首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Insect Biochemistry》1989,19(3):257-260
Mitochondria were isolated from the posterior region of the midgut of the tobacco hornworm, Manduca sexta. Measurements of mitochondrial oxygen consumption revealed that the oxidation of palmitoyl carnitine plus malate was inhibited by 3-mercaptopropionic acid (MPA) in a dose-dependent manner. The maximal percent inhibition was 65% and the I50 was 0.15mM. When exposed to a dose which maximally inhibits the oxidation of palmitoyl carnitine (0.5 mM), mitochondrial oxidation of octanoate and pyruvate were inhibited by 30 and 8%, respectively. Oxidation of succinate was unaffected under these conditions. These results indicate that MPA is an effective inhibitor of fatty acid oxidation in midgut mitochondria.  相似文献   

2.
The oxidation of 14C-labelled branched-chain alpha-keto acids corresponding to the branched-chain amino acids valine, isoleucine and leucine has been studied in isolated mitochondria from heart, liver and skeletal muscle. 1. Heart and liver mitochondria have similar capacities to oxidize these alpha-keto acids based on protein content. Skeletal muscle mitochondria also show significant activity. 2. Half maximum rates are obtained with approximately 0.1 mM of the alpha-keto acids under optimal conditions. Added NAD and CoA had no effect on the oxidation rate, showing that endogenous mitochondrial NAD and CoA are required for the oxidation. 3. Addition of carnitine esters of fatty acids (C6--C16), succinate, pyruvate, or alpha-ketoglutarate inhibited the oxidation of the branched chain alpha-keto acids, especially in a high-energy state (no ADP added). In heart mitochondria the addition of AD (low-energy state) decreased the inhibitory effects of acylcarnitines of medium chain length or of pyruvate, and abolished the inhibitory effect of succinate. It is suggested that the oxidation rate is regulated mainly by the redox state of the mitochondria under the conditions used. 4. The results are discussed in relation to the regulation of branched-chain amino acid metabolism in the body.  相似文献   

3.
1. Metabolism of propionate by sheep-liver mitochondria was stimulated catalytically by alpha-oxoglutarate, pyruvate, citrate and isocitrate. Succinate was stimulatory at higher concentrations, but fumarate and malate were inert. These effects were all independent of the presence of ATP, succinate being less effective when ATP was present. 2. Compared with the metabolism of added succinate, propionate metabolism was resistant to malonate inhibition, but only in the presence of added ATP. In the absence of ATP propionate metabolism was more sensitive to malonate inhibition than was the metabolism of succinate. 3. In the absence of malonate, and at malonate concentrations in the range 5-100mm, alpha-oxoglutarate increased the rate of fixation of [2-(14)C]propionate by about 50% without altering the nature of the fixation products. 4. Metabolism of [1-(14)C]-propionate in the presence of 50mm-malonate was accompanied by accumulation of about half the propionate consumed as succinate. When alpha-oxoglutarate was present in addition part of the alpha-oxoglutarate was metabolized and the rate of propionate consumption was increased. The total succinate that accumulated corresponded to the alpha-oxoglutarate consumed plus about half the propionate metabolized. 5. When [1-(14)C]propionate was metabolized in the absence of malonate about 70% of the generated succinate was oxidized to fumarate or beyond. The addition of malonate decreased the rate of propionate metabolism, and decreased to about half the fraction of generated succinate oxidized. 6. When propionate and 10mm-succinate were metabolized together, the total oxidation of succinate was greater than that with 10mm-succinate alone. The increment in succinate oxidation corresponded to about half the propionate metabolized in the presence or absence of malonate or ATP. 7. It is suggested that the metabolism of propionate is specifically limited by the rate of oxidation of the generated succinate, and that the succinate oxidase concerned is distinct from that responsible for the oxidation of added succinate. 8. The results are discussed in terms of the mode of action of certain stimulants and inhibitors of propionate metabolism. It is suggested that many of these act by stimulation or inhibition of the specific succinate oxidase that limits propionate metabolism.  相似文献   

