首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptomycin 6-kinase of the streptomycin-producing strain Streptomyces griseus HUT 6037 was purified by fractionation with (NH4)2SO4 and chromatography on DEAE-Sephadex A-25, hydroxyapatite and Sephadex G-100. After PAGE of the final fraction, a protein band corresponding to streptomycin 6-kinase was detected, together with a less intense band having no enzyme activity. Molecular weights determined by SDS-PAGE and by Sephadex G-100 chromatography were about 36000 and 38000, respectively, suggesting that the enzyme was a monomer. The isoelectric point of the enzyme was pH 6.6. Among the nucleoside 5'-triphosphates tested, ATP was the preferred phosphoryl donor. The Km values for streptomycin and ATP were 3.5 mM and 0.4 mM, respectively. The enzyme activity was strongly inhibited by EDTA and AgNO3. It was shown by using an in vitro protein-synthesizing system that purified streptomycin 6-kinase could protect polyphenylalanine synthesis of the streptomycin-susceptible S. griseus strain KSN from inhibition by streptomycin.  相似文献   

2.
H Shinkawa  M Sugiyama  O Nimi  R Nomi 《FEBS letters》1985,181(2):385-389
The gene encoding streptomycin 6-kinase involved in the self-resistance of the streptomycin-producing Streptomyces griseus HUT 6037 was cloned in the plasmid vector pIJ703. The resulting plasmid, pSP6, contained 2.5 kb inserts of S. griseus DNA. When streptomycin-susceptible S. lividans 1326 was retransformed with pSP6, all transformants produced streptomycin 6-kinase. Addition of streptomycin to the culture medium of S. lividans carrying pSP6 plasmid brought about a remarkable increase in streptomycin 6-kinase activity in the cell extracts. It is suggested from the results that the production of streptomycin 6-kinase in streptomycin producer was induced by streptomycin accumulated during cultivation.  相似文献   

3.
An str gene cluster containing at least four genes (strR, strA, strB, and strC) involved in streptomycin biosynthesis or streptomycin resistance or both was self-cloned in Streptomyces griseus by using plasmid pOA154. The strA gene was verified to encode streptomycin 6-phosphotransferase, a streptomycin resistance factor in S. griseus, by examining the gene product expressed in Escherichia coli. The other three genes were determined by complementation tests with streptomycin-nonproducing mutants whose biochemical lesions were clearly identified. strR complemented streptomycin-sensitive mutant SM196 which exhibited impaired activity of both streptomycin 6-phosphotransferase and amidinotransferase (one of the streptomycin biosynthetic enzymes) due to a regulatory mutation; strB complemented strain SD141, which was specifically deficient in amidinotransferase; and strC complemented strain SD245, which was deficient in linkage between streptidine 6-phosphate and dihydrostreptose. By deletion analysis of plasmids with appropriate restriction endonucleases, the order of the four genes was determined to be strR-strA-strB-strC. Transformation of S. griseus with plasmids carrying both strR and strB genes enhanced amidinotransferase activity in the transformed cells. Based on the gene dosage effect and the biological characteristics of the mutants complemented by strR and strB, it was concluded that strB encodes amidinotransferase and strR encodes a positive effector required for the full expression of strA and strB genes. Furthermore, it was found that amplification of a specific 0.7-kilobase region of the cloned DNA on a plasmid inhibited streptomycin biosynthesis of the transformants. This DNA region might contain a regulatory apparatus that participates in the control of streptomycin biosynthesis.  相似文献   

4.
T Ohnuki  T Katoh  T Imanaka    S Aiba 《Journal of bacteriology》1985,161(3):1010-1016
Two tetracycline resistance genes of Streptomyces rimosus, an oxytetracycline producer, were cloned in Streptomyces griseus by using pOA15 as a vector plasmid. Expression of the cloned genes, designated as tetA and tetB was inducible in S. griseus as well as in the donor strain. The tetracycline resistance directed by tetA and tetB was characterized by examining the uptake of tetracycline and in vitro polyphenylalanine synthesis by the sensitive host and transformants with the resultant hybrid plasmids. Polyphenylalanine synthesis with crude ribosomes and the S150 fraction from S. griseus carrying the tetA plasmid was resistant to tetracycline, and, by a cross-test of ribosomes and S150 fraction coming from both the sensitive host and the resistant transformant, the resistance directed by tetA was revealed to reside mainly in crude ribosomes and slightly in the S150 fraction. However, the resistance in the crude ribosomes disappeared when they were washed with 1 M ammonium chloride. These results suggest that tetA specified the tetracycline resistance of the machinery for protein synthesis not through ribosomal subunits, but via an unidentified cytoplasmic factor. In contrast, S. griseus carrying the tetB plasmid accumulated less intracellular tetracycline than did the host, and the protein synthesis by reconstituting the ribosomes and S150 fraction was sensitive to the drug. Therefore, it is conceivable that tetB coded a tetracycline resistance determinant responsible for the reduced accumulation of tetracycline.  相似文献   

