首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distribution density of the taste disks of the fungiform papillae in the frog tongue was larger at the proximal portion than at the apical and middle portions. The number of myelinated afferent nerve fibres and taste cells per cm2 area of the tongue increased in the order of proximal greater than middle greater than apical portion. The amplitudes of gustatory neural responses for 0.5 M NaCl, 0.5 M KCl, 0.5 M NH4Cl, 0.05 M CaCl2, 1 mM acetic acid and 1 mM quinine-HCl (Q-HCl) were significantly larger with lingual stimulation of the proximal region than with the stimulation of the apical region. With these stimuli the mean ratio of the apical response to the proximal response was 1.00:1.54. On the other hand, this ration with deionized water was 1.00:5.00. The mean magnitudes of receptor potentials in taste cells for 1 mM acetic acid and 10 mM Q-HCl were the same among the apical, middle and proximal portions of the tongue. The mean magnitudes of receptor potentials for 0.5 M NaCl were significantly larger at the apical portion than at the other portions, whereas those for deionized water tended to be the largest at the proximal portion. It is concluded that the larger magnitude of the gustatory neural responses at the proximal portion of the tongue is due to morphological and physiological properties of the taste organ.  相似文献   

2.
1. The effect of arginine vasopressin (AVP) on frog gustatory responses was investigated by recording integrated responses of the whole glossopharyngeal nerve by stimulation of the tongue with tastants. 2. After AVP (100 mUnits/ml) was perfused to the basolateral side of taste cells through the lingual artery, gustatory neural responses for NaCl and hydrochloric acid (HCl) stimuli were greatly enhanced, but the responses for CaCl2, quinine hydrochloride (Q-HCl) and galactose were not affected. 3. Three hours after the onset of AVP perfusion, the responses for NaCl and HCl increased to 260% and 270% of the respective controls. 4. The NaCl response which was insensitive to amiloride during normal saline perfusion became sensitive to amiloride during AVP perfusion. 5. When membrane-permeable 8-bromo-cyclic AMP (8-Br-cAMP, 0.1 mM) was perfused to the basolateral side of taste cells, the responses for NaCl and HCl decreased to 41 and 63% of the respective controls. 6. These results suggest that AVP may regulate the gustatory responses for monovalent salts and acids by a mechanism which is not necessary to activate adenylate cyclase.  相似文献   

3.
Parasympathetic nerve (PSN) innervates taste cells of the frog taste disk, and electrical stimulation of PSN elicited a slow hyperpolarizing potential (HP) in taste cells. Here we report that gustatory receptor potentials in frog taste cells are depressed by PSN-induced slow HPs. When PSN was stimulated at 30 Hz during generation of taste cell responses, the large amplitude of depolarizing receptor potential for 1 M NaCl and 1 mM acetic acid was depressed by approximately 40% by slow HPs, but the small amplitude of the depolarizing receptor potential for 10 mM quinine-HCl (Q-HCl) and 1 M sucrose was completely depressed by slow HPs and furthermore changed to the hyperpolarizing direction. The duration of the depolarizing receptor potentials depressed by slow HPs prolonged with increasing period of PSN stimulation. As tastant-induced depolarizing receptor potentials were increased, the amplitude of PSN-induced slow HPs inhibiting the receptor potentials gradually decreased. The mean reversal potentials of the slow HPs were approximately -1 mV under NaCl and acetic acid stimulations, but approximately -14 mV under Q-HCl and sucrose stimulations. This implies that when a slow HP was evoked on the same amplitude of depolarizing receptor potentials, the depression of the NaCl and acetic acid responses in taste cells was larger than that of Q-HCl and sucrose responses. It is concluded that slow HP-induced depression of gustatory depolarizing receptor potentials derives from the interaction between gustatory receptor current and slow hyperpolarizing current in frog taste cells and that the interaction is stronger for NaCl and acetic acid stimulations than for Q-HCl and sucrose stimulations.  相似文献   