4.
The acute effect of the hypolipidemic agent bezafibrate on fatty acid oxidation was studied in rat hepatocytes and mitochondria. Bezafibrate caused a concentration-related inhibition of oleate oxidation in liver cells. In mitochondria bezafibrate inhibited the oxidation of palmitoyl CoA but had no effect on palmitoylcarnitine oxidation, suggesting the site of inhibition was the formation of the carnitine derivative. Bezafibrate and bezafibroyl CoA inhibited the overt carnitine palmitoyltransferase (I) in rat liver mitochondria with comparable potency but with distinct kinetics. The inhibition caused by bezafibrate was not prevented by omission of Mg++-ATP from the assay mixture, indicating activation of bezafibrate to bezafibroyl CoA was not required for inhibition. The data demonstrate that bezafibrate, like several other peroxisome proliferating agents, inhibits mitochondrial fatty acid oxidation in rat liver. The inhibition may be relevant to the mechanism of peroxisome proliferation.  相似文献   

5.
The effect of gentamicin on glucose production in isolated rabbit renal tubules was studied with lactate, propionate, malate, 2-oxoglutarate, and succinate as substrates. This antibiotic at 5 mM concentration inhibited gluconeogenesis from lactate by about 60% and that from either pyruvate or propionate by about 30%. In contrast, it did not alter the rate of glucose formation from other substrates studied. The rate of gluconeogenesis was higher at 1 mM propionate than at increasing concentrations of this substrate and was stimulated in the presence of 1 mM carnitine. However, the addition of carnitine did not affect the degree of inhibition of glucose formation by gentamicin. Since the mitochondrial free coenzyme A level was significantly lower in the presence of 10 than 1 mM propionate and increased on the addition of carnitine to the reaction medium, the inhibitory effect of propionate concentrations above 1 mM on gluconeogenesis in rabbit renal tubules may be due to a depletion of the free mitochondrial coenzyme A level, resulting in an inhibition of the mitochondrial coenzyme A-dependent reactions. In intact rabbit kidney cortex mitochondria incubated in State 4 as well as in Triton X-100-treated mitochondria, 5 mM gentamicin inhibited by about 30-40% the incorporation of 14CO2 into both pyruvate and propionate. The results indicate that the inhibitory effect of gentamicin on glucose formation in isolated kidney tubules incubated with lactate, pyruvate, or propionate is likely due to a decrease of the rate of carboxylation reactions.  相似文献   

6.
1. The rate and stability to aging of the metabolism of propionate by sheep-liver slices and sucrose homogenates were examined. Aging for up to 20min. at 37° in the absence of added substrate had little effect with slices, whole homogenates or homogenates without the nuclear fraction. 2. Metabolism of propionate by sucrose homogenates was confined to the mitochondrial fraction, but the mitochondrial supernatant (microsomes plus cell sap) stimulated propionate removal. 3. The rate of propionate metabolism by liver slices was higher in a high potassium phosphate–bicarbonate medium [0·88(±s.e.m. 0·16)μmole/mg. of N/hr.] than in Krebs–Ringer bicarbonate medium [0·44(±s.e.m. 0·13)μmole/mg. of N/hr.]. 4. Metabolism of propionate by sucrose homogenates freed from nuclei was dependent on the presence of oxygen, carbon dioxide and ATP. Propionate removal was stimulated 250% by Mg2+ ions and 670% by cytochrome c. 5. In the complete medium 2·39(±s.e.m. 0·15)μmoles of propionate were consumed/mg. of N/hr. 6. The ratio of oxygen consumption to propionate utilization was sufficient to account for the complete oxidation of half the propionate consumed. 7. The only products detected under these conditions were succinate, fumarate and malate. Propionate had no effect on the production of lactate from endogenous sources and did not itself give rise to lactate. 8. Methylmalonate did not accumulate when propionate was metabolized and was not oxidized. It was detected as an intermediate in the conversion of propionyl-CoA into succinate. The rate of this reaction sequence was adequate to account for the rate of propionate metabolism by sucrose homogenates or slices, provided that the rate of formation of propionyl-CoA was not limiting. 9. The methylmalonate pathway was predominantly a mitochondrial function. 10. The metabolism of propionate appeared to be dependent on active oxidative phosphorylation.  相似文献   

