首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints.  相似文献   

2.
Cardiac tissue engineering offers the promise of creating functional tissue replacements for use in the failing heart or for in vitro drug screening. The last decade has seen a great deal of progress in this field with new advances in interdisciplinary areas such as developmental biology, genetic engineering, biomaterials, polymer science, bioreactor engineering, and stem cell biology. We review here a selection of the most recent advances in cardiac tissue engineering, including the classical cell-scaffold approaches, advanced bioreactor designs, cell sheet engineering, whole organ decellularization, stem cell-based approaches, and topographical control of tissue organization and function. We also discuss current challenges in the field, such as maturation of stem cell-derived cardiac patches and vascularization.  相似文献   

3.
The engineering of human tissue represents a major paradigm shift in clinical medicine. Early embodiments of tissue engineering are currently being taken forward to the clinic by production methods that are essentially extensions of laboratory manual procedures. However, to achieve the status of routine large-scale clinical practice, automation and scale-out processes are required. This in turn will require the development of reliable on-line monitoring and control systems. This paper examines one demand of crucial importance, namely the real time in vitro monitoring of the flow characteristics through growing tissue since this has a complex interrelationship. Doppler optical coherence tomography (DOCT) is a recently developed imaging technique for studying the rheological properties of tissues in vivo. Capable of non-invasive imaging in real time with high resolution, it is potentially ideal for the continuous monitoring of engineered tissues in vitro. As a base line, the current status of DOCT in vivo is therefore reviewed. This paper also reports the first preliminary use of DOCT in tissue engineering. The application described involves the imaging of a fully developed laminar flow through a combined tissue fabrication/bioreactor with a tissue-engineered construct (substitute blood vessel) in situ.  相似文献   

4.
L Song  Q Zhou  P Duan  P Guo  D Li  Y Xu  S Li  F Luo  Z Zhang 《PloS one》2012,7(8):e42569
Small-diameter (<4 mm) vascular constructs are urgently needed for patients requiring replacement of their peripheral vessels. However, successful development of constructs remains a significant challenge. In this study, we successfully developed small-diameter vascular constructs with high patency using our integrally designed computer-controlled bioreactor system. This computer-controlled bioreactor system can confer physiological mechanical stimuli and fluid flow similar to physiological stimuli to the cultured grafts. The medium circulating system optimizes the culture conditions by maintaining fixed concentration of O(2) and CO(2) in the medium flow and constant delivery of nutrients and waste metabolites, as well as eliminates the complicated replacement of culture medium in traditional vascular tissue engineering. Biochemical and mechanical assay of newly developed grafts confirm the feasibility of the bioreactor system for small-diameter vascular engineering. Furthermore, the computer-controlled bioreactor is superior for cultured cell proliferation compared with the traditional non-computer-controlled bioreactor. Specifically, our novel bioreactor system may be a potential alternative for tissue engineering of large-scale small-diameter vascular vessels for clinical use.  相似文献   

5.
动物细胞培养用生物反应器及相关技术   总被引:8,自引:0,他引:8  
动物细胞大量培养是生产生物制品的重要途径,它用到的关键设备是生物反应器。根据培养细胞、培养载体、培养液混合方式的不同,生物反应器主要有搅拌式、气升式、中空纤维式、回转式等,其中搅拌式规模最大。回转式是NASA于20世纪90年代中期开发的一种新型生物反应器,被誉为空间生物反应器,可用于组织工程研究。与生物反应器配套的技术主要有灌注、微载体、多孔微球、转入抗凋亡基因等,可以有效地提高细胞密度,增加生物制品产量,提高质量。今后生物反应器研制主要朝两个方向发展:一是,以高密度培养动物细胞生产蛋白质药物为目的,二是以三维培养动物细胞(主要是人类细胞)再生组织或器官为目的。  相似文献   

