首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in situ structure of human cardiac troponin C (hcTnC) has been studied with site-directed, spin labelling, electron paramagnetic resonance (SDSL-EPR). Analysis of the in situ structures of hcTnC is essential for elucidating the molecular mechanism behind its Ca(2+)-sensitive regulation. We prepared two hcTnC mutants (C35S and C84S) containing one native cysteine residue (84 and 35, respectively) for spin labelling. The mutants were labelled with a methane thiosulfonate spin label (MTSSL) and the TnC was reconstituted into permeabilized muscle fibres. The mobility of Cys84-MTSSL changed markedly after addition of Ca2+, while that of the Cys35 residue did not change in the monomer state or in fibres. The rotational correlation time of Cys84-MTSSL decreased from 32ns to 13ns upon Ca(2+)-binding in the monomer state, whereas in fibres the spectrum of Cys84-MTSSL was resolved into mobile (16ns) and immobile (35ns) components and the addition of Ca2+ increased the immobile component. Moreover, the accessibility of Cys84-MTSSL to molecular oxygen increased slightly in the presence of Ca2+. These data suggest that Cys35 remains in the same location regardless of the addition of Ca2+, whereas Cys84 is located at the position that interacts with B and C helices of hcTnC and interacts with troponin I (TnI) at high concentrations of Ca2+. We determined the distances between Cys35 and Cys84 by measuring pulsed electron-electron double resonance spectra. The distances were 26.0 angstroms and 27.2 angstroms in the monomer state and in fibres, respectively, and the addition of Ca2+ decreased the distance to 23.2 angstroms in fibres but only slightly in the monomer state, showing that Ca2+ binding to the N-domain of hcTnC induced a larger structural change in muscle fibres than in the monomer state.  相似文献   

2.
The dependences of thin filament sliding velocity on the calcium concentration in solution (pCa 5 to 8) for rabbit cardiac myosin isoforms V1 and V3 were determined in a set of experiments using an in vitro motility assay with a reconstructed thin filament. The constructed pCa-versus-velocity curves had a sigmoid shape. It was demonstrated that the sliding velocity of regulated thin filament at the saturating calcium concentration (pCa 5) did not differ from the actin sliding velocity for each isoform. The determined values of Hill’s cooperativity coefficient for isomyosins V1 and V3 were 1.04 and 0.75, respectively. It was demonstrated that isomyosin V3 was more sensitive to calcium as compared with isomyosin V1. Using the same assay, the dependence of thin filament sliding velocity on the concentration of the actin-binding protein α-actinin (analog of a force-velocity dependence) was determined at the saturating calcium concentration for each myosin isoform (V1 and V3). The results suggest that the calcium regulation of V1 and V3 contractile activity follows different mechanisms.  相似文献   

3.
The regulatory function of cardiac troponin I (cTnI) involves three important contiguous regions within its C-domain: the inhibitory region (IR), the regulatory region (RR), and the mobile domain (MD). Within these regions, the dynamics of regional structure and kinetics of transitions in dynamic state are believed to facilitate regulatory signaling. This study was designed to use fluorescence anisotropy techniques to acquire steady-state and kinetic information on the dynamic state of the C-domain of cTnI in the reconstituted thin filament. A series of single cysteine cTnI mutants was generated, labeled with the fluorophore tetramethylrhodamine, and subjected to various anisotropy experiments at the thin filament level. The structure of the IR was found to be less dynamic than that of the RR and the MD, and Ca(2+) binding induced minimal changes in IR dynamics: the flexibility of the RR decreased, whereas the MD became more flexible. Anisotropy stopped-flow experiments showed that the kinetics describing the transition of the MD and RR from the Ca(2+)-bound to the Ca(2+)-free dynamic states were significantly faster (53.2-116.8 s(-1)) than that of the IR (14.1 s(-1)). Our results support the fly casting mechanism, implying that an unstructured MD with rapid dynamics and kinetics plays a critical role to initiate relaxation upon Ca(2+) dissociation by rapidly interacting with actin to promote the dissociation of the RR from the N-domain of cTnC. In contrast, the IR responds to Ca(2+) signals with slow structural dynamics and transition kinetics. The collective findings suggested a fourth state of activation.  相似文献   