7.
The influence of malate and cytochrome c on fatty acid oxidation under control and ischemic conditions was investigated. In the medium without malate, cytochrome did not make fatty acid oxidation decreased during ischemia return to normal. Oxidation in the media containing malate and cytochrome did not differ from control only when it was measured after preliminary oxidation of endogenous substrates. The ratio of palmitoyl-CoA and palmitoyl carnitine to the respiration rates at state 3 was unchanged at 60 min ischemia. Apparently, no changes in carnitine acyltransferase playing a role in oxidation of palmitoyl-CoA took place. Thus, the decrease of fatty acid oxidation at early periods of ischemia is largely caused by a reduction in the content of cytochrome c and intermediates of Krebs cycle in the mitochondria.  相似文献   

8.
Conditions for the conversion of palmitate into CO2 and acetoacetate by liver homogenates and isolated liver mitochondria are described. In this system, using liver homogenates, adenosine inhibited the conversion of palmitate into CO2 and acetoacetate. The inhibition was not observed if the homogenate was substituted by mitochondria or if palmitate was substituted by palmitoyl CoA or palmitoyl carnitine. Intraperitoneal injection of adenosine produced a marked decrease in the level of acetoacetate and β-hydroxybutyrate in plasma, without changing the concentration of serum free fatty acids. Thus, the nucleoside depressed in vivo the oxidation of long chain fatty acids in liver by inhibiting the extramitochondrial acyl CoA synthase(s). The paramount importance of the extramitochondrial activation of fatty acids as a key control in their oxidation and in the production of ketone bodies is discussed.  相似文献   

9.
1. The rate of gluconeogenesis from propionate in rat kidney-cortex slices was stimulated up to 3.5-fold by dl-carnitine and by bicarbonate, and was inhibited by inorganic phosphate or high concentrations of propionate (above 3mm). 2. The stimulatory effect of carnitine was dependent on the bicarbonate concentration and could be replaced at low propionate concentration by addition of 25mm-bicarbonate-carbon dioxide buffer. At low bicarbonate concentration the carnitine concentration can be rate-limiting. 3. All observations are in accordance with the view that the action of carnitine is in principle the same as that established for other fatty acids in other tissues, namely that carnitine promotes the appearance of propionyl-CoA within the mitochondrion by acting as a carrier. 4. The accelerating effects of carnitine and bicarbonate and the inhibitory effect of phosphate can be explained on the basis of the known properties of key enzymes of propionate metabolism, i.e. the reversibility of the reactions leading to the formation of methylmalonyl-CoA from propionyl-CoA. 5. 5mm-Propionate caused a five- to ten-fold fall in the free CoA content of the tissue. This fall can account for the inhibition of respiration and gluconeogenesis caused by high propionate concentration. 6. Relatively large quantities of propionyl-l-carnitine (15% of the propionate removed) were formed when dl-carnitine was present; thus the ;activation' of propionate proceeded at a faster rate than the carboxylation of propionyl-CoA. The metabolism of added propionyl-l-carnitine was accompanied by glucose synthesis. 7. The appearance of radioactivity from [2-(14)C]propionate in both glucose and carbon dioxide was as expected on account of the randomization of C-2 and C-3 of propionate, i.e. the formation of succinate as an intermediate. 8. The maximum rate of glucose synthesis from propionate (93.3+/-3.3mumoles/g. dry wt./hr.) was not affected by dietary changes aimed at varying the rate of caecal volatile fatty acid formation in the rat. 9. Inhibition of gluconeogenesis by high propionate concentration was not found in those species where the rate of caecal or ruminal propionate production is high under normal conditions (rabbit, sheep and cow).  相似文献   

