首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endoplasmic reticulum (ER) has an elaborate quality control system, which retains misfolded proteins and targets them to ER-associated protein degradation (ERAD). To analyze sorting between ER retention and ER exit to the secretory pathway, we constructed fusion proteins containing both folded carboxypeptidase Y (CPY) and misfolded mutant CPY (CPY*) units. Although the luminal Hsp70 chaperone BiP interacts with the fusion proteins containing CPY* with similar efficiency, a lectin-like ERAD factor Yos9p binds to them with different efficiency. Correlation between efficiency of Yos9p interactions and ERAD of these fusion proteins indicates that Yos9p but not BiP functions in the retention of misfolded proteins for ERAD. Yos9p targets a CPY*-containing ERAD substrate to Hrd1p E3 ligase, thereby causing ER retention of the misfolded protein. This ER retention is independent of the glycan degradation signal on the misfolded protein and operates even when proteasomal degradation is inhibited. These results collectively indicate that Yos9p and Hrd1p mediate ER retention of misfolded proteins in the early stage of ERAD, which constitutes a process separable from the later degradation step.  相似文献   

2.
We undertook a growth-based screen exploiting the degradation of CTL*, a chimeric membrane-bound ERAD substrate derived from soluble lumenal CPY*. We screened the Saccharomyces cerevisiae genomic deletion library containing approximately 5000 viable strains for mutants defective in endoplasmic reticulum (ER) protein quality control and degradation (ERAD). Among the new gene products we identified Yos9p, an ER-localized protein previously involved in the processing of GPI anchored proteins. We show that deficiency in Yos9p affects the degradation only of glycosylated ERAD substrates. Degradation of non-glycosylated substrates is not affected in cells lacking Yos9p. We propose that Yos9p is a lectin or lectin-like protein involved in the quality control of N-glycosylated proteins. It may act sequentially or in concert with the ERAD lectin Htm1p/Mnl1p (EDEM) to prevent secretion of malfolded glycosylated proteins and deliver them to the cytosolic ubiquitin-proteasome machinery for elimination.  相似文献   

3.
A substantial fraction of nascent proteins delivered into the endoplasmic reticulum (ER) never reach their native conformations. Eukaryotes use a series of complementary pathways to efficiently recognize and dispose of these terminally misfolded proteins. In this process, collectively termed ER-associated degradation (ERAD), misfolded proteins are retrotranslocated to the cytosol, polyubiquitinated, and degraded by the proteasome. Although there has been great progress in identifying ERAD components, how these factors accurately identify substrates remains poorly understood. The targeting of misfolded glycoproteins in the ER lumen for ERAD requires the lectin Yos9, which recognizes the glycan species found on terminally misfolded proteins. In a role that remains poorly characterized, Yos9 also binds the protein component of ERAD substrates. Here, we identified a 45-kDa domain of Yos9, consisting of residues 22–421, that is proteolytically stable, highly structured, and able to fully support ERAD in vivo. In vitro binding studies show that Yos9(22–421) exhibits sequence-specific recognition of linear peptides from the ERAD substrate, carboxypeptidase Y G255R (CPY*), and binds a model unfolded peptide ΔEspP and protein Δ131Δ in solution. Binding of Yos9 to these substrates results in their cooperative aggregation. Although the physiological consequences of this substrate-induced aggregation remain to be seen, it has the potential to play a role in the regulation of ERAD.  相似文献   

4.
The Htm1/EDEM protein has been proposed to act as a "degradation lectin" for endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins. In this study, we provide genetic and biochemical evidence that Yos9 protein in Saccharomyces cerevisiae is essential for efficient degradation of mutant glycoproteins. Yos9 is a member of the OS-9 protein family, which is conserved among eukaryotes and shows similarities with mannose-6-phosphate receptors (MPRs). We found that amino acids conserved among OS-9 family members and MPRs were essential for Yos9 protein function. Immunoprecipitation showed that Yos9 specifically associated with misfolded carboxypeptidase Y (CPY*), an ERAD substrate, but only when it carried Man8GlcNAc2 or Man5GlcNAc2 N-glycans. Our experiments further suggested that Yos9 acts in the same pathway as Htm1/EDEM. Yos9 protein is important for glycoprotein degradation and may act via its MRH domain as a degradation lectin-like protein in the glycoprotein degradation pathway.  相似文献   