4.
The frog tongue was perfused through its artery with a Ringer solution using a peristaltic pump, and a method was developed to record stable intracellular receptor potentials of taste cells. Perfusing at 0.05 ml/min with a Ringer solution containing 5% dextran did not cause tongue edema, but perfusing at the same rate with Ringer without dextran caused edema. After perfusion at 0.05 ml/min with 100 mM K Ringer, the membrane potential of taste cells gradually decreased and reached a constant level in about 30 min, indicating that the intercellular fluid of the tongue could be replaced within this time period. While the artery of the frog tongue was perfused at 0.05 ml/min with Ringer containing 5% dextran, intracellular receptor potentials of taste cells elicited by four basic taste stimuli (1 M NaCl, 10 mM quinine-HCl (Q-HCl), 1 mM acetic acid and 1 M galactose) were similar to those obtained from the control taste cells under normal blood flow.  相似文献   

5.
Electrical stimulation of parasympathetic nerve (PSN) efferent fibers in the glossopharyngeal nerve induced a slow depolarizing synaptic potential (DSP) in frog taste cells under hypoxia. The objective of this study is to examine the interaction between a gustatory depolarizing receptor potential (GDRP) and a slow DSP. The amplitude of slow DSP added to a tastant-induced GDRP of 10 mV was suppressed to 60% of control slow DSPs for NaCl and acetic acid stimulations, but to 20–30% for quinine–HCl (Q-HCl) and sucrose stimulations. On the other hand, when a GDRP was induced during a prolonged slow DSP, the amplitude of GDRPs induced by 1 M NaCl and 1 M sucrose was suppressed to 50% of controls, but that by 1 mM acetic acid and 10 mM Q-HCl unchanged. It is concluded that the interaction between GDRPs and efferent-induced slow DSPs in frog taste cells under hypoxia derives from the crosstalk between a gustatory receptor current across the receptive membrane and a slow depolarizing synaptic current across the proximal subsynaptic membrane of taste cells.  相似文献   

6.
1. After the frog tongue was adapted for 10 sec to various salts and sugars, the initial phasic component of gustatory neural responses to almost all of quinine hydrochloride (Q-HCl), quinine sulfate (Q-H2SO4). Brucine, caffeine and picric acid was suppressed. 2. Following 10 sec adaptation to acetic acid, the phasic responses to Q-HCl and Q-H2SO4 were unchanged, those to brucine and caffeine were enhanced, and that to picric acid was depressed slightly. 3. The response to any one of Q-HCl, Q-H2SO4. brucine and caffeine was suppressed after adaptation to the other three, while those to picric acid and nicotine were unchanged or enhanced after adaptation to another bitter solution.  相似文献   

7.
The electrical properties of the frog taste cells during gustatory stimulations with distilled water and varying concentrations of NaCl were studied with intracellular microelectrodes. Under the Ringer adaptation of the tongue, two types of taste cells were distinguished by the gustatory stimuli. One type, termed NaCl-sensitive (NS) cells, responded to water with hyperpolarizations and responded to concentrated NaCl with depolarizations. In contrast, the other type of cells, termed water-sensitive (WS) cells, responded to water depolarizations and responded to concentrated NaCl with hyperpolarizations. The membrane resistance of both taste cell types increased during the hyperpolarizing receptor potentials and decreased during the depolarizing receptor potentials, Reversal potentials for the depolarizing and hyperpolarizing responses in each cell type were a few millivolts positive above the zero membrane potential. When the tongue was adapted with Na-free Ringer solution for 30 min, the amplitude of the depolarizing responses in the NS cells reduced to 50% of the control value under normal Ringer adaptation. On the basis of the present results, it is concluded (a) that the depolarizing responses of the NS and WS cells under the Ringer adaptation are produced by the permeability increase in some ions, mainly Na+ ions across the taste cell membranes, and (b) that the hyperpolarizing responses of both types of taste cells are produced by a decrease in the cell membrane permeability to some ions, probably Na+ ions, which is slightly enhanced during the Ringer adaptation.  相似文献   

8.
The autonomic nervous system affects the gustatory responses in animals. Frog glossopharyngeal nerve (GPN) contains the parasympathetic nerve. We checked the effects of electrical stimulation (ES) of the parasympathetic nerves on the gustatory neural responses. The gustatory neural impulses of the GPNs were recorded using bipolar AgCl wires under normal blood circulation and integrated with a time constant of 1 s. Electrical stimuli were applied to the proximal side of the GPN with a pair of AgCl wires. The parasympathetic nerves of the GPN were strongly stimulated for 10 s with 6 V at 30 Hz before taste stimulation. The integrated neural responses to 0.5 M NaCl, 2.5 mM CaCl2, water, and 1 M sucrose were enhanced to 130–140% of the controls. On the other hand, the responses for 1 mM Q-HCl and 0.3 mM acetic acid were not changed by the preceding applied ES. After hexamethonium (a blocker of nicotinic ACh receptor) was intravenously injected, ES of the parasympathetic nerve did not modulate the responses for all six taste stimuli. The mechanism for enhancement of the gustatory neural responses is discussed.  相似文献   