10.
D. R. Thomas  C. Wood  C. Masterson 《Planta》1988,173(2):263-266
Mitochondria from pea (Pisum sativum L.) seeds were separated into two fractions, mitoplasts (intact inner membrane) and the outer-membrane fraction. The mitoplasts only oxidised palmitate in the presence of carnitine and added outermembrane fraction. Mitoplasts were able to oxidise palmitoylCoA in the presence of carnitine and added outer-membrane fraction had no effect on this oxidation. It was concluded that a long-chain acylCoA synthetase (EC 6.2.1.3) was located on the outer membrane and that the activity of this enzyme in assays was more than sufficient to account for any observed rate of O2 uptake during palmitate oxidation by pea mitochondria. The location of carnitine long-chain acyltransferase (carnitine palmitoyl transferase EC 2.3.1.21) would appear to be the mitoplast i.e. the inner mitochondrial membrane, and confirms the previous work at Newcastle.Abbreviation Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

11.
1. The CoA and carnitine esters of 2-bromopalmitate are extremely powerful and specific inhibitors of mitochondrial fatty acid oxidation. 2. 2-Bromopalmitoyl-CoA, added as such or formed from 2-bromopalmitate, inhibits the carnitine-dependent oxidation of palmitate or palmitoyl-CoA, but not the oxidation of palmitoylcarnitine, by intact liver mitochondria. 3. 2-Bromopalmitoylcarnitine inhibits the oxidation of palmitoylcarnitine as well as that of palmitate or palmitoyl-CoA. It has no effect on succinate oxidation, but inhibits that of pyruvate, 2-oxoglutarate or hexanoate; however, the oxidation of these substrates (but not of palmitate, palmitoyl-CoA or palmitoyl-carnitine) is restored by carnitine. 4. In damaged mitochondria, added 2-bromopalmitoyl-CoA does inhibit palmitoylcarnitine oxidation; pyruvate oxidation is unaffected by the inhibitor alone, but is impaired if palmitoylcarnitine is subsequently added. 5. The findings have been interpreted as follows. 2-Bromopalmitoyl-CoA inactivates (in a carnitine-dependent manner) a pool of carnitine palmitoyltransferase which is accessible to external acyl-CoA. This results in inhibition of palmitate or palmitoyl-CoA oxidation. A second pool of carnitine palmitoyltransferase, inaccessible to added acyl-CoA in intact mitochondria, can generate bromopalmitoyl-CoA within the matrix from external 2-bromopalmitoylcarnitine; this reaction is reversible. Such internal 2-bromopalmitoyl-CoA inactivates long-chain beta-oxidation (as does added 2-bromopalmitoyl-CoA if the mitochondria are damaged) and its formation also sequesters intramitochondrial CoA. Since this CoA is shared by pyruvate and 2-oxoglutarate dehydrogenases, the oxidation of their substrates is depressed by 2-bromopalmitoylcarnitine, unless free carnitine is available to act as a ;sink' for long-chain acyl groups. 6. These effects are compared with those reported for other inhibitors of fatty acid oxidation.  相似文献   