5.
Benitez EM  Stolz A  Wolf DH 《FEBS letters》2011,585(19):3015-3019
The endoplasmic reticulum (ER) is responsible for folding and delivery of secretory proteins to their site of action. One major modification proteins undergo in this organelle is N-glycosylation. Proteins that cannot fold properly will be directed to a process known as endoplasmic reticulum associated degradation (ERAD). Processing of N-glycans generates a signal for ERAD. The lectin Yos9 recognizes the N-glycan signal of misfolded proteins and acts as a gatekeeper for the delivery of these substrates to the cytoplasm for degradation. Presence of Yos9 accelerates degradation of the glycosylated model ERAD substrate CPY?. Here we show that Yos9 has also a control function in degradation of the unglycosylated ERAD substrate CPY?0000. It decelerates its degradation rate.  相似文献   

6.
Denic V  Quan EM  Weissman JS 《Cell》2006,126(2):349-359
How the ER-associated degradation (ERAD) machinery accurately identifies terminally misfolded proteins is poorly understood. For luminal ERAD substrates, this recognition depends on their folding and glycosylation status as well as on the conserved ER lectin Yos9p. Here we show that Yos9p is part of a stable complex that organizes key components of ERAD machinery on both sides of the ER membrane, including the transmembrane ubiquitin ligase Hrd1p. We further demonstrate that Yos9p, together with Kar2p and Hrd3p, forms a luminal surveillance complex that both recruits nonnative proteins to the core ERAD machinery and assists a distinct sugar-dependent step necessary to commit substrates for degradation. When Hrd1p is uncoupled from the Yos9p surveillance complex, degradation can occur independently of the requirement for glycosylation. Thus, Yos9p/Kar2p/Hrd3p acts as a gatekeeper, ensuring correct identification of terminally misfolded proteins by recruiting misfolded forms to the ERAD machinery, contributing to the interrogation of substrate sugar status, and preventing glycosylation-independent degradation.  相似文献   

7.
During endoplasmic reticulum–associated degradation (ERAD), misfolded lumenal and membrane proteins in the ER are recognized by the transmembrane Hrd1 ubiquitin ligase complex and retrotranslocated to the cytosol for ubiquitination and degradation. Although substrates are believed to be delivered to the proteasome only after the ATPase Cdc48p/p97 acts, there is limited knowledge about how the Hrd1 complex coordinates with Cdc48p/p97 and the proteasome to orchestrate substrate recognition and degradation. Here we provide evidence that inactivation of Cdc48p/p97 stalls retrotranslocation and triggers formation of a complex that contains the 26S proteasome, Cdc48p/p97, ubiquitinated substrates, select components of the Hrd1 complex, and the lumenal recognition factor, Yos9p. We propose that the actions of Cdc48p/p97 and the proteasome are tightly coupled during ERAD. Our data also support a model in which the Hrd1 complex links substrate recognition and degradation on opposite sides of the ER membrane.  相似文献   