5.
Genes for streptomycin phosphotransferase and inosamine-P-amidinotransferase from a streptomycin-producing Streptomyces griseus were cloned on a 3.8kb BamHI-SphI fragment in S. lividans using the multicopy cloning vector pIJ702. The nucleotide sequence of this 3.8kb fragment was determined and the coding sequences for the two genes were identified by comparison with the amino-terminal sequences of the two enzymes purified from S. lividans clones.  相似文献   

6.
Streptomycin-resistant strains were isolated from a degenerated streptomycin-producing culture of Streptomyces griseus. From 250 resistant strains, 3 low, 2 intermediate, and 2 high potency strains were selected; these were compared in their morphological, cultural, physiological, and streptomycin-producing properties. Though no definite correlation between streptomycin production and the other properties could be obtained, the following correlations were considered as distinct differences among the low, intermediate, and high potency strains. (i) When streptomycin-producing ability degenerates, more submerged spore formation or fragmentation of mycelium into shorter filaments appears to occur. (ii) On agar medium, low and intermediate potency strains often show finely wrinkled growth; high potency strains do not show such characteristics. (iii) High potency strains excrete a distinct yellow soluble pigment on synthetic agar medium and on glucose-yeast extract agar, but low and intermediate potency strains show little or no ability to form this soluble pigment. (iv) In low and intermediate potency strains, inositol and arginine did not stimulate streptomycin production as they did in high potency strains. Streptamine showed some stimulating effect in the high potency strains and, in contrast, a depressive effect in intermediate potency strains, though streptidine showed a distinctly stimulating effect in all groups of strains employed.  相似文献   

7.
We have applied a technique of interactive continuous selection (ICS) to the isolation of streptomycin-resistant mutants of the streptomycin-producing organism, Streptomyces griseus. A series of mutants, each with a different colonial morphology and expressing successively greater resistance to streptomycin, was isolated during the course of selection. Takeover of the mutants has been correlated with changes in on-line estimates of streptomycin concentration such that these estimates may be used as a real-time measure of the genetic state of the cell population. When grown in the medium employed for ICS, mutants expressed increased antibiotic production titers; the best mutant produced 10 to 20 times more streptomycin than the parent strain. Absolute improvements in the maximum specific growth rate and intrinsic resistance to streptomycin did not account for the observed growth advantage of all mutants. Rather, each mutant exhibited relative increases in specific growth rate at increasing concentrations of streptomycin. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
High molecular weight ribosomal ribonucleic acids (rRNAs) were isolated from young vegetative cells and spores of a streptomycin non-producing Streptomyces griseus, and their electrophoretic mobility was compared to each other and to that of rRNAs of Escherichia coli K-12. The electrophoretic mobility of 23 and 16S rRNAs from vegetative cells and spores of S. griseus was identical, but the 23S rRNAs of streptomyces ribosomes migrated more slowly on polyacrylamide gel than those of E. coli ribosomes. Intact, electrophoretically homogenous rRNAs could be isolated from S. griseus (No. 45-H) only in the presence of diethyl 1 pyrocarbonate (DEP), and intact rRNAs could be obtained from spores only if DEP had been added before breaking the spores. Otherwise instead of two distinct bands, three were obtained on polyacrylamide gel.  相似文献   

9.
Y Parag 《Journal of bacteriology》1978,133(2):1027-1031
Low-frequency (10(-6)) genetic recombination was observed in a cephamycin-producing strain of Streptomyces griseus. The recombinants were predominantly heteroclones. Heteroclone analysis was performed involving four heteroclones of one cross. In 100 mutants correlation was found between the type of auxotrophy and the level of antibiotic activity. A cross of this strain with a streptomycin-producing strain of S. griesus is described.  相似文献   