12.
Crotonaldehyde was oxidized by disrupted rat liver mitochondrial fractions or by intact mitochondria at rates that were only 10 to 15% that of acetaldehyde. Although a poor substrate for oxidation, crotonaldehyde is an effective inhibitor of the oxidation of acetaldehyde by mitochondrial aldehyde dehydrogenase, by intact mitochondria, and by isolated hepatocytes. Inhibition by crotonaldehyde was competitive with respect to acetaldehyde, and the Ki for crotonaldehyde was about 5 to 20 microM. Crotonaldehyde had no effect on the oxidation of glutamate or succinate. Very low levels of acetaldehyde were detected during the metabolism of ethanol. Crotonaldehyde increased the accumulation of acetaldehyde more than 10-fold, indicating that crotonaldehyde, besides inhibiting the oxidation of added acetaldehyde, also inhibited the oxidation of acetaldehyde generated by the metabolism of ethanol. Formaldehyde was a substrate for the low-Km mitochondrial aldehyde dehydrogenase, as well as for a cytosolic, glutathione-dependent formaldehyde dehydrogenase. Crotonaldehyde was a potent inhibitor of mitochondrial oxidation of formaldehyde, but had no effect on the activity of formaldehyde dehydrogenase. In hepatocytes, crotonaldehyde produced about 30 to 40% inhibition of formaldehyde oxidation, which was similar to the inhibition produced by cyanamide. This suggested that part of the formaldehyde oxidation occurred via the mitochondrial aldehyde dehydrogenase, and part via formaldehyde dehydrogenase. The fact that inhibition by crotonaldehyde is competitive may be of value since other commonly used inhibitors of aldehyde dehydrogenase are irreversible inhibitors of the enzyme.  相似文献   

13.
Studies of [3H]ryanodine binding, 45Ca2+ efflux, and single channel recordings in planar bilayers indicated that the fatty acid metabolite palmitoyl carnitine produced a direct stimulation of the Ca2+ release channel (ryanodine receptor) of rabbit and pig skeletal muscle junctional sarcoplasmic reticulum. At a concentration of 50 microM, palmitoyl carnitine (a) stimulated [3H]ryanodine binding 1.6-fold in a competitive manner at all pCa in the range 6 to 3; (b) released approximately 65% (30 nmol) of passively loaded 45Ca2+/mg protein; and (c) increased 7-fold the open probability of Ca2+ release channels incorporated into planar bilayers. Neither carnitine nor palmitic acid could reproduce the effect of palmitoyl carnitine on [3H]ryanodine binding, 45Ca2+ release, or channel open probability. 45Ca2+ release was induced by several long-chain acyl carnitines (C14, C16, C18) and acyl coenzyme A derivatives (C12, C14, C16), but not by the short-chain derivative C8 or by free saturated fatty acids of chain length C8 to C18, at room temperature or 36 degrees C. This newly identified interaction of esterified fatty acids and ryanodine receptors may represent a pathway by which metabolism of skeletal muscle could influence intracellular Ca2+ and may be responsible for the pathophysiology of disorders of beta-oxidation such as carnitine palmitoyl transferase II deficiency.  相似文献   

14.
Propionic acidemia occasionally produces a toxic encephalopathy resembling Reye syndrome, indicating disruption of mitochondrial metabolism. Understanding the mitochondrial effect of propionate might clarify the pathophysiology. Liver mitochondria are inhibited by propionate (5 mM) while muscle mitochondria are not. Preincubation is required to inhibit liver mitochondria, suggesting that propionate is metabolized to propionyl CoA. Liver and skeletal muscle mitochondria incubated with [1-14C]propionate contain similar quantities of matrix isotope and release comparable [14C]CO2. However, only liver mitochondria accumulated significant propionyl CoA, which was largely (68%) synthesized from propionate. Carnitine reduced the level of liver matrix propionyl CoA. Inhibition of respiratory control ratios by propionate correlated with propionyl CoA levels. These results support the hypothesis that acyl CoA esters are toxic and that carnitine exerts its protective effect by converting acyl CoA esters to acylcarnitine esters.  相似文献   