8.
The endoplasmic reticulum (ER) harbors a protein quality control system, which monitors protein folding in the ER. Elimination of malfolded proteins is an important function of this protein quality control. Earlier studies with various soluble and transmembrane ER-associated degradation (ERAD) substrates revealed differences in the ER degradation machinery used. To unravel the nature of these differences we generated two type I membrane ERAD substrates carrying malfolded carboxypeptidase yscY (CPY*) as the ER-luminal ERAD recognition motif. Whereas the first, CT* (CPY*-TM), has no cytoplasmic domain, the second, CTG*, has the green fluorescent protein present in the cytosol. Together with CPY*, these three substrates represent topologically diverse malfolded proteins, degraded via ERAD. Our data show that degradation of all three proteins is dependent on the ubiquitin-proteasome system involving the ubiquitin-protein ligase complex Der3/Hrd1p-Hrd3p, the ubiquitin conjugating enzymes Ubc1p and Ubc7p, as well as the AAA-ATPase complex Cdc48-Ufd1-Npl4 and the 26S proteasome. In contrast to soluble CPY*, degradation of the membrane proteins CT* and CTG* does not require the ER proteins Kar2p (BiP) and Der1p. Instead, CTG* degradation requires cytosolic Hsp70, Hsp40, and Hsp104p chaperones.  相似文献   

9.
In eukaryotic cells, aberrant proteins generated in the endoplasmic reticulum (ER) are degraded by the ER-associated degradation (ERAD) pathway. Here, we report on the ERAD pathway of the fission yeast Schizosaccharomyces pombe. We constructed and expressed Saccharomyces cerevisiae wild-type CPY (ScCPY) and CPY-G255R mutant (ScCPY*) in S. pombe. While ScCPY was glycosylated and efficiently transported to the vacuoles in S. pombe, ScCPY* was retained in the ER and was not processed to the matured form in these cells. Cycloheximide chase experiments revealed that ScCPY* was rapidly degraded in S. pombe, and its degradation depended on Hrd1p and Ubc7p homologs. We also found that Mnl1p and Yos9p, proteins that are essential for ERAD in S. cerevisiae, were not required for ScCPY* degradation in S. pombe. Moreover, the null-glycosylation mutant of ScCPY, CPY*0000, was rapidly degraded by the ERAD pathway. These results suggested that N-linked oligosaccharides are not important for the recognition of luminal proteins for ERAD in S. pombe cells.  相似文献   

10.
The HRD ubiquitin ligase recognizes and ubiquitylates proteins of the endoplasmic reticulum that display structural defects. Here, we apply quantitative proteomics to characterize the substrate spectrum of the HRD complex. Among the identified substrates is Erg3p, a glycoprotein involved in sterol synthesis. We characterize Erg3p and demonstrate that the elimination of Erg3p requires Htm1p and Yos9p, two proteins that take part in the glycan-dependent turnover of aberrant proteins. We further show that the HRD ligase also mediates the breakdown of Erg3p and CPY* engineered to lack N-glycans. The degradation of these nonglycosylated substrates is enhanced by a mutant variant of Yos9p that has lost its affinity for oligosaccharides, indicating that Yos9p has a previously unrecognized role in the quality control of nonglycosylated proteins.  相似文献   

11.
The folding and assembly of proteins in the endoplasmic reticulum (ER) lumen and membrane are monitored by ER quality control. Misfolded or unassembled proteins are retained in the ER and, if they cannot fold or assemble correctly, ultimately undergo ER-associated degradation (ERAD) mediated by the ubiquitin-proteasome system. Whereas luminal and integral membrane ERAD substrates both require the proteasome for their degradation, the ER quality control machinery for these two classes of proteins likely differs because of their distinct topologies. Here we establish the requirements for the ERAD of Ste6p*, a multispanning membrane protein with a cytosolic mutation, and compare them with those for mutant form of carboxypeptidase Y (CPY*), a soluble luminal protein. We show that turnover of Ste6p* is dependent on the ubiquitin-protein isopeptide ligase Doa10p and is largely independent of the ubiquitin-protein isopeptide ligase Hrd1p/Der3p, whereas the opposite is true for CPY*. Furthermore, the cytosolic Hsp70 chaperone Ssa1p and the Hsp40 co-chaperones Ydj1p and Hlj1p are important in ERAD of Ste6p*, whereas the ER luminal chaperone Kar2p is dispensable, again opposite their roles in CPY* turnover. Finally, degradation of Ste6p*, unlike CPY*, does not appear to require the Sec61p translocon pore but, like CPY*, could depend on the Sec61p homologue Ssh1p. The ERAD pathways for Ste6p* and CPY* converge at a post-ubiquitination, pre-proteasome step, as both require the ATPase Cdc48p. Our results demonstrate that ERAD of Ste6p* employs distinct machinery from that of the soluble luminal substrate CPY* and that Ste6p* is a valuable model substrate to dissect the cellular machinery required for the ERAD of multispanning membrane proteins with a cytosolic mutation.  相似文献   

