首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Classification of plants according to their echoes is an elementary component of bat behavior that plays an important role in spatial orientation and food acquisition. Vegetation echoes are, however, highly complex stochastic signals: from an acoustical point of view, a plant can be thought of as a three-dimensional array of leaves reflecting the emitted bat call. The received echo is therefore a superposition of many reflections. In this work we suggest that the classification of these echoes might not be such a troublesome routine for bats as formerly thought. We present a rather simple approach to classifying signals from a large database of plant echoes that were created by ensonifying plants with a frequency-modulated bat-like ultrasonic pulse. Our algorithm uses the spectrogram of a single echo from which it only uses features that are undoubtedly accessible to bats. We used a standard machine learning algorithm (SVM) to automatically extract suitable linear combinations of time and frequency cues from the spectrograms such that classification with high accuracy is enabled. This demonstrates that ultrasonic echoes are highly informative about the species membership of an ensonified plant, and that this information can be extracted with rather simple, biologically plausible analysis. Thus, our findings provide a new explanatory basis for the poorly understood observed abilities of bats in classifying vegetation and other complex objects.  相似文献   

2.
Rhythmical modulations in insect echoes caused by the moving wings of fluttering insects are behaviourally relevant information for bats emitting CF-FM signals with a high duty cycle. Transmitter and receiver of the echolocation system in flutter detecting foragers are especially adapted for the processing of flutter information. The adaptations of the transmitter are indicated by a flutter induced increase in duty cycle, and by Doppler shift compensation (DSC) that keeps the carrier frequency of the insect echoes near a reference frequency. An adaptation of the receiver is the auditory fovea on the basilar membrane, a highly expanded frequency representation centred to the reference frequency. The afferent projections from the fovea lead to foveal areas with an overrepresentation of sharply tuned neurons with best frequencies near the reference frequency throughout the entire auditory pathway. These foveal neurons are very sensitive to stimuli with natural and simulated flutter information. The frequency range of the foveal areas with their flutter processing neurons overlaps exactly with the frequency range where DS compensating bats most likely receive echoes from fluttering insects. This tight match indicates that auditory fovea and DSC are adaptations for the detection and evaluation of insects flying in clutter.  相似文献   

3.
To understand complex sensory-motor behavior related to object perception by echolocating bats, precise measurements are needed for echoes that bats actually listen to during flight. Recordings of echolocation broadcasts were made from flying bats with a miniature light-weight microphone and radio transmitter (Telemike) set at the position of the bat's ears and carried during flights to a landing point on a wall. Telemike recordings confirm that flying horseshoe bats (Rhinolophus ferrumequinum nippon) adjust the frequency of their sonar broadcasts to compensate for echo Doppler shifts. Returning constant frequency echoes were maintained at the bat's reference frequency +/-83 Hz during flight, indicating that the bats compensated for frequency changes with an accuracy equivalent to that at rest. The flying bats simultaneously compensate for increases in echo amplitude as target range becomes shorter. Flying bats thus receive echoes with both stabilized frequencies and stabilized amplitudes. Although it is widely understood that Doppler-shift frequency compensation facilitates detection of fluttering insects, approaches to a landing do not involve fluttering objects. Combined frequency and amplitude compensation may instead be for optimization of successive frequency modulated echoes for target range estimation to control approach and landing.  相似文献   

4.
Echolocation operates through adaptive sensorimotor systems that collectively enable the bat to localize and track sonar objects as it flies. The features of sonar signals used by a bat to probe its surroundings determine the information available to its acoustic imaging system. In turn, the bat's perception of a complex scene guides its active adjustments in the features of subsequent sonar vocalizations. Here, we propose that the bat's active vocal-motor behaviors play directly into its representation of a dynamic auditory scene.  相似文献   

5.
Echolocating bats can identify three-dimensional objects exclusively through the analysis of acoustic echoes of their ultrasonic emissions. However, objects of the same structure can differ in size, and the auditory system must achieve a size-invariant, normalized object representation for reliable object recognition. This study describes both the behavioral classification and the cortical neural representation of echoes of complex virtual objects that vary in object size. In a phantom-target playback experiment, it is shown that the bat Phyllostomus discolor spontaneously classifies most scaled versions of objects according to trained standards. This psychophysical performance is reflected in the electrophysiological responses of a population of cortical units that showed an object-size invariant response (14/109 units, 13%). These units respond preferentially to echoes from objects in which echo duration (encoding object depth) and echo amplitude (encoding object surface area) co-varies in a meaningful manner. These results indicate that at the level of the bat's auditory cortex, an object-oriented rather than a stimulus-parameter-oriented representation of echoes is achieved.  相似文献   