9.
We compared the electrical properties and gustatory response profiles of types Ia cell (mucus cell), Ib cell (wing cell), and II/III cell (receptor cell) in the taste disks of the frog fungiform papillae. The large depolarizing responses of all types of cell induced by 1 M NaCl were accompanied by a large decrease in the membrane resistance and had the same reversal potential of approximately +5 mV. The large depolarizing responses of all cell types for 1 mM acetic acid were accompanied by a small decrease in the membrane resistance. The small depolarizing responses of all cell types for 10 mM quinine-HCl (Q-HCl) were accompanied by an increase in the membrane resistance, but those for 1 M sucrose were accompanied by a decrease in the membrane resistance. The reversal potential of sucrose responses in all cell types were approximately +12 mV. Taken together, depolarizing responses of Ia, Ib, and II/III cells for each taste stimulus are likely to be generated by the same mechanisms. Gustatory depolarizing response profiles indicated that 1) each of Ia, Ib, and II/III cells responded 100% to 1 M NaCl and 1 mM acetic acid with depolarizing responses, 2) approximately 50% of each cell type responded to 10 mM Q-HCl with depolarizations, and 3) each approximately 40% of Ia and Ib cells and approximately 90% of II/III cells responded to 1 M sucrose with depolarizations. These results suggest that the receptor molecules for NaCl, acid, and Q-HCl stimuli are equivalently distributed on all cell types, but the receptor molecules for sugar stimuli are richer on II/III cells than on Ia and Ib cells. Type III cells having afferent synapses may play a main role in gustatory transduction and transmission.  相似文献   

10.
Taste responses of human chorda tympani nerve   总被引:1,自引:0,他引:1  
Oakley  Bruce 《Chemical senses》1985,10(4):469-481
Records from humans of summated action potential dischargesof the chorda tympani nerve were examined. The magnitudes ofneural and psychophysical responses were well related only whenthe comparison was made within a given taste quality. The responseto a mixture of 0 02 M citric acid and 0.5 M sucrose was lessthan the sum of the separate responses to the mixture components.Citric acid failed to cross-adapt the response to sucrose, implyingthe receptor sites for sucrose are independent of citric acid.The human chorda tympani nerve shows vigorous responses to mechanicalstimulation and cooling of the tongue that are maintained aftertreatment of the tongue with a water extract of the herb Gymnemasylvestre. Gymnema extract selectively suppressed the responseto all sweeteners tested (sucrose, fructose, saccharin and cyclamate)and also suppressed by – 50% the water-after-citric-acidresponse which has a predominantly sweet taste. Gymnema suppressedby 0 – 10% the water-rinse response following NaCl. fructoseand sucrose that have a predominantly bitter-sour taste. Water-rinseresponses were present even when mechanical and thermal stimulationof the tongue were minimized. The human chorda tympani nerveappears to have positive water-rinse taste responses. Theseare solute-specific off-responses that are probably mediatedby receptor sites independent of those responsible for the on-responseto the given solute.  相似文献   

11.
Solute and water transport mechanisms of anuran skin mediate chemosensory functions that permit evaluation of ionic and osmotic properties of hydration sources in a manner similar to taste receptors in the mammalian tongue. Histochemical observations demonstrated apparent connections between spinal nerve endings and epithelial cells of the skin and we used neural and behavioral responses as measures of coupling between transport and chemosensation. The inhibition of transcellular Na+ transport by amiloride partially reduced the neural response and the avoidance of hyperosmotic NaCl but not KCl solutions. Cetylpyridinium chloride (CPC) reduced the neural response to hyperosmotic salt solutions, suggesting a chemosensory role for vanilloid receptors in the skin. Avoidance of hyperosmotic salt solutions was reduced by impermeant anions suggesting paracellular conductance is important for chemosensation. The effects of blocking the transcellular and paracellular pathways was additive but did not eliminate the avoidance of osmotically unfavorable solutions by dehydrated toads. The timing of the neural response to deionized water was similar to the onset of water absorption behavior and increased blood flow to the pelvic skin. Water absorption from 50 mM NaCl was greater than from deionized water when toads were fully immersed, but not when contact was limited to the ventral surface.  相似文献   