12.
The degradation of misfolded and unassembled proteins by the endoplasmic reticulum (ER)-associated degradation (ERAD) has been shown to occur mainly through the ubiquitin-proteasome pathway after transport of the protein to the cytosol. Recent work has revealed a role for N-linked glycans in targeting aberrant glycoproteins to ERAD. To further characterize the molecular basis of substrate recognition and sorting during ERAD in mammalian cells, we expressed a mutant yeast carboxypeptidase Y (CPY*) in CHO cells. CPY* was retained in the ER in un-aggregated form, and degraded after a 45-min lag period. Degradation was predominantly by a proteasome-independent, non-lysosomal pathway. The inhibitor of ER mannosidase I, kifunensine, blocked the degradation by the alternate pathway but did not affect the proteasomal fraction of degradation. Upon inhibition of glucose trimming, the initial lag period was eliminated and degradation thus accelerated. Our results indicated that, although the proteasome is a major player in ERAD, alternative routes are present in mammalian cells and can play an important role in the disposal of both glycoproteins and non-glycoproteins.  相似文献   

13.
Proteins are translocated into the endoplasmic reticulum (ER) of cells in an unfolded state, and acquire their native conformation in the ER lumen after signal peptide cleavage. ER-associated degradation (ERAD) of folding-incompetent protein chains is mediated by the protein complexes residing in the ER membrane. We study the architecture and function of one of these, the HRD complex assembled around the E3 ubiquitin ligase Hrd1. The recognition of ERAD substrates is linked to the maturation of their carbohydrate structures. The HRD complex-associated lectin Yos9 is involved in ERAD substrate recognition by binding carbohydrates through its mannose-6-phosphate receptor homology (MRH) domain. We have determined the crystal structure of a central domain of Yos9, adjacent to the MRH domain, which was previously annotated as interaction region with the HRD subunit Hrd3 (Hanna et al., 2012). We find that this domain does not support Hrd3 association which we map to the N-terminal half of Yos9 instead. In contrast, the domain has a function in Yos9 dimerization as seen in the crystal structure, in various solution experiments and as supported by mutagenesis of dimer interface residues. The dimerization of the ER-luminal Yos9, in conjunction with studies of the cytosolic domain of the HRD component Usa1 (Horn et al., 2009) and other biochemical data thus supports a model of a HRD complex that exists and functions as a dimer or a higher multimer. The delivery of ubiquitinated ERAD substrates to the proteasome is mediated by the cytosolic AAA ATPase Cdc48 (p97 in mammalian cells). The p97 (VCP) serves a wide variety of cellular functions in addition to its role in ERAD, including organelle membrane fusion, mitosis, DNA repair, and apoptosis. These different functions are linked to the binding of adaptor proteins to p97, many of which contain ubiquitin regulatory X (UBX) domains. One of these adaptors, ASPL (alveolar soft part sarcoma locus), uses a substantially extended UBX domain for binding to the N domain of p97 where a lariat-like, mostly α-helical extension wraps around one subunit of p97. By this binding ASPL triggers the dissociation of functional p97 hexamers leading to partial inactivation of the AAA ATPase. To the best of our knowledge, this is the first time that the structural basis for adaptor protein-induced inactivation by hexamer dissociation of p97 and, indeed, any AAA ATPase has been demonstrated. This observation has far reaching implications for AAA ATPase-regulated processes.  相似文献   

