首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ANGUSTIFOLIA (AN) is the first C-terminal binding protein (CtBP) gene from plants and controls leaf width and pattern of trichome branching in Arabidopsis thaliana (L.) Heynh. We characterized an ortholog of AN from Ipomoea nil (L.) Roth (Japanese morning glory) and designated it Ipomoea nil's AN (IAN). IAN is a single-copy gene in the genome and is expressed ubiquitously in various organs of I. nil. IAN contains not only a D2-HDH motif, which is highly conserved within the CtBP family, but also LXCXE, NLS and PEST motifs, which are specific to the AN subfamily. The expression of IAN cDNA driven by the cauliflower mosaic virus 35S promoter restored a defect in leaf expansion in the leaf width direction in the angustifolia-1 (an-1) mutant of Arabidopsis, suggesting that IAN retains a common function with AN. In contrast, the complementation by IAN of a defect in the trichome branching pattern on the leaf surface of the an-1 mutant was less effective than that observed for leaf shape. These results suggest that the mechanisms by which AN regulates leaf width and trichome branching are separable.  相似文献   

2.
3.
Mathur J  Chua NH 《The Plant cell》2000,12(4):465-478
The single-cell trichomes in wild-type Arabidopsis are either unbranched or have two to five branches. Using transgenic Arabidopsis plants expressing a green fluorescent protein-microtubule-associated protein4 fusion protein, which decorates the microtubular cytoskeleton, we observed that during trichome branching, microtubules reorient with respect to the longitudinal growth axis. Considering branching to be a localized microtubule-dependent growth reorientation event, we investigated the effects of microtubule-interacting drugs on branch induction in trichomes. In unbranched trichomes of the mutant stichel, a change in growth directionality, closely simulating branch initiation, could be elicited by a short treatment with paclitaxel, a microtubule-stabilizing drug, but not with microtubule-disrupting drugs. The growth reorientation appeared to be linked to increased microtubule stabilization and to aster formation in the treated trichomes. Taxol-induced microtubule stabilization also led to the initiation of new branch points in the zwichel mutant of Arabidopsis, which is defective in a kinesin-like microtubule motor protein and possesses trichomes that are less branched. Our observations suggest that trichome cell branching in Arabidopsis might be mediated by transiently stabilized microtubular structures, which may form a component of a multiprotein complex required to reorient freshly polymerizing microtubules into new growth directions.  相似文献   

4.
Arabidopsis thaliana trichomes provide an attractive model system to dissect molecular processes involved in the generation of shape and form in single cell morphogenesis in plants. We have used transgenic Arabidopsis plants carrying a GFP-talin chimeric gene to analyze the role of the actin cytoskeleton in trichome cell morphogenesis. We found that during trichome cell development the actin microfilaments assumed an increasing degree of complexity from fine filaments to thick, longitudinally stretched cables. Disruption of the F-actin cytoskeleton by actin antagonists produced distorted but branched trichomes which phenocopied trichomes of mutants belonging to the 'distorted' class. Subsequent analysis of the actin cytoskeleton in trichomes of the distorted mutants, alien, crooked, distorted1, gnarled, klunker and wurm uncovered actin organization defects in each case. Treatments of wild-type seedlings with microtubule-interacting drugs elicited a radically different trichome phenotype characterized by isotropic growth and a severe inhibition of branch formation; these trichomes did not show defects in actin cytoskeleton organization. A normal actin cytoskeleton was also observed in trichomes of the zwichel mutant which have reduced branching. ZWICHEL, which was previously shown to encode a kinesin-like protein is thought to be involved in microtubule-linked processes. Based on our results we propose that microtubules establish the spatial patterning of trichome branches whilst actin microfilaments elaborate and maintain the overall trichome pattern during development.  相似文献   