12.
We investigated the relationship between the membrane potential of frog taste cells in the fungiform papillae and the tonic discharge of parasympathetic efferent fibers in the glossopharyngeal (GP) nerve. When the parasympathetic preganglionic fibers in the GP nerve were kept intact, the mean membrane potential of Ringer-adapted taste cells was -40 mV but decreased to -31 mV after transecting the preganglionic fibers in the GP nerve and crushing the postganglionic fibers in the papillary nerve. The same result occurred after blocking the nicotinic acetylcholine receptors on parasympathetic ganglion cells in the tongue and blocking the substance P neurokinin-1 (NK-1) receptors in the gustatory efferent synapses. This indicates that the parasympathetic nerve (PSN) hyperpolarizes the membrane potential of frog taste cells by -9 mV. Repetitive stimulation of a transected GP nerve revealed that a -9-mV hyperpolarization of taste cells maintained under the intact GP nerve derives from an approximately 10-Hz discharge of the PSN efferent fibers. The mean frequency of tonic discharges extracellularly recorded from PSN efferent fibers of the taste disks was 9.1 impulses/s. We conclude that the resting membrane potential of frog taste cells is continuously hyperpolarized by on average -9 mV by an approximately 10-Hz tonic discharge from the parasympathetic preganglionic neurons in the medulla oblongata.  相似文献   

13.
Summary The extracellular responses of single sensory afferent cell bodies were recorded from the geniculate ganglion of the chicken following chemical, mechanical and thermal stimulation of the oral cavity using glass coated tungsten microelectrodes. Forty eight chemoreceptive units were identified from the anterior and posterior palate, and from the anterior mandibular area of the lower jaw. Their response characteristics to tyrode Ringer solution, distilled water, 0.05M hydrochloric acid, 0.5M sodium chloride, 1M fructose and 0.05M quinine hydrochloride were investigated. Only 5 units responded to a single stimulus and all of the other units responded to 2 or more stimuli. Thirty seven of the units which did not show single stimulus specificity did however respond best to one of the stimuli tested. The firing rates of these chemoresponsive units was slow, they showed little or no spontaneous activity and showed variable response patterns.Rapidly adapting and slowly adapting mechanoreceptors were also identified together with thermoreceptors (cold and warm units) and ear units.The results show that the facial nerve plays the major role in gustatory physiology of the chicken and these results are discussed in relation to the mammalian gustatory system.Abbreviations AMA anterior mandibular area - AP anterior palate - PP posterior palate - QHCl quinine hydrochloride  相似文献   

14.
The purpose of the present investigation was to map the multiunitresponsiveness of the gustatory portion of the nucleus of thesolitary tract (NTS) in the hamster, elicited by chemical stimulationof oral taste receptors. Neural responsiveness to four stimuli(0.1 M sucrose, 0.03 M NaCl, 0.003 M HCl, 0.001 M QHCl) deliveredto either the anterior tongue or other parts of the oral cavitywas examined at 37 NTS recording sites. Gustatory responseswere shown-to depend collectively upon the stimulus, the receptivearea being stimulated, and the location of the recording sitewithin the NTS. By comparing the proportional magnitudes ofintegrated responses across recording sites, unique topographicpatterns of responsiveness were demonstrated for sucrose, NaCIand QHCl. Responses to HCl and NaCl generated similar patterns.Further, the response patterns for each stimulus differed followingstimulation of the anterior tongue or posterior oral cavity.Spatial differences in NTS responsiveness arise as a resultof differences in peripheral gustatory nerve sensitivities andprovide a possible substrate for the coding of taste quality.  相似文献   

15.
1. The mean resting potential of supporting cells in the frog taste organ was -19.1 mV. The supporting cells responded to the four basic taste stimuli with a depolarization but responded to water with a depolarization or a hyperpolarization. 2. The membrane resistances of supporting cells decreased during stimulation with sucrose, NaCl and acetic acid, but increased during stimulation with Q-HCl and water. 3. Reversal potential of the depolarizing response for 0.5 M NaCl in supporting cells was +7.6 mV. The depolarizing responses for Q-HCl and acetic acid were independent of the membrane potential level. 4. These results suggest that the characteristics of taste responses in supporting cells are similar to those in taste cells.  相似文献   