6.
Neurons can transmit information about sensory stimuli via their firing rate, spike latency, or by the occurrence of complex spike patterns. Identifying which aspects of the neural responses actually encode sensory information remains a fundamental question in neuroscience. Here we compared various approaches for estimating the information transmitted by neurons in auditory cortex in two very different experimental paradigms, one measuring spatial tuning and the other responses to complex natural stimuli. We demonstrate that, in both cases, spike counts and mean response times jointly carry essentially all the available information about the stimuli. Thus, in auditory cortex, whereas spike counts carry only partial information about stimulus identity or location, the additional availability of relatively coarse temporal information is sufficient in order to extract essentially all the sensory information available in the spike discharge pattern, at least for the relatively short stimuli (< ∼ 100 ms) commonly used in auditory research.  相似文献   

7.
How nonhuman species perceive the world is a biological question of fundamental importance, and has major significance for establishing the validity and possible limitations of animal models of human sensory function and perception. Studies in comparative hearing have revealed that almost all animals, including monkeys, are worse than humans at discriminating tone frequencies. Less is known, however, about comparative differences in discriminating more spectrally complex sounds. We compared the capacity of macaques and humans to discriminate complex sound patterns by measuring spectral-contrast sensitivity using stimuli having sine-modulated power spectra, analogous to sine-wave gratings used in visual studies. We found that the auditory system of the macaque is far less sensitive than the human system over the sine-profile frequency range tested (0.5-2.0 cycles/octave). These results indicate that rhesus macaques hear at least some spectrally complex sounds with less fidelity than do humans, and demonstrate large differences in primate species' abilities to process low-resolution spectral patterns. These results cannot be accounted for by traditional, narrowband peripheral filter models of spectral analysis, but instead, imply the involvement of a central, frequency integration process that may differ significantly across species.  相似文献   

8.
Fast movement in complex environments requires the controlled evasion of obstacles. Sonar-based obstacle evasion involves analysing the acoustic features of object-echoes (e.g., echo amplitude) that correlate with this object's physical features (e.g., object size). Here, we investigated sonar-based obstacle evasion in bats emerging in groups from their day roost. Using video-recordings, we first show that the bats evaded a small real object (ultrasonic loudspeaker) despite the familiar flight situation. Secondly, we studied the sonar coding of object size by adding a larger virtual object. The virtual object echo was generated by real-time convolution of the bats’ calls with the acoustic impulse response of a large spherical disc and played from the loudspeaker. Contrary to the real object, the virtual object did not elicit evasive flight, despite the spectro-temporal similarity of real and virtual object echoes. Yet, their spatial echo features differ: virtual object echoes lack the spread of angles of incidence from which the echoes of large objects arrive at a bat's ears (sonar aperture). We hypothesise that this mismatch of spectro-temporal and spatial echo features caused the lack of virtual object evasion and suggest that the sonar aperture of object echoscapes contributes to the sonar coding of object size.  相似文献   

9.
Differences in auditory perception between species are influenced by phylogenetic origin and the perceptual challenges imposed by the natural environment, such as detecting prey- or predator-generated sounds and communication signals. Bats are well suited for comparative studies on auditory perception since they predominantly rely on echolocation to perceive the world, while their social calls and most environmental sounds have low frequencies. We tested if hearing sensitivity and stimulus level coding in bats differ between high and low-frequency ranges by measuring auditory brainstem responses (ABRs) of 86 bats belonging to 11 species. In most species, auditory sensitivity was equally good at both high- and low-frequency ranges, while amplitude was more finely coded for higher frequency ranges. Additionally, we conducted a phylogenetic comparative analysis by combining our ABR data with published data on 27 species. Species-specific peaks in hearing sensitivity correlated with peak frequencies of echolocation calls and pup isolation calls, suggesting that changes in hearing sensitivity evolved in response to frequency changes of echolocation and social calls. Overall, our study provides the most comprehensive comparative assessment of bat hearing capacities to date and highlights the evolutionary pressures acting on their sensory perception.  相似文献   