10.
We cloned a DNA fragment directing synthesis of A-factor from the total cellular DNA of streptomycin-producing Streptomyces bikiniensis on the plasmid vector pIJ385 . Introduction of the recombinant plasmid ( pAFB1 ) into A-factor-deficient S. bikiniensis and Streptomyces griseus mutants led to A-factor production in the host cells, as a result of which streptomycin production, streptomycin resistance, and spore formation of these mutants were simultaneously restored. The plasmid pAFB1 also complemented both afsA and afsB mutations of Streptomyces coelicolor A3(2). These results indicated that the cloned DNA fragment contained the genetic determinant of A-factor biosynthesis. The cloned fragment, when carried on a multicopy vector plasmid, induced production of a large amount of A-factor in several Streptomyces hosts. In Southern blot DNA/DNA hybridization analyses with a trimmed 5-kilobase fragment containing the intact A-factor determinant as probe, total cellular DNA from A-factor-deficient mutants gave no positive hybridization. The DNA blot experiment also showed a wide distribution of sequences homologous to the S. bikiniensis A-factor determinant among most, but not all, A-factor-producing actinomycetes with a varying extent of homology and the absence of these sequences from most A-factor nonproducers .  相似文献   

11.
Nucleotide pyrophosphotransferase (NPT) activity of two Streptomyces griseus strains was studied in submerged culture during their life cycle. NPT activity could be detected only in the culture filtrate but not in the membrane fraction or in cell extract of the sporulating (streptomycin-non-producing) S. griseus No. 45-H. No enzyme could be detected in the non-sporulating (streptomycin-producing) S. griseus No 52--1 cultures.  相似文献   

12.
K Ochi 《Journal of bacteriology》1987,169(8):3608-3616
I investigated the significance of the intracellular accumulation of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and of the coordinated decrease in the GTP pool for initiating morphological and physiological differentiation of Streptomyces griseus, a streptomycin-producing strain. In solid cultures, aerial mycelium formation was severely suppressed by the presence of excess nutrients. However, decoyinine, a specific inhibitor of GMP synthetase, enabled the cells to develop aerial mycelia in the suppressed cultures at concentrations which only partially inhibited growth. A factor (2S-isocapryloyl-3S-hydroxymethyl-gamma-butyrolactone) added exogenously had no such effect. Decoyinine was also effective in initiating the formation of submerged spores in liquid culture. The ability to produce streptomycin did not increase but decreased drastically on the addition of decoyinine. This sharp decrease in streptomycin production was accompanied by a decrease in intracellular accumulation of ppGpp. A relaxed (rel) mutant was found among 25 thiopeptin-resistant isolates which developed spontaneously. The rel mutant had a severely reduced ability to accumulate ppGpp during a nutritional shift-down and also during postexponential growth and showed a less extensive decrease in the GTP pool than that in the rel+ parental strain. The rel mutant failed to induce the enzymes amidinotransferase and streptomycin kinase, which are essential for the biosynthesis of streptomycin. The abilities to form aerial mycelia and submerged spores were still retained, but the amounts were less, and for both the onset of development was markedly delayed. The decreased ability to produced submerged spores was largely restored by the addition of decoyinine. This was accompanied by an extensive GTP pool decrease. The rel mutant produced A factor normally, indicating that synthesis of A factor is controlled neither by ppGpp nor by GTP. Conversely, a mutant defective in A-factor synthesis accumulated as much ppGpp as did the parental strain. It was concluded that morphological differentiation of S. griseus results from a decrease in the pool of GTP, whereas physiological differentiation results from a more direct function of the rel gene product (ppGpp). It is also suggested that A factor may render the cell sensitive to receive and respond to the specified signal molecules, presumably ppGpp (for physiological differentiation) or GTP (for morphological differentiation).  相似文献   