15.
Chronic hypoxia alters mitochondrial energy metabolism. In the heart, oxidative capacity of both ventricles is decreased after 3 weeks of chronic hypoxia. The aim of this study was to evaluate the reversal of these metabolic changes upon normoxia recovery. Rats were exposed to a hypobaric environment for 3 weeks and then subjected to a normoxic environment for 3 weeks (normoxia-recovery group) and compared with rats maintained in a normoxic environment (control group). Mitochondrial energy metabolism was differentially examined in both left and right ventricles. Oxidative capacity (oxygen consumption and ATP synthesis) was measured in saponin-skinned fibers. Activities of mitochondrial respiratory chain complexes and antioxidant enzymes were measured on ventricle homogenates. Morphometric analysis of mitochondria was performed on electron micrographs. In normoxia-recovery rats, oxidative capacities of right ventricles were decreased in the presence of glutamate or palmitoyl carnitine as substrates. In contrast, oxidation of palmitoyl carnitine was maintained in the left ventricle. Enzyme activities of complexes III and IV were significantly decreased in both ventricles. These functional alterations were associated with a decrease in numerical density and an increase in size of mitochondria. Finally, in the normoxia-recovery group, the antioxidant enzyme activities (catalase and glutathione peroxidase) increased. In conclusion, alterations of mitochondrial energy metabolism induced by chronic hypoxia are not totally reversible. Reactive oxygen species could be involved and should be investigated under such conditions, since they may represent a therapeutic target.  相似文献   

16.
In mitochondrial preparations the oxidation of palmitate and of palmitoyl carnitine is stimulated by dilute extracts of the glandular lobes of the corpora cardiaca. Extracts of the storage lobes of the corpora cardiaca or of corpora allata are without effect. In a working single muscle preparation the entry of diglyceride into the muscle is also stimulated by tissue extracts containing adipokinetic hormone. This stimulation is, however, prevented by the addition of 2-bromostearic acid to the perfusion fluid. It is suggested that adipokinetic hormone may have a single site of action in the flight muscle and this may be in stimulating the entry of acyl groups into the mitochondria; perhaps by acting on the inner acyl carnitine transferase.  相似文献   

17.
Stimulation of the Alternative Pathway by Succinate and Malate   总被引:2,自引:2,他引:0       下载免费PDF全文
Stimulation of the cyanide-resistant oxidation of exogenous NADH in potato (Solanum tuberosum L. cv Bintje) tuber callus mitochondria was obtained with succinate, malate, and pyruvate. Half-maximal stimulation was observed at a succinate or malate concentration of 3 to 4 mM, which is considerably higher than that found for pyruvate (0.128 mM). No effect of succinate or malate addition was found when duroquinone was the electron acceptor. Duroquinol oxidation via the alternative pathway was poor and not stimulated by organic acids. Under stimulating conditions, no swelling or contraction of the mitochondria could be observed. Conversely, variation of the osmolarity did not affect the extent of stimulation. However, the assay temperature had a significant effect: no stimulation occurred at temperatures below 16 to 20[deg]C. Membrane fluidity measurements showed a phase transition at about 17[deg]C. Ubiquinone reduction levels were not significantly higher in the presence of succinate and malate, but the kinetics of the alternative oxidase were changed in a way comparable to that found for stimulation by pyruvate. At low temperatures the alternative oxidase displayed "activated" kinetics, and a role for membrane fluidity in the stimulation of the alternative pathway by carboxylic acids is suggested.  相似文献   

18.
Methylmalonate (MMA) and propionate effects on glucose and ketone body uptake in vitro by brain of fed and 30-hour-fasted 15-day-old rats were studied. In some experiments cerebrum prisms were incubated in the presence of glucose and either MMA or propionate in Krebs-Ringer bicarbonate buffer, pH 7.0. In others, the incubation medium contained beta-hydroxybutyrate (HBA) or acetoacetate (AcAc) instead of glucose. We verified that MMA increased glucose uptake by brain of fasting animals, whereas propionate had no effect. In addition, MMA diminished HBA but not AcAc incorporation into brain prisms, whereas propionate provoked a diminished utilization of both ketone bodies by brain. The in vitro effect of MMA and propionate on brain and liver beta-hydroxybutyrate dehydrogenase activity was also investigated. It was shown that MMA but not propionate significantly inhibited this activity. Rats were also injected subcutaneously three times with a MMA buffered solution, and the in vivo effects of MMA on the above-mentioned parameters assessed. Results from these experiments confirmed the previously found in vitro MMA effects. Methylmalonic acidemic patients accumulate primarily methylmalonate and secondarily propionate and other metabolites in their tissues at levels comparable to those we used in our assays. Most patients who survive early stages of the disease show a variable degree of neuromotor delay. Since glucose and sometimes ketones are the vital substrates for brain metabolism, it is possible that our findings may contribute to a certain extent to an understanding of the biochemical basis of mental retardation in these patients.  相似文献   