14.
We developed a growth test to screen for yeast mutants defective in endoplasmic reticulum (ER) quality control and associated protein degradation (ERAD) using the membrane protein CTL*, a chimeric derivative of the classical ER degradation substrate CPY*. In a genomic screen of approximately 5,000 viable yeast deletion mutants, we identified genes necessary for ER quality control and degradation. Among the new gene products, we identified Dsk2p and Rad23p. We show that these two proteins are probably delivery factors for ubiquitinated ER substrates to the proteasome, following their removal from the membrane via the Cdc48-Ufd1-Npl4p complex. In contrast to the ERAD substrate CTG*, proteasomal degradation of a cytosolic CPY*-GFP fusion is not dependent on Dsk2p and Rad23p, indicating pathway specificity for both proteins. We propose that, in certain degradation pathways, Dsk2p, Rad23p and the trimeric Cdc48 complex function together in the delivery of ubiquitinated proteins to the proteasome, avoiding malfolded protein aggregates in the cytoplasm.  相似文献   

15.
Carvalho P  Goder V  Rapoport TA 《Cell》2006,126(2):361-373
Many misfolded endoplasmic reticulum (ER) proteins are eliminated by ERAD, a process in which substrates are polyubiquitylated and moved into the cytosol for proteasomal degradation. We have identified in S. cerevisiae distinct ubiquitin-ligase complexes that define different ERAD pathways. Proteins with misfolded ER-luminal domains use the ERAD-L pathway, in which the Hrd1p/Hrd3p ligase forms a near stoichiometric membrane core complex by binding to Der1p via the linker protein Usa1p. This core complex associates through Hrd3p with Yos9p, a substrate recognition protein in the ER lumen. Substrates with misfolded intramembrane domains define a pathway (ERAD-M) that differs from ERAD-L by being independent of Usa1p and Der1p. Membrane proteins with misfolded cytosolic domains use the ERAD-C pathway and are directly targeted to the Doa10p ubiquitin ligase. All three pathways converge at the Cdc48p ATPase complex. These results lead to a unifying concept for ERAD that may also apply to mammalian cells.  相似文献   

16.
Endoplasmic reticulum (ER)-associated degradation (ERAD) eliminates aberrant proteins from the ER by dislocating them to the cytoplasm where they are tagged by ubiquitin and degraded by the proteasome. Six distinct AAA-ATPases (Rpt1-6) at the base of the 19S regulatory particle of the 26S proteasome recognize, unfold, and translocate substrates into the 20S catalytic chamber. Here we show unique contributions of individual Rpts to ERAD by employing equivalent conservative substitutions of the invariant lysine in the ATP-binding motif of each Rpt subunit. ERAD of two substrates, luminal CPY*-HA and membrane 6myc-Hmg2, is inhibited only in rpt4R and rpt2RF mutants. Conversely, in vivo degradation of a cytosolic substrate, DeltassCPY*-GFP, as well as in vitro cleavage of Suc-LLVY-AMC are hardly affected in rpt4R mutant yet are inhibited in rpt2RF mutant. Together, we find that equivalent mutations in RPT4 and RPT2 result in different phenotypes. The Rpt4 mutation is manifested in ERAD defects, whereas the Rpt2 mutation is manifested downstream, in global proteasomal activity. Accordingly, rpt4R strain is particularly sensitive to ER stress and exhibits an activated unfolded protein response, whereas rpt2RF strain is sensitive to general stress. Further characterization of Rpt4 involvement in ERAD reveals that it participates in CPY*-HA dislocation, a function previously attributed to p97/Cdc48, another AAA-ATPase essential for ERAD of CPY*-HA but dispensable for proteasomal degradation of DeltassCPY*-GFP. Pointing to Cdc48 and Rpt4 overlapping functions, excess Cdc48 partially restores impaired ERAD in rpt4R, but not in rpt2RF. We discuss models for Cdc48 and Rpt4 cooperation in ERAD.  相似文献   