5.
The dynamic actin cytoskeleton is important for a myriad of cellular functions, including intracellular transport, cell division, and cell shape. An important regulator of actin polymerization is the actin-related protein2/3 (Arp2/3) complex, which nucleates the polymerization of new actin filaments. In animals, Scar/WAVE family members activate Arp2/3 complex-dependent actin nucleation through interactions with Abi1, Nap1, PIR121, and HSCP300. Mutations in the Arabidopsis thaliana genes encoding homologs of Arp2/3 complex subunits PIR121 and NAP1 all show distorted trichomes as well as additional epidermal cell expansion defects, suggesting that a Scar/WAVE homolog functions in association with PIR121 and NAP1 to activate the Arp2/3 complex in Arabidopsis. In a screen for trichome branching defects, we isolated a mutant that showed irregularities in trichome branch positioning and expansion. We named this gene IRREGULAR TRICHOME BRANCH1 (ITB1). Positional cloning of the ITB1 gene showed that it encodes SCAR2, an Arabidopsis protein related to Scar/WAVE. Here, we show that itb1 mutants display cell expansion defects similar to those reported for the distorted class of trichome mutants, including disruption of actin and microtubule organization. In addition, we show that the scar homology domain (SHD) of ITB1/SCAR2 is necessary and sufficient for in vitro binding to Arabidopsis BRK1, the plant homolog of HSPC300. Overexpression of the SHD in transgenic plants causes a dominant negative phenotype. Our results extend the evidence that the Scar/WAVE pathway of Arp2/3 complex regulation exists in plants and plays an important role in regulating cell expansion.  相似文献   

6.
7.
8.
9.
Kirik A  Ehrhardt DW  Kirik V 《The Plant cell》2012,24(3):1158-1170
Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B' subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation.  相似文献   

10.
Arabidopsis thaliana tortifolía2 carries a point mutation in α-tubulin 4 and shows aberrant cortical microtubule dynamics. The microtubule defect of tortifolia2 leads to overbranching and right-handed helical growth in the single-celled leaf trichomes. Here, we use tortifolia2 to further our understanding of microtubules in plant cell differentiation. Trichomes at the branching stage show an apical ring of cortical microtubules, and our analyses support that this ring is involved in marking the prospective branch site. tortifolia2 showed ectopic microtubule bundles at this stage, consistent with a function for microtubules in selecting new branch sites. Overbranching of tortifolia2 required the C-terminal binding protein/brefeldin A-ADP ribosylated substrate protein ANGUSTIFOLIA1, and our results indicate that the angustifolia1 mutant is hypersensitive to alterations in microtubule dynamics. To analyze whether actin and microtubules cooperate in the trichome cell expansion process, we generated double mutants of tortifolia2 with distorted1, a mutant that is defective in the actin-related ARP2/3 complex. The double mutant trichomes showed a complete loss of growth anisotropy, suggesting a genetic interaction of actin and microtubules. Green fluorescent protein labeling of F-actin or microtubules in tortifolia2 distorted1 double mutants indicated that F-actin enhances microtubule dynamics and enables reorientation. Together, our results suggest actin-dependent and -independent functions of cortical microtubules in trichome differentiation.  相似文献   

11.
12.
13.
Endoreplication, also called endoreduplication, is a modified cell cycle in which DNA is repeatedly replicated without subsequent cell division. Endoreplication is often associated with increased cell size and specialized cell shapes, but the mechanism coordinating DNA content with shape and size remains obscure. Here we identify the product of the BRANCHLESS TRICHOMES (BLT) gene, a protein of hitherto unknown function that has been conserved throughout angiosperm evolution, as a link in coordinating cell shape and nuclear DNA content in endoreplicated Arabidopsis trichomes. Loss-of-function mutations in BLT were found to enhance the multicellular trichome phenotype of mutants in the SIAMESE (SIM) gene, which encodes a repressor of endoreplication. Epistasis and overexpression experiments revealed that BLT encodes a key regulator of trichome branching. Additional experiments showed that BLT interacts both genetically and physically with STICHEL, another key regulator of trichome branching. Although blt mutants have normal trichome DNA content, overexpression of BLT results in an additional round of endoreplication, and blt mutants uncouple DNA content from morphogenesis in mutants with increased trichome branching, further emphasizing its role in linking cell shape and endoreplication.  相似文献   