10.
Studies analyzing sensory cortical processing or trying to decode brain activity often rely on a combination of different electrophysiological signals, such as local field potentials (LFPs) and spiking activity. Understanding the relation between these signals and sensory stimuli and between different components of these signals is hence of great interest. We here provide an analysis of LFPs and spiking activity recorded from visual and auditory cortex during stimulation with natural stimuli. In particular, we focus on the time scales on which different components of these signals are informative about the stimulus, and on the dependencies between different components of these signals. Addressing the first question, we find that stimulus information in low frequency bands (<12 Hz) is high, regardless of whether their energy is computed at the scale of milliseconds or seconds. Stimulus information in higher bands (>50 Hz), in contrast, is scale dependent, and is larger when the energy is averaged over several hundreds of milliseconds. Indeed, combined analysis of signal reliability and information revealed that the energy of slow LFP fluctuations is well related to the stimulus even when considering individual or few cycles, while the energy of fast LFP oscillations carries information only when averaged over many cycles. Addressing the second question, we find that stimulus information in different LFP bands, and in different LFP bands and spiking activity, is largely independent regardless of time scale or sensory system. Taken together, these findings suggest that different LFP bands represent dynamic natural stimuli on distinct time scales and together provide a potentially rich source of information for sensory processing or decoding brain activity.  相似文献   

11.
It has been previously demonstrated by our group that a visual stimulus made of dynamically changing luminance evokes an echo or reverberation at ∼10 Hz, lasting up to a second. In this study we aimed to reveal whether similar echoes also exist in the auditory modality. A dynamically changing auditory stimulus equivalent to the visual stimulus was designed and employed in two separate series of experiments, and the presence of reverberations was analyzed based on reverse correlations between stimulus sequences and EEG epochs. The first experiment directly compared visual and auditory stimuli: while previous findings of ∼10 Hz visual echoes were verified, no similar echo was found in the auditory modality regardless of frequency. In the second experiment, we tested if auditory sequences would influence the visual echoes when they were congruent or incongruent with the visual sequences. However, the results in that case similarly did not reveal any auditory echoes, nor any change in the characteristics of visual echoes as a function of audio-visual congruence. The negative findings from these experiments suggest that brain oscillations do not equivalently affect early sensory processes in the visual and auditory modalities, and that alpha (8–13 Hz) oscillations play a special role in vision.  相似文献   

12.
The task of deciding how long sensory events seem to last is one that the human nervous system appears to perform rapidly and, for sub-second intervals, seemingly without conscious effort. That these estimates can be performed within and between multiple sensory and motor domains suggest time perception forms one of the core, fundamental processes of our perception of the world around us. Given this significance, the current paucity in our understanding of how this process operates is surprising. One candidate mechanism for duration perception posits that duration may be mediated via a system of duration-selective 'channels', which are differentially activated depending on the match between afferent duration information and the channels' 'preferred' duration. However, this model awaits experimental validation. In the current study, we use the technique of sensory adaptation, and we present data that are well described by banks of duration channels that are limited in their bandwidth, sensory-specific, and appear to operate at a relatively early stage of visual and auditory sensory processing. Our results suggest that many of the computational principles the nervous system applies to coding visual spatial and auditory spectral information are common to its processing of temporal extent.  相似文献   

13.
The effective use of echolocation requires not only measuring the delay between the emitted call and returning echo to estimate the distance of an ensonified object. To locate an object in azimuth and elevation, the bat’s auditory system must analyze the returning echoes in terms of their binaural properties, i.e., the echoes’ interaural intensity and time differences (IIDs and ITDs). The effectiveness of IIDs for echolocation is undisputed, but when bats ensonify complex objects, the temporal structure of echoes may facilitate the analysis of the echo envelope in terms of envelope ITDs. Using extracellular recordings from the auditory midbrain of the bat, Phyllostomus discolor, we found a population of neurons that are sensitive to envelope ITDs of echoes of their sonar calls. Moreover, the envelope-ITD sensitivity improved with increasing temporal fluctuations in the echo envelopes, a sonar parameter related to the spatial statistics of complex natural reflectors like vegetation. The data show that in bats envelope ITDs may be used not only to locate external, prey-generated rustling sounds but also in the context of echolocation. Specifically, the temporal fluctuations in the echo envelope, which are created when the sonar emission is reflected from a complex natural target, support ITD-mediated echolocation.  相似文献   