13.
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) is essentially required for aerial mycelium formation and streptomycin production in Streptomyces griseus. A DNA fragment which induced aerial mycelium formation and sporulation in an A-factor-deficient mutant strain, S. griseus HH1, was cloned from this strain on a high-copy-number plasmid. Subcloning and nucleotide sequencing revealed that one open reading frame with 218 amino acids, named AmfC, served as a multicopy suppressor of the aerial mycelium-defective phenotype of the A-factor-deficient strain. The amfC gene did not restore A-factor or streptomycin production, indicating that amfC is involved in aerial mycelium formation independently of secondary metabolic function. Disruption of the chromosomal amfC gene in the wild-type S. griseus strain caused a severe reduction in the abundance of spores but no effect on the shape or size of the spores. The infrequent sporulation of the amfC disruptant was reversed by introduction of amfC on a plasmid. The amfC-defective phenotype was also restored by the orf1590 gene but not by the amfR-amfA-amfB gene cluster. Nucleotide sequences homologous to the amfC gene were distributed in all of 12 Streptomyces species tested, including Streptomyces coelicolor A3(2). The amfC homolog of S. coelicolor A3(2) was cloned and its nucleotide sequence was determined. The AmfC products of S. griseus and S. coelicolor A3(2) showed a 60% identity in their amino acid sequences. Introduction of the amfC gene of S. coelicolor A3(2) into strain HH1 induced aerial mycelium formation and sporulation, which suggests that both play the same functional role in morphogenesis in the strains.  相似文献   

14.
Mechanism of Resistance to Antibiotic Synergism in Enterococci   总被引:31,自引:3,他引:28       下载免费PDF全文
Enterococci exhibit two types of resistance to streptomycin. Moderately high-level resistance is observed in most naturally occurring strains and can be overcome by simultaneous exposure to penicillin. In addition, very high-level resistance is found in those strains against which penicillin plus streptomycin fail to produce synergism in vitro. To study the mechanism of streptomycin resistance in enterococci, ribosomes from a wild-type strain and from a highly streptomycin-resistant mutant were isolated, characterized, and studied in an in vitro amino acid incorporation system. The ribosomes from the organism with moderately high-level streptomycin resistance were sensitive to streptomycin in vitro, suggesting that this type of resistance is caused by failure of streptomycin to reach the ribosomes. Very high-level resistance (and lack of penicillin-streptomycin synergism), on the other hand, appears to be due to ribosomally mediated streptomycin resistance.  相似文献   

15.
DNA from Streptomyces griseus ATCC 12475 was partially digested with Sau3A and fragments were ligated into BglII-cleaved pIJ702. When the ligation mixture was used to transform protoplasts of Streptomyces lividans TK54, two transformants resistant to both thiostrepton and streptomycin were isolated. The hybrid plasmids pBV3 and pBV4 which they contained, carrying inserts of sizes 4.45 and 11.55 kbp respectively, each retransformed S. lividans to streptomycin resistance at high efficiency. Both plasmids hybridized to restriction digests of S. griseus chromosomal DNA in Southern blot experiments. In vitro deletion and sub-cloning experiments showed the sequence conferring streptomycin resistance to lie within a segment of 1.95 kbp. Extracts of TK54(pBV3) and TK54(pBV4) contained a streptomycin phosphotransferase similar to that in extracts of S. griseus. Streptomycin phosphotransferase activity appeared in extracts of S. griseus, TK54(pBV3) and TK54(pBV4) within 2 d of inoculation. When pBV3 and pBV4 were retransformed into S. griseus with selection for thiostrepton resistance, plasmid DNA of sizes corresponding to the incoming plasmids was found in the transformants. In these transformants the phosphotransferase appeared at 1.5 rather than 2 d, and reached a level over twice that of the original S. griseus strain.  相似文献   

16.
We have studied the effects of protein mutations on the higher order structure of 16 S rRNA in Escherichia coli ribosomes, using a set of structure-sensitive chemical probes. Ten mutant strains were studied, which contained alterations in ribosomal proteins S4 and S12, including double mutants containing both altered S4 and S12. Two ribosomal ambiguity (ram) S4 mutant strains, four streptomycin resistant (SmR) S12 mutant strains, one streptomycin pseudodependent (SmP) S12 mutant strain, one streptomycin dependent (SmD) S12 mutant strain and two streptomycin independent (Sm1) double mutants (containing both-SmD and ram mutations) were probed and compared to an isogenic wild-type strain. In ribosomes from strains containing S4 ram mutations, nucleotides A8 and A26 become more reactive to dimethyl sulfate (DMS) at their N-1 positions. In ribosomes from strains bearing the SmD allele, A908, A909, A1413 and G1487 are significantly less reactive to chemical probes. These same effects are observed when the S4 and S12 mutations are present simultaneously in the double mutants. An interesting correlation is found between the reactivity of A908 and the miscoding potential of SmR, SmD, SmP and wild-type ribosomes; the reactivity of A908 increases as the translational error frequency of the ribosomes increases. In the case of ram ribosomes, the reactivity of A908 resembles that of wild-type, unless tRNA is bound, in which case it becomes hyper-reactive. Similarly, streptomycin has little effect on A908 in wild-type ribosomes unless tRNA is bound, in which case its reactivity increases to resemble that of ram ribosomes with bound tRNA. Finally, interaction of streptomycin with SmP and SmD ribosomes causes the reactivity of A908 to increase to near-wild-type levels. A simple model is proposed, in which the reactivity of A908 reflects the position of an equilibrium between two conformational states of the 30 S subunit, one of which is DMS-reactive, and the other DMS-unreactive. In this model, the balance between these two states would be influenced by proteins S4 and S12. Mutations in S12 generally cause a shift toward the unreactive conformer, and in the case of SmD and SmP ribosomes, this shift can be suppressed phenotypically by streptomycin, ram mutations in protein S4 cause a shift toward the reactive conformer, but only when tRNA is bound. This suggests that the opposing effects of these two classes of mutations influence the proof-reading process by somewhat different mechanisms.  相似文献   