6.
It is generally accepted that dynamic culture conditions are required for vascular tissue engineering. We compared the effects of two dynamic culture systems, a perfusion and a rotating bioreactor, using tubular constructs based on hyaluronic acid seeded with porcine aortic smooth muscle cells (SMC), that we recently showed to be adequate for the generation of vascular tissue. In perfused constructs mechanical stimulation importantly affected cell morphology, increased the incidence of cell proliferation and reduced apoptosis. However, extracellular matrix deposition, cytoskeletal organization and mechanical properties were poor. In rotated constructs cell proliferation was also higher and apoptosis lower than in static controls. Rotated constructs showed the highest ultimate stress and the lowest elastic modulus. Our data indicate that the rotating bioreactor is more efficient than the perfusion bioreactor and we then suggest that this method can be considered a valid alternative to complex bioreactor systems described in the literature.  相似文献   

7.
Computer simulations can potentially be used to design, predict, and inform properties for tissue engineering perfusion bioreactors. In this work, we investigate the flow properties that result from a particular poly‐L ‐lactide porous scaffold and a particular choice of perfusion bioreactor vessel design used in bone tissue engineering. We also propose a model to investigate the dynamic seeding properties such as the homogeneity (or lack of) of the cellular distribution within the scaffold of the perfusion bioreactor: a pre‐requisite for the subsequent successful uniform growth of a viable bone tissue engineered construct. Flows inside geometrically complex scaffolds have been investigated previously and results shown at these pore scales. Here, it is our aim to show accurately that through the use of modern high performance computers that the bioreactor device scale that encloses a scaffold can affect the flows and stresses within the pores throughout the scaffold which has implications for bioreactor design, control, and use. Central to this work is that the boundary conditions are derived from micro computed tomography scans of both a device chamber and scaffold in order to avoid generalizations and uncertainties. Dynamic seeding methods have also been shown to provide certain advantages over static seeding methods. We propose here a novel coupled model for dynamic seeding accounting for flow, species mass transport and cell advection‐diffusion‐attachment tuned for bone tissue engineering. The model highlights the timescale differences between different species suggesting that traditional homogeneous porous flow models of transport must be applied with caution to perfusion bioreactors. Our in silico data illustrate the extent to which these experiments have the potential to contribute to future design and development of large‐scale bioreactors. Biotechnol. Bioeng. 2013; 110: 1221–1230. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
聚肽是20种α-氨基酸中的一种或者几种氨基酸通过酰胺键(肽键)联成的长链分子,此外还包含有其它非肽链结构的组成成分,具有和蛋白质类似的二级结构.由于其独特的结构和性能,近年来在组织工程领域聚肽被广泛地研究和应用,主要被用作生长因子、支架材料表面改性物以及支架材料.从以上3个方面介绍了近年来聚肽在骨组织工程领域的研究和应用情况,并对聚肽在骨组织工程研究领域的应用前景进行了展望.  相似文献   

9.
生物技术在传统药材生产中的应用前景刘涤胡之璧(上海中医药大学中药生物工程研究室,上海200032)我国的中药材是一个具有数千年历史的医药宝库,至今仍在中国和许多国家和地区广为使用。传统药材中,80%为野生资源,但由于盲目挖掘,不仅使野生资源日益减少,而且严重破坏了自然界的生态平衡;人工种植又面临品质退化,农药污染和种子带病等问题。而且,人工种植的药材,活性成分的种类和数量往往因地区及气候不同...  相似文献   

10.
Developments in bioprocessing technology play an important role for overcoming challenges in cardiac tissue engineering. To this end, our laboratory has developed a novel rotary perfused bioreactor for supporting three-dimensional cardiac tissue engineering. The dynamic culture environments provided by our novel perfused rotary bioreactor and/or the high-aspect rotating vessel produced constructs with higher viability and significantly higher cell numbers (up to 4 × 105 cells/bead) than static tissue culture flasks. Furthermore, cells in the perfused rotary bioreactor showed earlier gene expressions of cardiac troponin-T, α- and β-myosin heavy chains with higher percentages of cardiac troponin-I-positive cells and better uniformity of sacromeric α-actinin expression. A dynamic and perfused environment, as provided by this bioreactor, provides a superior culture performance in cardiac differentiation for embryonic stem cells particularly for larger 3D constructs.  相似文献   