16.
Dehydrated toads initiated water absorption response (WR) behavior and absorbed water from dilute NaCl solutions. With 200-250 mM NaCl, WR behavior and water absorption were both suppressed. With 200-250 mM Na-gluconate, WR initiation was significantly greater than with NaCl but water loss was greater. Neural recordings from spinal nerve #6 showed a greater integrated response to 250 mM NaCl than to 250 mM Na-gluconate, whereas a larger rinse response was seen with Na-gluconate. Studies with isolated epithelium showed a large increase in conductance (G(t)) when 250 mM NaCl replaced NaCl Ringer's as the apical bathing solution that was accompanied by depolarization of the transepithelial potential (V(t)) and basolateral membrane potential (V(b)). Depolarization of V(b) corresponded with the neural response to 250 mM NaCl. When 250 mM Na-gluconate replaced Ringer's as the apical solution G(t) remained low, V(b) transiently hyperpolarized to values near the equilibrium potential for K(+) and corresponded with the reduced neural response. These results support the hypothesis that chemosensory function of the skin is analogous to that of mammalian taste cells but utilizes paracellular ion transport to a greater degree.  相似文献   

17.
The depressant action of antidromic volleys of impulses on gustatory nerve signals from the tongues of bullfrogs was studied. Electrical stimulation of the glossopharyngeal nerve at a rate of 100 Hz for 10 s and at supramaximal intensity slightly depressed the integrated glossopharyngeal nerve responses to quinine and to mechanical taps to the tongue. The same antidromic stimuli resulted in a 30-40% reduction in the responses to salt, acid, water, and warmed saline, but depressed greater than 80% of the afferent impulses firing spontaneously. The magnitude of responses to quinine and NaCl and the number of spontaneous discharges decreased gradually with an increase in either the frequency or the duration of antidromic stimuli. Similar results were obtained with intensities above the threshold for exciting gustatory and slowly adapting mechanosensitive fibers. The time required to recover from termination of the antidromic stimuli to two-thirds of the maximal amount of depression ranged between 6 and 7 min, with no significant differences among the depressions. The possible mechanisms involved in the antidromic depression of gustatory nerve signals are discussed.  相似文献   

18.
1. Dorsal epithelium of the frog tongue produced a change in potential difference across the tissue in response to removal of NaCl from the adapting Ringer solution on the mucosa. 2. The response was not caused by an osmotic decrease in the stimulus, and its profile was in many respects similar to that of the receptor potential in frog taste cells. 3. In conclusion, the response may influence or modify water reception in frogs.  相似文献   

19.
The effect of cooling the tongue on the perceived intensity of taste   总被引:4,自引:2,他引:2  
Two experiments were performed (i) to measure the effect ofcooling on the perceived intensity of taste, and (ii) to determinewhether the temperature of the tongue or the temperature ofthe solution was primarily responsible for the changes in perceivedintensity that were observed. The first experiment revealedthat cooling both the tongue and the taste solutions from 36to either 28 or 20°C produced measurable reductions in theperceived intensity of the sweetness of sucrose and the bitternessof caffeine. The saltiness of NaCl and the sourness of citricacid were unaffected by cooling. The second experiment demonstratedthat the temperature of the tongue was the critical factor forproducing the effects on sweetness and bitterness. The latterfinding implies that some of the inconsistencies in the literatureon taste–temperature interactions might have been avoidedif the temperature of the tongue had been routinely controlled.In addition, the importance of lingual temperature suggeststhat thermal effects on taste intensity may often be due tochanges in the sensitivity of the gustatory transduction processrather than to changes in the molecular properties of the tastesolutions.  相似文献   

20.
1. The effect of aldosterone on frog gustatory response was investigated by recording integrated responses of the whole glossopharyngeal nerve elicited by taste stimuli. 2. After aldosterone (1 microM) was perfused to the basolateral side of taste cells through the lingual artery, the gustatory neural response for a NaCl stimulus was greatly enhanced, but the gustatory responses for CaCl2, hydrochloric acid, quinine hydrochloride and galactose were not affected. 3. At 3 and 6 hr after the onset of aldosterone perfusion, the magnitudes of the responses for NaCl increased to 2.0 and 3.6 times the control, respectively. 4. These results suggest that aldosterone may regulate the gustatory responses for monovalent salts alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号