4.
To investigate the mechanism underlying postischemic contractile dysfunction (myocardial stunning) we examined myocardial sulfhydryl group content, myofibrillar Ca2+-dependent Mg2+-ATPase activity and protein profile after global ischemia and reperfusion. The Langerdorff-perfused rabbit hearts were subjected to 15 min normothermic ischemia followed by 10 min reperfusion and myofibrils were isolated from homogenates of left ventricular tissues. Depressed contractile function during reperfusion was accompanied by a decrease in total sulfhydryl group content. However, myofibrillar protein profile was unchanged and Western immunoblotting analysis showed no significant differences in troponin I immunoreactive bands between control and stunned hearts. Likewise, myofibrillar Mg2+-ATPase activity was unaltered after ischemia and reperfusion. We conclude that myocardial stunning is not caused by altered myofibrillar function and protein degradation but may be partly due to the oxidative modification of as yet undefined proteins.  相似文献   

5.
We present here the solution structure for the bisphosphorylated form of the cardiac N-extension of troponin I (cTnI(1-32)), a region for which there are no previous high-resolution data. Using this structure, the X-ray crystal structure of the cardiac troponin core, and uniform density models of the troponin components derived from neutron contrast variation data, we built atomic models for troponin that show the conformational transition in cardiac troponin induced by bisphosphorylation. In the absence of phosphorylation, our NMR data and sequence analyses indicate a less structured cardiac N-extension with a propensity for a helical region surrounding the phosphorylation motif, followed by a helical C-terminal region (residues 25-30). In this conformation, TnI(1-32) interacts with the N-lobe of cardiac troponin C (cTnC) and thus is positioned to modulate myofilament Ca2+-sensitivity. Bisphosphorylation at Ser23/24 extends the C-terminal helix (residues 21-30) which results in weakening interactions with the N-lobe of cTnC and a re-positioning of the acidic amino terminus of cTnI(1-32) for favorable interactions with basic regions, likely the inhibitory region of cTnI. An extended poly(L-proline)II helix between residues 11 and 19 serves as the rigid linker that aids in re-positioning the amino terminus of cTnI(1-32) upon bisphosphorylation at Ser23/24. We propose that it is these electrostatic interactions between the acidic amino terminus of cTnI(1-32) and the basic inhibitory region of troponin I that induces a bending of cTnI at the end that interacts with cTnC. This model provides a molecular mechanism for the observed changes in cross-bridge kinetics upon TnI phosphorylation.  相似文献   

6.
The in situ structural coupling between the cardiac troponin (cTn) Ca2+-sensitive regulatory switch (CRS) and strong myosin cross-bridges was investigated using Förster resonance energy transfer (FRET). The double cysteine mutant cTnC(T13C/N51C) was fluorescently labeled with the FRET pair 5-(iodoacetamidoethyl)aminonaphthelene-1-sulfonic acid (IAEDENS) and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) and then incorporated into detergent skinned left ventricular papillary fiber bundles. Ca2+ titrations of cTnC(T13C/N51C)AEDENS/DDPM-reconstituted fibers showed that the Ca2+-dependence of the opening of the N-domain of cTnC (N-cTnC) statistically matched the force−Ca2+ relationship. N-cTnC opening still occurred steeply during Ca2+ titrations in the presence of 1 mM vanadate, but the maximal extent of ensemble-averaged N-cTnC opening and the Ca2+-sensitivity of the CRS were significantly reduced. At nanomolar, resting Ca2+ levels, treatment with ADP·Mg in the absence of ATP caused a partial opening of N-cTnC. During subsequent Ca2+ titrations in the presence of ADP·Mg and absence of ATP, further N-cTnC opening was stimulated as the CRS responded to Ca2+ with increased Ca2+-sensitivity and reduced steepness. These findings supported our hypothesis here that strong cross-bridge interactions with the cardiac thin filament exert a Ca2+-sensitizing effect on the CRS by stabilizing the interaction between the exposed hydrophobic patch of N-cTnC and the switch region of cTnI.  相似文献   