11.
Many of the sophisticated sensors desirable for monitoring bioreactors cannot be placed in the bioreactor either because they are not steam sterilizable or because they require nonphysiological operating conditions. Such sensors can be used if they are separated from the bioreactor. Separation of the sensor from the bioreactor causes a time lag in data acquisition. This results in several complexities in the development of an appropriate and stable feedback control system based on a separated sensor. This paper analyzes the optimal control of a bioreactor with a separated sensor without a time lag and analyzes the feedback control (but not necessarily the optimal control) with a time lag. Simulation results indicate that this type of analysis could be extended to more general bioreactor operating conditions.  相似文献   

12.
植物生物反应器研究现状、瓶颈及策略   总被引:4,自引:0,他引:4  
近10年,植物作为重组蛋白生产系统是生命科学中研究最活跃领域之一。植物系统具有低成本、安全和易规模化优势,其表达生物活性药用蛋白能力已被许多研究所证实;同时,植物药用蛋白产品还表现出潜在的市场和广阔应用前景。鉴于此,回顾了植物生物反应器兴起,介绍了植物表达系统和重组蛋白研究现状,综述了植物生物反应器面临瓶颈问题、解决对策和未来一段时间内研究热点;在展望植物生物反应器前景同时,对我国研究现状、与国外差距和未来发展应采取策略进行了讨论。  相似文献   

13.
Human mesenchymal stem cells (hMSCs) have great potential for therapeutic applications. A bioreactor system that supports long-term hMSCs growth and three-dimensional (3-D) tissue formation is an important technology for hMSC tissue engineering. A 3-D perfusion bioreactor system was designed using non-woven poly (ethylene terepthalate) (PET) fibrous matrices as scaffolds. The main features of the perfusion bioreactor system are its modular design and integrated seeding operation. Modular design of the bioreactor system allows the growth of multiple engineered tissue constructs and provides flexibility in harvesting the constructs at different time points. In this study, four chambers with three matrices in each were utilized for hMSC construct development. The dynamic depth filtration seeding operation is incorporated in the system by perfusing cell suspensions perpendicularly through the PET matrices, achieving a maximum seeding efficiency of 68%, and the operation effectively reduced the complexity of operation and the risk of contamination. Statistical analyses suggest that the cells are uniformly distributed in the matrices. After seeding, long-term construct cultivation was conducted by perfusing the media around the constructs from both sides of the matrices. Compared to the static cultures, a significantly higher cell density of 4.22 x 10(7) cell/mL was reached over a 40-day culture period. Cellular constructs at different positions in the flow chamber have statistically identical cell densities over the culture period. After expansion, the cells in the construct maintained the potential to differentiate into osteoblastic and adipogenic lineages at high cell density. The perfusion bioreactor system is amenable to multiple tissue engineered construct production, uniform tissue development, and yet is simple to operate and can be scaled up for potential clinical use. The results also demonstrate that the multi-lineage differentiation potential of hMSCs are preserved even after extensive expansion, thus indicating the potential of hMSCs for functional tissue construct development. The system has important applications in stem cell tissue engineering.  相似文献   

14.
In tissue engineering, flow perfusion bioreactors can be used to enhance nutrient diffusion while mechanically stimulating cells to increase matrix production. The goal of this study was to design and validate a dynamic flow perfusion bioreactor for use with compliant scaffolds. Using a non-permanent staining technique, scaffold perfusion was verified for flow rates of 0.1-2.0 mL/min. Flow analysis revealed that steady, pulsatile and oscillatory flow profiles were effectively transferred from the pump to the scaffold. Compared to static culture, bioreactor culture of osteoblast-seeded collagen-GAG scaffolds led to a 27-34% decrease in cell number but stimulated an 800-1200% increase in the production of prostaglandin E(2), an early-stage bone formation marker. This validated flow perfusion bioreactor provides the basis for optimisation of bioreactor culture in tissue engineering applications.  相似文献   