17.
Secretory protein folding is monitored by endoplasmic reticulum (ER) quality control mechanisms. Misfolded proteins are retained and targeted to ER-associated degradation (ERAD) pathways. At their core are E3 ubiquitin ligases, which organize factors that recognize, ubiquitinate, and translocate substrates. Of these, we report that the Hrd1 complex manages three distinct substrate classes. A core complex is required for all classes and is sufficient for some membrane proteins. The accessory factors Usa1p and Der1p adapt the complex to process luminal substrates. Their integration is sufficient to process molecules bearing glycan-independent degradation signals. The presence of Yos9p extends the substrate range by mediating the recognition of glycan-based degradation signals. This modular organization enables the Hrd1 complex to recognize topologically diverse substrates. The Hrd1 system does not directly evaluate the folding state of polypeptides. Instead, it does so indirectly, by recognizing specific embedded signals displayed upon misfolding.  相似文献   

18.
The process of endoplasmic reticulum-associated degradation (ERAD) involved in the degradation of misfolded N-linked glycoproteins utilizes Cdc48p which extracts misfolded glycoproteins from the lumen to the cytosol to present them for deglycosylation and degradation. Pkc1p has been identified as a component of the ERAD pathway, because deletion of the pkc1 gene impairs ERAD and causes accumulation of CPY* in the lumen of the ER, most probably because of the mislocalization of Cdc48p. In addition, we show that Cdc48p interacts in the cytosol with the deglycosylation enzyme, PNGase, only when Cdc48p is associated with a misfolded glycoprotein.  相似文献   

19.
Misfolded proteins in the endoplasmic reticulum (ER) are exported to the cytosol for degradation by the proteasome in a process known as ER-associated degradation (ERAD). CPY* is a well characterized ERAD substrate whose degradation is dependent upon the Hrd1 complex. However, although the functions of some of the components of this complex are known, the nature of the protein dislocation channel remains obscure. Sec61p has been suggested as an obvious candidate because of its role as a protein-conducting channel through which polypeptides are initially translocated into the ER. However, it has not yet been possible to functionally dissect any role for Sec61p in dislocation from its essential function in translocation. By changing the translocation properties of a series of novel ERAD substrates, we are able to separate these two events and find that functional Sec61p is essential for the ERAD-L pathway.  相似文献   

20.
Endoplasmic reticulum-associated degradation (ERAD) disposes of aberrant proteins in the secretory pathway. Protein substrates of ERAD are dislocated via the Sec61p translocon from the endoplasmic reticulum to the cytosol, where they are ubiquitinated and degraded by the proteasome. Since the Sec61p channel is also responsible for import of nascent proteins, this bidirectional passage should be coordinated, probably by molecular chaperones. Here we implicate the cytosolic chaperone AAA-ATPase p97/Cdc48p in ERAD. We show the association of mammalian p97 and its yeast homologue Cdc48p in complexes with two respective ERAD substrates, secretory immunoglobulin M in B lymphocytes and 6myc-Hmg2p in yeast. The membrane 6myc-Hmg2p as well as soluble lumenal CPY*, two short-lived ERAD substrates, are markedly stabilized in conditional cdc48 yeast mutants. The involvement of Cdc48p in dislocation is underscored by the accumulation of ERAD substrates in the endoplasmic reticulum when Cdc48p fails to function, as monitored by activation of the unfolded protein response. We propose that the role of p97/Cdc48p in ERAD, provided by its potential unfoldase activity and multiubiquitin binding capacity, is to act at the cytosolic face of the endoplasmic reticulum and to chaperone dislocation of ERAD substrates and present them to the proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号