7.
There is increasing evidence to suggest that Ca2+-calmodulin dependent protein kinase (CaMK) regulates the sarcoplasmic reticulum (SR) function and thus plays an important role in modulating the cardiac performance. Because intracellular Ca2+-overload is an important factor underlying cardiac dysfunction in a heart disease, its effect on SR CaMK was examined in the isolated rat heart preparations. Ca2+-depletion for 5 min followed by Ca2+-repletion for 30 min, which is known to produce intracellular Ca2+-overload, was observed to attenuate cardiac function as well as SR Ca2+-uptake and Ca2+-release activities. Attenuated SR function in the heart was associated with reduced CaMK phosphorylation of the SR Ca2+-cycling proteins such as Ca2+-release channel, Ca2+-pump ATPase, and phospholamban, decreased CaMK activity, and depressed levels of SR Ca2+-cycling proteins. These results indicate that alterations in cardiac performance and SR function following the occurrence of intracellular Ca2+-overload may partly be due to changes in the SR CaMK activity.  相似文献   

8.
Summary The purpose of this study was to examine the effect of three classes of Ca2+ antagonists, diltiazem, verapamil and nifedipine on Na+-Ca2+ exchange mechanism in the sarcolemmal vesicles isolated from canine heart. Na+-Ca2+ exchange and Ca2+ pump (ATP-dependent Ca2+ uptake) activities were assessed using the Millipore filtration technique. sarcolemmal vesicles used in this study are estimated to consist of several subpopulations wherein 23% are inside-out and 55% are right side-out sealed vesicles in orientation. The affect of each Ca2+ antagonist on the Na+-dependent Ca2+ uptake was studied in the total population of sarcolemmal vesicles, in which none of the agents depressed the initial rate of Ca2+ uptake until concentrations of 10 M were incubated in the incubation medium. However, when sarcolemmal vesicles were preloaded with Ca2+ via ATP-dependent Ca2+ uptake, cellular Ca2+ influx was depressed only by verapamil (28%) at 1 M in the efflux medium with 8 mM Na+. Furthermore, inhibition of Ca2+ efflux by verapamil was more pronounced in the presence of 16 mM Na+ in the efflux medium. The order of inhibition was; verapamil > diltiazem > nifedipine. These results indicate that same forms of Ca2+-antagonist drugs may affect the Na+-Ca2+ exchange mechanism in the cardiac sarcolemmal vesicles and therefore we suggest this site of action may contribute to their effects on the myocardium.  相似文献   

9.
The contraction of adult mammalian ventricular cardiomyocytes is triggered by the influx of Ca2+ ions through sarcolemmal L-type Ca2+ channels (LCCs). However, the gating properties of unitary LCCs under physiologic conditions have remained elusive. Towards this end, we investigated the voltage-dependence of the gating kinetics of unitary LCCs, with a physiologic concentration of Ca2+ ions permeating the channel. Unitary LCC currents were recorded with 2 mM external Ca2+ ions (in the absence of LCC agonists), using cell-attached patches on K-depolarized adult rat ventricular myocytes. The voltage-dependence of the peak probability of channel opening (Po vs. Vm) displayed a maximum value of 0.3, a midpoint of −12 mV, and a slope factor of 8.5. The maximum value for Po of the unitary LCC was significantly higher than previously assumed, under physiologic conditions. We also found that the mean open dwell time of the unitary LCC increased twofold with depolarization, ranging from 0.53 ± 0.02 ms at −30 mV to 1.08 ± 0.03 ms at 0 mV. The increase in mean LCC open time with depolarization counterbalanced the decrease in the single LCC current amplitude; the latter due to the decrease in driving force for Ca2+ ion entry. Thus, the average amount of Ca2+ ions entering through an individual LCC opening (∼300-400 ions) remained relatively constant over this range of potentials. These novel results establish the voltage-dependence of unitary LCC gating kinetics using a physiologic Ca2+ ion concentration. Moreover, they provide insight into local Ca2+-induced Ca2+ release and a more accurate basis for mathematical modeling of excitation-contraction coupling in cardiac myocytes.  相似文献   