15.
Recently developed perfusion micro-bioreactors offer the promise of more physiologic in vitro systems for tissue engineering. Successful application of such bioreactors will require a method to characterize the bioreactor environment required to elicit desired cell function. We present a mathematical model to describe nutrient/growth factor transport and cell growth inside a microchannel bioreactor. Using the model, we first show that the nature of spatial gradients in nutrient concentration can be controlled by both design and operating conditions and are a strong function of cell uptake rates. Next, we extend our model to investigate the spatial distributions of cell-secreted soluble autocrine/paracrine growth factors in the bioreactor. We show that the convective transport associated with the continuous cell culture and possible media recirculation can significantly alter the concentration distribution of the soluble signaling molecules as compared to static culture experiments and hence needs special attention when adapting static culture protocols for the bioreactor. Further, using an unsteady state model, we find that spatial gradients in nutrient/growth factor concentrations can bring about spatial variations in the cell density distribution inside the bioreactor, which can result in lowered working volume of the bioreactor. Finally, we show that the nutrient and spatial limitations can dramatically affect the composition of a co-cultured cell population. Our results are significant for the development, design, and optimization of novel micro-channel systems for tissue engineering.  相似文献   

16.
We have explored the feasibility of using adipose-derived stem cells (ADSCs) and polyglycolic acid (PGA) for constructing muscular tubes of urethra in a bioreactor. With the induction of by 5-azacytidine, ADSCs were found to acquire a myoblast phenotype. Here we seeded ADSCs in a PGA mesh to construct the cell–PGA complex that was cultured statically for 1 week. Afterwards, the cell–PGA complex was subjected to extension stimulation in a bioreactor for 5 weeks. A muscular tube of urethra was formed after 6 weeks. Histological examination showed differentiated ADSCs and collagenous fibers had orientated well. This study demonstrates that tissue engineering of urethra tissues in vitro by using a bioreactor leads to tissue maturation and the differentiation of ADSCs. This novel technique could provide an effective approach for urethra tissue engineering.  相似文献   

17.
组织器官三维构建就是把种子细胞和支架材料结合而获得设计的组织或器官,属于组织工程的核心内容,也最能体现组织工程的技术水平,如血管、气管的构建。由于传统组织工程存在缺陷,Shimizu于1998年首先提出了原位组织工程的概念,它是运用组织工程学基本原理,通过各种方法诱导移植的外源性的种子细胞或内源性的缺损组织局部细胞发生迁移、增殖、分化形成新生组织修复缺损。原位组织工程最大的特点是不依赖体外的细胞培养装置--生物反应器。原位组织工程是传统离体组织工程的有益补充。离体组织工程仍具有广阔的发展前景。  相似文献   

18.
In tissue engineering, bioreactors can be used to aid in the in vitro development of new tissue by providing biochemical and physical regulatory signals to cells and encouraging them to undergo differentiation and/or to produce extracellular matrix prior to in vivo implantation. This study examined the effect of short term flow perfusion bioreactor culture, prior to long‐term static culture, on human osteoblast cell distribution and osteogenesis within a collagen glycosaminoglycan (CG) scaffold for bone tissue engineering. Human fetal osteoblasts (hFOB 1.19) were seeded onto CG scaffolds and pre‐cultured for 6 days. Constructs were then placed into the bioreactor and exposed to 3 × 1 h bouts of steady flow (1 mL/min) separated by 7 h of no flow over a 24‐h period. The constructs were then cultured under static osteogenic conditions for up to 28 days. Results show that the bioreactor and static culture control groups displayed similar cell numbers and metabolic activity. Histologically, however, peripheral cell‐encapsulation was observed in the static controls, whereas, improved migration and homogenous cell distribution was seen in the bioreactor groups. Gene expression analysis showed that all osteogenic markers investigated displayed greater levels of expression in the bioreactor groups compared to static controls. While static groups showed increased mineral deposition; mechanical testing revealed that there was no difference in the compressive modulus between bioreactor and static groups. In conclusion, a flow perfusion bioreactor improved construct homogeneity by preventing peripheral encapsulation whilst also providing an enhanced osteogenic phenotype over static controls. Bioeng. 2011; 108:1203–1210. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Stem cells hold promise to revolutionize modern medicine by the development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to the translation of stem cell based therapies into the clinic.  相似文献   

20.
Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号