlenecking had similar impacts on fitness declines and extinction risk, with an overall sigmoid decline in survival through time. We therefore reveal sexual selection as an important force behind lineages facing extinction threats, identifying the relevance of natural mating patterns for conservation management.  相似文献   

17.
A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw–tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains'' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function—providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments—contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection.  相似文献   

18.
Several recent reports have claimed that adaptive mutants in bacteria and yeast are induced by selective conditions. The results of these reports suggest that mutants can arise nonrandomly with respect to fitness, contrary to what has been widely accepted. In several cases that have received careful experimental reexamination, however, the detection of seemingly nonrandom mutation has been explained as an experimental artifact. In the remaining cases, there is no evidence to suggest that cells have the capacity to direct or choose which genetic variants will arise. Instead, current models propose processes by which genetic variants persist as mutations only if they enable cell growth and DNA replication. Most of these models are apparently contradicted by experimental data. One model, the hypermutable state model, has recently received limited circumstantial support. However, in this model the origin of adaptive mutants is random; the apparent nonrandomness of mutation is merely a consequence of natural selection. The critical distinction between the origin of genetic variation (mutation) and the possible consequence of that variation (selection) has been neglected by proponents of directed mutation.  相似文献   

19.
20.
The evolution of genetic canalization under fluctuating selection   总被引:6,自引:0,他引:6  
Abstract.— If the direction of selection changes from generation to generation, the ability to respond to selection is maladaptive: the response to selection in one generation leads to reduced fitness in the next. Because the response is determined by the amount of genetic variance expressed at the phenotypic level, rapidly fluctuating selection should favor modifier genes that reduce the phenotypic effect of alleles segregating at structural loci underlying the trait. Such reduction in phenotypic expression of genetic variation has been named "genetic canalization." I support this argument with a series of two- and multilocus models with alternating linear selection and Gaussian selection with fluctuating optimum. A canalizing modifier gene affects the fitness of its carriers in three ways: (1) it reduces the phenotypic consequences of genetic response to previous selection; (2) it reduces the genetic response to selection, which is manifested as linkage disequilibrium between the modifier and structural loci; and (3) it reduces the phenotypic variance. The first two effects reduce fitness under directional selection sustained for several generations, but improve fitness when the direction of selection has just been reversed. The net effect tends to favor a canalizing modifier under rapidly fluctuating selection regimes (period of eight generations or less). The third effect improves fitness of the modifier allele if the fitness function is convex and reduces it if the function is concave. Under fluctuating Gaussian selection, the population is more likely to experience the concave portion of the fitness function when selection is stronger. Therefore, only weak to moderately strong fluctuating Gaussian selection favors genetic canalization. This paper considerably broadens the conditions that favor genetic canalization, which so far has only been postulated to evolve under long-term stabilizing selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号