19.
The aim of this study is to investigate the effect of mitochondrial metabolism on high glucose/palmitate (HG/PA)-induced INS-1 beta cell death. Long-term treatment of INS-1 cells with HG/PA impaired energy-producing metabolism accompanying with depletion of TCA cycle intermediates. Whereas an inhibitor of carnitine palmitoyl transferase 1 augmented HG/PA-induced INS-1 cell death, stimulators of fatty acid oxidation protected the cells against the HG/PA-induced death. Furthermore, whereas mitochondrial pyruvate carboxylase inhibitor phenylacetic acid augmented HG/PA-induced INS-1 cell death, supplementation of TCA cycle metabolites including leucine/glutamine, methyl succinate/α-ketoisocaproic acid, dimethyl malate, and valeric acid or treatment with a glutamate dehydrogenase activator, aminobicyclo-heptane-2-carboxylic acid (BCH), significantly protected the cells against the HG/PA-induced death. In particular, the mitochondrial tricarboxylate carrier inhibitor, benzene tricarboxylate (BTA), also showed a strong protective effect on the HG/PA-induced INS-1 cell death. Knockdown of glutamate dehydrogenase or tricarboxylate carrier augmented or reduced the HG/PA-induced INS-1 cell death, respectively. Both BCH and BTA restored HG/PA-induced reduction of energy metabolism as well as depletion of TCA intermediates. These data suggest that depletion of the TCA cycle intermediate pool and impaired energy-producing metabolism may play a role in HG/PA-induced cytotoxicity to beta cells and thus, HG/PA-induced beta cell glucolipotoxicity can be protected by nutritional or pharmacological maneuver enhancing anaplerosis or reducing cataplerosis.  相似文献   

20.
1. Acetylcolletotrichin is a phytotoxic compound that has been isolated from the culture medium of the fungus Colletotrichum capsici (Grove et al., 1966). 2. With isolated liver and kidney mitochondria acetylcolletotrichin markedly inhibited the oxidation of succinate and those substrates with NAD-linked dehydrogenases, but did not inhibit the oxidation of ascorbate in the presence of tetramethyl-p-phenylenediamine. In this respect its action was similar to that of antimycin A. 3. Acetylcolletotrichin differed from antimycin in that, even at high concentrations which produced a maximal inhibitory effect, its action was partially reversed by uncoupling agents. Also acetylcolletotrichin had no detectable effect on the oxidative activity of blowfly flight-muscle mitochondria and was not very effective with heart mitochondria. 4. Acetylcolletotrichin inhibited the oxidative activity of liver mitochondria more markedly when respiration was stimulated by ADP together with phosphate and was less effective when respiration was stimulated by uncoupling agents. 5. There was an unusual interaction between the succinate oxidation system and the oxidation of glutamate together with malate. Thus, glutamate together with malate, even in the presence of rotenone, markedly decreased the effectiveness of acetylcolletotrichin in inhibiting succinate oxidation. 6. These effects were paralleled in the observed redox changes of cytochrome c. 7. The unusual behaviour of the cytochromes b in the presence of acetylcolletotrichin is described, and it is suggested tentatively that this inhibitor acts between cytochromes b with absorption maxima at 30 degrees C of approximately 560 and 565nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号