10.
The paramagnetic relaxation reagent, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO), was used to probe the surface exposure of methionine residues of recombinant cardiac troponin C (cTnC) in the absence and presence of Ca2+ at the regulatory site (site II), as well as in the presence of the troponin I inhibitory peptide (cTnIp). Methyl resonances of the 10 Met residues of cTnC were chosen as spectral probes because they are thought to play a role in both formation of the N-terminal hydrophobic pocket and in the binding of cTnIp. Proton longitudinal relaxation rates (R1's) of the [13C-methyl] groups in [13C-methyl]Met-labeled cTnC(C35S) were determined using a T1 two-dimensional heteronuclear single- and multiple-quantum coherence pulse sequence. Solvent-exposed Met residues exhibit increased relaxation rates from the paramagnetic effect of HyTEMPO. Relaxation rates in 2Ca(2+)-loaded and Ca(2+)-saturated cTnC, both in the presence and absence of HyTEMPO, permitted the topological mapping of the conformational changes induced by the binding of Ca2+ to site II, the site responsible for triggering muscle contraction. Calcium binding at site II resulted in an increased exposure of Met residues 45 and 81 to the soluble spin label HyTEMPO. This result is consistent with an opening of the hydrophobic pocket in the N-terminal domain of cTnC upon binding Ca2+ at site II. The binding of the inhibitory peptide cTnIp, corresponding to Asn 129 through Ile 149 of cTnI, to both 2Ca(2+)-loaded and Ca(2+)-saturated cTnC was shown to protect Met residues 120 and 157 from HyTEMPO as determined by a decrease in their measured R1 values. These results suggest that in both the 2Ca(2+)-loaded and Ca(2+)-saturated forms of cTnC, cTnIp binds primarily to the C-terminal domain of cTnC.  相似文献   

11.
文章研究了Ca2 对synaptophysin Ⅰ(Syp Ⅰ)蛋白的脂筏分布的影响.研究结果证明,Syp Ⅰ蛋白的脂筏分布明显受到Ca2 的特异性调控.在无Ca2 的条件下,Syp Ⅰ为典型的非脂筏蛋白;而在低浓度Ca2 的条件下,Syp Ⅰ可以转变为脂筏结合蛋白.文章还研究了Syp Ⅰ在Ca2 的诱导下进入脂筏膜微区的分子机制.研究结果表明,Syp Ⅰ在Ca2 的诱导下进入脂筏这一现象依赖于其C末端胞质区,确定了Syp Ⅰ的胞质区在这种调节中的重要性.  相似文献   