14.
The Arabidopsis thaliana trichome development is a model system for understanding various aspects of plant cell development and differentiation. The C2H2 zinc finger proteins GIS, GIS2, and ZFP8 play important roles in controlling trichome initiation. In our recent study, we reported that a new C2H2 zinc finger protein, ZINC FINGER PROTEIN 5 (ZFP5), controls trichome cell development through GA signaling. ZFP5 acts upstream of GIS gene family and key trichome initiation regulators, and ZFP8 is the direct target gene of ZFP5. Here we show that ZFP5 encodes a protein functionally equivalent to GIS and GIS2 in controlling trichome initiation. Furthermore, similar to GIS2, ZFP5 is not involved in trichome branching.  相似文献   

15.
Rnd proteins comprise a branch of the Rho family of small GTP-binding proteins, which have been implicated in rearrangements of the actin cytoskeleton and microtubule dynamics. Particularly in the nervous system, Rnd family proteins regulate neurite formation, dendrite development and axonal branching. A secreted form of the co-chaperone Stress-Inducible Protein 1 (STI1) has been described as a prion protein partner that is involved in several processes of the nervous system, such as neurite outgrowth, neuroprotection, astrocyte development, and the self-renewal of neural progenitor cells. We show that cytoplasmic STI1 directly interacts with the GTPase Rnd1. This interaction is specific for the Rnd1 member of the Rnd family. In the COS collapse assay, overexpression of STI1 prevents Rnd1–plexin-A1-mediated cytoskeleton retraction. In PC-12 cells, overexpression of STI1 enhances neurite outgrowth in cellular processes initially established by Rnd1. Therefore, we propose that STI1 participates in Rnd1-induced signal transduction pathways that are involved in the dynamics of the actin cytoskeleton.  相似文献   

16.
Actin nucleation facilitated by the ARP2/3 complex plays a central role in plant cell shape development. The molecular characterization of the distorted class of trichome mutants has recently revealed the SCAR/WAVE complex as an essential upstream activator of ARP2/3 function in plants. The SCAR/WAVE complex is conserved from animals to plants and, generally, is composed of the five subunits SCAR/WAVE, PIR121, NAP125, BRICK and ABI. In plants, four of the five subunits have been shown to participate in trichome and pavement morphogenesis. Plant ABI‐like proteins (ABIL), however, which constitute a small four‐member protein family in Arabidopsis thaliana, have not been characterized functionally, so far. Here we demonstrate that microRNA knock‐down of the ABIL3 gene leads to a distorted trichome phenotype reminiscent of ARP2/3 mutant phenotypes and consistent with a crucial role of the ABIL3 protein in an ARP2/3‐activating SCAR/WAVE complex. In contrast to ARP2/3 mutants, however, the ABIL3 knock‐down stimulated cell elongation in the root, indicating distinct functions of the ABIL3 protein in different tissues. Furthermore, we provide evidence that ABIL3 associates with microtubules in vivo, opening up the intriguing possibility that ABI‐like proteins have a function in linking SCAR/WAVE‐dependent actin nucleation with organization of the microtubule cytoskeleton.  相似文献   

17.
The control of the directionality of cell expansion was investigated using a class of eight genes, the so-called DISTORTED (DIS) genes, that are required for proper expansion of leaf trichomes in Arabidopsis thaliana. By tracing the separation of latex beads placed on the trichome surface, we demonstrate that trichomes grow by diffuse rather than tip growth, and that in dis mutants deviations from the normal orientation of growth can occur in all possible directions. We could not detect any differences in intracellular organization between wild-type and dis-group mutants by electron microscopy. The analysis of double mutants showed that although the expression of the dis phenotype is generally independent of branching and endoreduplication, dis mutations act synthetically in combination lesions in the ZWI gene, which encodes a kinesin motor protein. Using a MAP4:GFP marker line, we show that the organization of cortical microtubules is affected in dis-group mutants. The finding that most dis-group mutants have actin defects suggested to us that actin is involved in organizing the orientation of microtubules. By analyzing the microtubule organization in plants treated with drugs that bind to actin, we verified that actin is involved in the positioning of cortical microtubules and thereby in plant cell expansion.  相似文献   