14.
1. Frequency and space representation in the auditory cortex of the big brown bat, Eptesicus fuscus, were studied by recording responses of 223 neurons to acoustic stimuli presented in the bat's frontal auditory space. 2. The majority of the auditory cortical neurons were recorded at a depth of less than 500 microns with a response latency between 8 and 20 ms. They generally discharged phasically and had nonmonotonic intensity-rate functions. The minimum threshold, (MT) of these neurons was between 8 and 82 dB sound pressure level (SPL). Half of the cortical neurons showed spontaneous activity. All 55 threshold curves are V-shaped and can be described as broad, intermediate, or narrow. 3. Auditory cortical neurons are tonotopically organized along the anteroposterior axis of the auditory cortex. High-frequency-sensitive neurons are located anteriorly and low-frequency-sensitive neurons posteriorly. An overwhelming majority of neurons were sensitive to a frequency range between 30 and 75 kHz. 4. When a sound was delivered from the response center of a neuron on the bat's frontal auditory space, the neuron had its lowest MT. When the stimulus amplitude was increased above the MT, the neuron responded to sound delivered within a defined spatial area. The response center was not always at the geometric center of the spatial response area. The latter also expanded with stimulus amplitude. High-frequency-sensitive neurons tended to have smaller spatial response areas than low-frequency-sensitive neurons. 5. Response centers of all 223 neurons were located between 0 degrees and 50 degrees in azimuth, 2 degrees up and 25 degrees down in elevation of the contralateral frontal auditory space. Response centers of auditory cortical neurons tended to move toward the midline and slightly downward with increasing best frequency. 6. Auditory space representation appears to be systematically arranged according to the tonotopic axis of the auditory cortex. Thus, the lateral space is represented posteriorly and the middle space anteriorly. Space representation, however, is less systematic in the vertical direction. 7. Auditory cortical neurons are columnarly organized. Thus, the BFs, MTs, threshold curves, azimuthal location of response centers, and auditory spatial response areas of neurons sequentially isolated from an orthogonal electrode penetration are similar.  相似文献   

15.
The design of acoustic signals and hearing sensitivity in socially communicating species would normally be expected to closely match in order to minimize signal degradation and attenuation during signal propagation. Nevertheless, other factors such as sensory biases as well as morphological and physiological constraints may affect strict correspondence between signal features and hearing sensitivity. Thus study of the relationships between sender and receiver characteristics in species utilizing acoustic communication can provide information about how acoustic communication systems evolve. The genus Gekko includes species emitting high-amplitude vocalizations for long-range communication (loud callers) as well as species producing only low-amplitude vocalizations when in close contact with conspecifics (quiet callers) which have rarely been investigated. In order to investigate relationships between auditory physiology and the frequency characteristics of acoustic signals in a quiet caller, Gekko subpalmatus we measured the subjects’ vocal signal characteristics as well as auditory brainstem responses (ABRs) to assess auditory sensitivity. The results show that G. subpalmatus males emit low amplitude calls when encountering females, ranging in dominant frequency from 2.47 to 4.17 kHz with an average at 3.35 kHz. The auditory range with highest sensitivity closely matches the dominant frequency of the vocalizations. This correspondence is consistent with the notion that quiet and loud calling species are under similar selection pressures for matching auditory sensitivity with spectral characteristics of vocalizations.  相似文献   

16.
Locating sounds in realistic scenes is challenging because of distracting echoes and coarse spatial acoustic estimates. Fortunately, listeners can improve performance through several compensatory mechanisms. For instance, their brains perceptually suppress short latency (1-10 ms) echoes by constructing a representation of the acoustic environment in a process called the precedence effect. This remarkable ability depends on the spatial and spectral relationship between the first or precedent sound wave and subsequent echoes. In addition to using acoustics alone, the brain also improves sound localization by incorporating spatially precise visual information. Specifically, vision refines auditory spatial receptive fields and can capture auditory perception such that sound is localized toward a coincident visual stimulus. Although visual cues and the precedence effect are each known to improve performance independently, it is not clear whether these mechanisms can cooperate or interfere with each other. Here we demonstrate that echo suppression is enhanced when visual information spatially and temporally coincides with the precedent wave. Conversely, echo suppression is inhibited when vision coincides with the echo. These data show that echo suppression is a fundamentally multisensory process in everyday environments, where vision modulates even this largely automatic auditory mechanism to organize a coherent spatial experience.  相似文献   

17.
Plant individuals rely on pollinator services for their reproduction and often have to share these services with co‐occurring neighbours, creating complex indirect plant–plant interactions. Many current theoretical models focus on the effect of floral resources’ density on the net outcome of these indirect plant–plant interactions, often neglecting the identity of plant species in the communities and especially the species’ spatial pattern. To fill this gap, we created a spatially explicit model whose goal was to study the interplay between relative densities and spatial distribution patterns of two plant species differing in their attractiveness for pollinators. Since theory predicts that pollinator behaviour strongly governs the outcome of pollination, we allowed the pollinators to systematically change their plant preferences based on their foraging experience. Thus the interplay between density and spatial patterns of plants was tested over a continuum of behaviours from specialists to generalists. Our most striking finding was that reproductive success of the less attractive species was affected in an opposite way by spatial patterns depending on whether the species had relatively low or high densities. Namely, when the less attractive species was highly abundant, its survival was higher when aggregated in large monospecific patches than when uniformly distributed. On the other hand, when the attractive species was more abundant, the less attractive species survived better when uniformly distributed. These results were consistent as long as the scale of the plant spatial aggregation was similar to or larger than the pollinators’ detection range. Our results suggest that aggregated plant spatial patterns manipulate pollinator behaviour by trapping them within monospecific patches. This effect was sufficiently strong to enhance the survival of a competitively inferior species and hence to act in a way similar to the more familiar niche or temporal separation among plant species.  相似文献   