12.
13.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

14.
We investigated the effects of changes in luminal [Ca2+] on the gating of native andpurified sheep cardiac sarcoplasmic reticulum (SR) Ca2+-release channels reconstituted intoplanar phospholipid bilayers. The open probability (P o )of channels activated solely by cytosolic Ca2+ was greater at positive than negative holding potentials. Channels activatedsolely by 10 m cytosolic Ca2+ exhibited no change in steady-stateP o or in the relationship betweenP o and voltage when the luminal[Ca2+] was increased from nanomolar to millimolar concentrations. In the absence of activating concentrationsof cytosolic Ca2+, the channel can be activated by the phosphodiesterase inhibitor sulmazole (AR-L 115BS). However, cytosolicCa2+-independent activation of the channel by sulmazole requires luminal Ca2+. In the presence ofsulmazole, at picomolar luminal [Ca2+] the channel remains completely closed. Increasing the luminal [Ca2+]to millimolar levels markedly increases the P o via an increase in theduration of open events. The P o and duration of the sulmazole-activated, luminalCa2+-dependent channel openings are voltage dependent. In the presence of micromolar luminal Ca2+, theP o and duration of sulmazole-activated openings are greater atnegative voltages. However, at millimolar luminal [Ca2+], long openings are also observed at positive voltages and theP o appears to be similar at positive and negative voltages. Our findings indicate thatthe regulation of channel gating by luminal Ca2+ depends on the mechanism of channel activation.We would like to thank Dr Allan Lindsay for the preparation of the purified SR Ca2+-release channels. This work was supported by the British Heart Foundation.  相似文献   

15.

Aims

We have previously demonstrated that propyl gallate has a Ca2 + sensitizing effect on the force generation in membrane-permeabilized (skinned) cardiac muscle fibers. However, in vivo beneficial effects of propyl gallate as a novel Ca2 + sensitizer remain uncertain. In the present study, we aim to explore in vivo effects of propyl gallate.

Main methods

We compared effects of propyl gallate on ex vivo intact cardiac muscle fibers and in vivo hearts in healthy mice with those of pimobendan, a clinically used Ca2 + sensitizer. The therapeutic effect of propyl gallate was investigated using a mouse model of dilated cardiomyopathy (DCM) with reduced myofilament Ca2 + sensitivity due to a deletion mutation ΔK210 in cardiac troponin T.

Key findings

Propyl gallate, as well as pimobendan, showed a positive inotropic effect. Propyl gallate slightly increased the blood pressure without changing the heart rate in healthy mice, whereas pimobendan decreased the blood pressure probably through vasodilation via inhibition of phosphodiesterase and increased the heart rate. Propyl gallate prevented cardiac remodeling and systolic dysfunction and significantly improved the life-expectancy of knock-in mouse model of DCM with reduced myofilament Ca2 + sensitivity due to a mutation in cardiac troponin T. On the other hand, gallate, a similarly strong antioxidant polyphenol lacking Ca2 + sensitizing action, had no beneficial effects on the DCM mice.

Significance

These results suggest that propyl gallate might be useful for the treatment of inherited DCM caused by a reduction in the myofilament Ca2 + sensitivity.  相似文献   

16.
Regulation of cardiac sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase   总被引:2,自引:0,他引:2  
Summary The two high affinity calcium binding sites of the cardiac (Ca2+ + Mg2+)-ATPase have been identified with the use of Eu3+. Eu3+ competes for the two high affinity calcium sites on the enzyme. With the use of laser-pulsed fluorescent spectroscopy, the environment of the two sites appear to be heterogeneous and contain different numbers of H2O molecules coordinated to the ion. The ion appears to be occluded even further in the presence of ATP. Using non-radiative energy transfer studies, we were able to estimate the distance between the two Ca2+ sites to be between 9.4 to 10.2 A in the presence of ATP. Finally, from the assumption that the calcium site must contain four carboxylic side chains to provide the 6–8 ligands needed to coordinate calcium, and based on our recently published data, we predict the peptidic backbone of the two sites.  相似文献   