18.
Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development   总被引:5,自引:0,他引:5  
Plant cells employ the actin cytoskeleton to stably position organelles, as tracks for long distance transport, and to reorganize the cytoplasm in response to developmental and environmental cues. While diverse classes of actin binding proteins have been implicated in growth control, the mechanisms of cytoskeletal reorganization and the cellular functions of specific actin filament arrays are unclear. Arabidopsis trichome morphogenesis includes distinct requirements for the microtubule and actin filament cytoskeletons. It also is a genetically tractable process that is providing new knowledge about cytoskeleton function in plants. The "distorted group" of mutants defines a class of at least eight genes that are required during the actin-dependent phase of trichome growth. Using map-based cloning and a candidate gene approach, we identified mutations in ARP3 (ATARP3) and ARP2 (ATARP2) genes as the cause of the distorted1 (dis1) and wurm (wrm) phenotypes, respectively. ARP2 and ARP3 are components of the evolutionarily conserved ARP2/3 complex that nucleates actin filament polymerization [3]. Mutations in DIS1 and WRM caused severe trichome growth defects but had relatively mild effects on shoot development. DIS1 rescued the phenotype of Deltaarp3 when overexpressed in S. cerevisiae. Developing dis1 trichomes had defects in cytoplasmic actin bundle organization and reduced relative amounts of cytoplasmic actin filaments in developing branches.  相似文献   

19.
An L  Zhou Z  Su S  Yan A  Gan Y 《Plant & cell physiology》2012,53(2):457-469
Cell differentiation generally corresponds to the cell cycle, typically forming a non-dividing cell with a unique differentiated morphology, and Arabidopsis trichome is an excellent model system to study all aspects of cell differentiation. Although gibberellic acid is reported to be involved in trichome branching in Arabidopsis, the mechanism for such signaling is unclear. Here, we demonstrated that GLABROUS INFLORESCENCE STEMS (GIS) is required for the control of trichome branching through gibberellic acid signaling. The phenotypes of a loss-of-function gis mutant and an overexpressor showed that GIS acted as a repressor to control trichome branching. Our results also show that GIS is not required for cell endoreduplication, and our molecular and genetic study results have shown that GIS functions downstream of the key regulator of trichome branching, STICHEL (STI), to control trichome branching through the endoreduplication-independent pathway. Furthermore, our results also suggest that GIS controls trichome branching in Arabidopsis through two different pathways and acts either upstream or downstream of the negative regulator of gibbellic acid signaling SPINDLY (SPY).  相似文献   

20.
Drebrin is a cytoskeleton‐associated protein which can interact with both actin filaments and the tips of microtubules. Its roles have been studied mostly in dendrites, and the functions of drebrin in axons are less well understood. In this study, we analyzed the role of drebrin, through shRNA‐mediated depletion and overexpression, in the collateral branching of chicken embryonic sensory axons. We report that drebrin promotes the formation of axonal filopodia and collateral branches in vivo and in vitro. Live imaging of cytoskeletal dynamics revealed that drebrin promotes the formation of filopodia from precursor structures termed axonal actin patches. Endogenous drebrin localizes to actin patches and depletion studies indicate that drebrin contributes to the development of patches. In filopodia, endogenous drebrin localizes to the proximal portion of the filopodium. Drebrin was found to promote the stability of axonal filopodia and the entry of microtubule plus tips into axonal filopodia. The effects of drebrin on the stabilization of filopodia are independent of its effects on promoting microtubule targeting to filopodia. Inhibition of myosin II induces a redistribution of endogenous drebrin distally into filopodia, and further increases branching in drebrin overexpressing neurons. Finally, a 30 min treatment with the branch‐inducing signal nerve growth factor increases the levels of axonal drebrin. This study determines the specific roles of drebrin in the regulation of the axonal cytoskeleton, and provides evidence that drebrin contributes to the coordination of the actin and microtubule cytoskeleton during the initial stages of axon branching. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1092–1110, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号