18.
One way in which fish can move around efficiently is to learn and remember a spatial map of their environment. This can be a relatively simple process where, for example, sequences of landmarks are learned. However, more complex spatial representations can be generated by integrating multiple pieces of information. In this review, we consider what types of information fish use to generate a spatial map; for instance, beacons (single landmarks) that signal a specific location, or learned geometric relationships between multiple landmarks that allow fish to guide their movements. Owing to the diversity of fish species and the broad range of environments that they inhabit, there is considerable diversity in the maps that they develop and the sensory systems that they use to detect spatial information. This chapter uses a series of examples to investigate the types of spatial information that fish encode, for instance, how they map three-dimensional space, how they make use of different sensory modalities, and where this information might be processed. We also highlight the versatility of short-range orientation in fish, and discuss a number of similarities between the mapping mechanisms used by fish and terrestrial vertebrates.  相似文献   

19.
An echolocating bat actively controls the spatial acoustic information that drives its behavior by directing its head and ears and by modulating the spectro-temporal structure of its outgoing sonar emissions. The superior colliculus may function in the coordination of these orienting components of the bat's echolocation system. To test this hypothesis, chemical and electrical microstimulation experiments were carried out in the superior colliculus of the echolocating bat, Eptesicus fuscus, a species that uses frequency modulated sonar signals. Microstimulation elicited pinna and head movements, similar to those reported in other vertebrate species, and the direction of the evoked behaviors corresponded to the site of stimulation, yielding a map of orienting movements in the superior colliculus. Microstimulation of the bat superior colliculus also elicited sonar vocalizations, a motor behavior specific to the bat's acoustic orientation by echolocation. Electrical stimulation of the adjacent periaqueductal gray, shown to be involved in vocal production in other mammalian species, elicited vocal signals resembling acoustic communication calls of E. fuscus. The control of vocal signals in the bat is an integral part of its acoustic orienting system, and our findings suggest that the superior colliculus supports diverse and species-relevant sensorimotor behaviors, including those used for echolocation.  相似文献   

20.
1. FM echolocating bats (Eptesicus fuscus) were trained to discriminate between a two-component complex target and a one-component simple target simulated by electronically-returned echoes in a series of experiments that explore the composition of the image of the two-component target. In Experiment I, echoes for each target were presented sequentially, and the bats had to compare a stored image of one target with that of the other. The bats made errors when the range of the simple target corresponded to the range of either glint in the complex target, indicating that some trace of the parts of one image interfered with perception of the other image. In Experiment II, echoes were presented simultaneously as well as sequentially, permitting direct masking of echoes from one target to the other. Changes in echo amplitude produced shifts in apparent range whose pattern depended upon the mode of echo presentation. 2. Eptesicus perceives images of complex sonar targets that explicitly represent the location and spacing of discrete glints located at different ranges. The bat perceives the target's structure in terms of its range profile along a psychological range axis using a combination of echo delay and echo spectral representations that together resemble a spectrogram of the FM echoes. The image itself is expressed entirely along a range scale that is defined with reference to echo delay. Spectral information contributes to the image by providing estimates of the range separation of glints, but it is transformed into these estimates. 3. Perceived absolute range is encoded by the timing of neural discharges and is vulnerable to shifts caused by neural amplitude-latency trading, which was estimated at 13 to 18 microseconds per dB from N1 and N4 auditory evoked potentials in Eptesicus. Spectral cues representing the separation of glints within the target are transformed into estimates of delay separations before being incorporated into the image. However, because they are encoded by neural frequency tuning rather than the time-of-occurrence of neural discharges, the perceived range separation of glints in images is not vulnerable to amplitude-latency shifts. 4. The bat perceives an image that is displayed in the domain of time or range. The image receives no evident spectral contribution beyond what is transformed into delay estimates. Although the initial auditory representation of FM echoes is spectrogram-like, the time, frequency, and amplitude dimensions of the spectrogram appear to be compressed into an image that has only time and amplitude dimensions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号