17.
18.
Summary Calpain I purified from human erythrocyte cytosol activates both the ATP hydrolytic activity and the ATP-dependent Ca2+ transport function of the Ca2+-translocating ATPase solubilized and purified from the plasma membrane of human erythrocytes and reconstituted into phosphatidylcholine vesicles. Following partial proteolysis of the enzyme by calpain I, both the initial rates of calcium ion uptake and ATP hydrolysis were increased to near maximal levels similar to those obtained upon addition of calmodulin. The proteolytic activation resulted in the loss of further stimulation of the rates of Ca2+ translocation or ATP hydrolysis by calmodulin as well as an increase of the affinity of the enzyme for calcium ion. However, the mechanistic Ca2+/ATP stoichiometric ratio was not affected by the proteolytic treatment of the reconstituted Ca2+-translocating ATPase. The proteolytic activation of the ATP hydrolytic activity of the reconstituted enzyme could be largely prevented by calmodulin. Different patterns of proteolysis were obtained in the absence or in the presence of calmodulin during calpain treatment: the 136-kDa enzyme was transformed mainly into a 124-kDa active ATPase fragment in the absence of calmodulin, whereas a 127-kDa active ATPase fragment was formed in the presence of calmodulin. This study shows that calpain I irreversibly activates the Ca2+ translocation function of the Ca2+-ATPase in reconstituted proteoliposomes by producing a calmodulin-independent active enzyme fragment, while calmodulin antagonizes this activating effect by protecting the calmodulin-binding domain against proteolytic cleavage by calpain.  相似文献   

19.
The Na+/Ca2+ exchanger (NCX) is the primary Ca2+ extrusion mechanism in cardiomyocytes. To further investigate the role of NCX in excitation-contraction coupling and Ca2+ homeostasis, we created murine models with altered expression levels of NCX. Homozygous overexpression of NCX resulted in mild cardiac hypertrophy. Decline of the Ca2+ transient and relaxation of contraction were increased and the reverse mode of NCX was augmented. Overexpression also led to a higher susceptibility to ischemia-reperfusion injury and to a greater ability of NCX to trigger Ca2+-induced Ca2+ release. Furthermore, an increase in peak L-type Ca2+ current was observed suggesting a direct influence of NCX on L-type Ca2+ current. Whereas global knockout of NCX led to prenatal death, a recently generated cardiac-specific NCX knockout mouse was viable with surprisingly normal contractile properties. Expression levels of other Ca2+-handling proteins were not altered. Ca2+ influx in these animals is limited by a decrease of peak L-type Ca2+ current. An alternative Ca2+ efflux mechanism, presumably the plasma membrane Ca2+-ATPase, is sufficient to maintain Ca2+-homeostasis in the NCX knockout mice.  相似文献   

20.
In striated muscles contraction is regulated by the thin filament-based proteins, troponin consisting of three subunits (TnC, TnI, and TnT), and tropomyosin. Knowledge of in situ structures of these proteins is indispensable for elucidating this Ca(2+)-sensitive regulatory mechanism. We employed neutron scattering to investigate the structure of TnC within the thin filament, and found that TnC assumes extended dumbbell-like structures and moves toward the filament axis by binding of Ca(2+). Here, in order to obtain more detailed in situ structural information of TnC, neutron fiber diffraction measurements were performed. Sols of native thin filaments and the thin filaments containing deuterated TnC were prepared in (2)H(2)O. The oriented samples were obtained by placing these sols sealed in quartz capillaries with a diameter of 3 mm in a magnetic field of 18 Tesla. Neutron fiber diffraction patterns were obtained from these oriented samples in the absence and presence of Ca(2+). The patterns obtained showed strong equatorial diffraction due to the thin filaments, 59 A and 51 A layer-lines due to actin, and meridional reflections due to Tn-complex. Analysis of the meridional reflections due to Tn-complex with aid of model calculation showed that the angle between the thin filament axis and the long axis of TnC was estimated to be 67(+/-7) degrees and 49(+/-17) degrees , in the absence and presence of Ca(2+), respectively, suggesting that TnC, which assumes orientations rather perpendicular to the filament axis in the absence of Ca(2+), tilts toward the filament axis and the orientational and positional disorder increases by binding Ca(2+). It also showed that the relative position of the TnC moved by about 22 A by binding Ca(2+), and this apparent movement was concomitant with the movements of other Tn-subunits. This implies that by binding Ca(2+), significant structural rearrangements of Tn-subunits occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号