17.
The streptomycin-producing activity (SPA) of hyphal fractions from washed mycelium of submerged cultures of Streptomyces griseus strain 52-1, as obtained by density gradient centrifugation, was investigated. Activity of the various fractions differed strongly in intensity. The highest SPA was evident in the unfractionated mycelium. A synergistic effect upon SPA was found in the interaction of cultures of different ages, and a 55% increase in yield was obtained by mixing the 48- and 72-hr cultures. A synergistic effect occurred in all combinations studied. By use of fractions obtained from 72-hr mycelium for inoculation, differences in streptomycin production were noted. Some inoculum fractions yielded a greater amount of streptomycin (36%) than the unfractionated mycelial inoculum.  相似文献   

18.
DNA-DNA hybridization was studied in order to determine the genetic relatedness between a streptomycin-producing and a non-producing mutant of Streptomyces griseus. The latter strain of short vegetative life cycle had been developed from the streptomycin-producing strain by means of nitrogen mustard treatment. Since the two strains differ in several features, we were prompted to examine the sequence homology between their DNAs. Hybridization experiments carried out with the membrane filter method yielded 73.8% and 67.3% DNA homology values, respectively. The results indicate that there is a significant, but not very close, relatedness between the DNA sequences that corresponds to the similarities and differences observed between the phenotypes of the two strains. Further aspects of established homology are also discussed.  相似文献   

19.
Under ionic conditions, where the 70 S ribosomes but not the 80 S ribosomes partly dissociate into the subunits, in three mutants of Chlamydomonas reinhardi streptomycin causes in vivo at first an increase, later a decrease of the 70 S ribosome fraction. This behaviour can be explained, if streptomycin acts on the ribosome cycle of the organelle ribosomes of eukaryotes in the same way as on the ribosome cycle of E. coli.Streptomycin also induces the formation of dimers and oligomers from 80 S cytoplasmic ribosomes. The kinetics of this formation is similar to that of the 70 S ribosomes. However, this effect of streptomycin does not seem to influence the functional capacity of the 80 S ribosomes.  相似文献   

20.
A-factor, 2-(6'-methylheptanoyl)-3R-hydroxymethyl-4-butanolide, is an autoregulator essential for streptomycin production and sporulation in Streptomyces griseus. S. griseus 2247 that requires no A-factor for streptomycin production or sporulation was found to have a defect in the A-factor-binding protein. This observation implied that the A-factor-binding protein in the absence of A-factor repressed the expression of both phenotypes in the wild-type strain. Screening among mutagenized S. griseus colonies for strains producing streptomycin and sporulating in the absence of A-factor yielded three mutants that were also deficient in the A-factor-binding protein. Reversal of the defect in the A-factor-binding protein of these mutants led to the simultaneous loss of streptomycin production and sporulation. These data suggested that the A-factor-binding protein played a role in repressing both streptomycin production and sporulation and that the binding of A-factor to the protein released its repression. Mutants deficient in the A-factor-binding protein began to produce streptomycin and sporulate at an earlier stage of growth than did the wild-type strain. These mutants produced approximately 10 times more streptomycin than did the parental strain. These findings are consistent with the idea that the intracellular concentration of A-factor determines the timing of derepression of the gene(s) whose expression is repressed by the A-factor-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号