首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that the thermophilic filamentous anaerobe Anaerolinea thermophila, which is the first cultured representative of subphylum I of the bacterial phylum Chloroflexi, not only was one of the predominant constituents of thermophilic sludge granules but also was a causative agent of filamentous sludge bulking in a thermophilic (55 degrees C) upflow anaerobic sludge blanket (UASB) reactor in which high-strength organic wastewater was treated (Y. Sekiguchi, H. Takahashi, Y. Kamagata, A. Ohashi, and H. Harada, Appl. Environ. Microbiol. 67:5740-5749, 2001). To further elucidate the ecology and function of Anaerolinea-type filamentous microbes in UASB sludge granules, we surveyed the diversity, distribution, and physiological properties of Chloroflexi subphylum I microbes residing in UASB granules. Five different types of mesophilic and thermophilic UASB sludge were used to analyze the Chloroflexi subphylum I populations. 16S rRNA gene cloning-based analyses using a 16S rRNA gene-targeted Chloroflexi-specific PCR primer set revealed that all clonal sequences were affiliated with the Chloroflexi subphylum I group and that a number of different phylotypes were present in each clone library, suggesting the ubiquity and vast genetic diversity of these populations in UASB sludge granules. Subsequent fluorescence in situ hybridization (FISH) of the three different types of mesophilic sludge granules using a Chloroflexi-specific probe suggested that all probe-reactive cells had a filamentous morphology and were widely distributed within the sludge granules. The FISH observations also indicated that the Chloroflexi subphylum I bacteria were not always the predominant populations within mesophilic sludge granules, in contrast to thermophilic sludge granules. We isolated two mesophilic strains and one thermophilic strain belonging to the Chloroflexi subphylum I group. The physiological properties of these isolates suggested that these populations may contribute to the degradation of carbohydrates and other cellular components, such as amino acids, in the bioreactors.  相似文献   

2.
We previously reported that the thermophilic filamentous anaerobe Anaerolinea thermophila, which is the first cultured representative of subphylum I of the bacterial phylum Chloroflexi, not only was one of the predominant constituents of thermophilic sludge granules but also was a causative agent of filamentous sludge bulking in a thermophilic (55°C) upflow anaerobic sludge blanket (UASB) reactor in which high-strength organic wastewater was treated (Y. Sekiguchi, H. Takahashi, Y. Kamagata, A. Ohashi, and H. Harada, Appl. Environ. Microbiol. 67:5740-5749, 2001). To further elucidate the ecology and function of Anaerolinea-type filamentous microbes in UASB sludge granules, we surveyed the diversity, distribution, and physiological properties of Chloroflexi subphylum I microbes residing in UASB granules. Five different types of mesophilic and thermophilic UASB sludge were used to analyze the Chloroflexi subphylum I populations. 16S rRNA gene cloning-based analyses using a 16S rRNA gene-targeted Chloroflexi-specific PCR primer set revealed that all clonal sequences were affiliated with the Chloroflexi subphylum I group and that a number of different phylotypes were present in each clone library, suggesting the ubiquity and vast genetic diversity of these populations in UASB sludge granules. Subsequent fluorescence in situ hybridization (FISH) of the three different types of mesophilic sludge granules using a Chloroflexi-specific probe suggested that all probe-reactive cells had a filamentous morphology and were widely distributed within the sludge granules. The FISH observations also indicated that the Chloroflexi subphylum I bacteria were not always the predominant populations within mesophilic sludge granules, in contrast to thermophilic sludge granules. We isolated two mesophilic strains and one thermophilic strain belonging to the Chloroflexi subphylum I group. The physiological properties of these isolates suggested that these populations may contribute to the degradation of carbohydrates and other cellular components, such as amino acids, in the bioreactors.  相似文献   

3.
16S rRNA-targeted in situ hybridization combined with confocal laser scanning microscopy was used to elucidate the spatial distribution of microbes within two types of methanogenic granular sludge, mesophilic (35 degrees C) and thermophilic (55 degrees C), in upflow anaerobic sludge blanket reactors fed with sucrose-, acetate-, and propionate-based artificial wastewater. The spatial organization of the microbes was visualized in thin sections of the granules by using fluorescent oligonucleotide probes specific to several phylogenetic groups of microbes. In situ hybridization with archaeal- and bacterial-domain probes within granule sections clearly showed that both mesophilic and thermophilic granules had layered structures and that the outer layer harbored mainly bacterial cells while the inner layer consisted mainly of archaeal cells. Methanosaeta-, Methanobacterium-, Methanospirillum-, and Methanosarcina-like cells were detected with oligonucleotide probes specific for the different groups of methanogens, and they were found to be localized inside the granules, in both types of which dominant methanogens were members of the genus Methanosaeta. For specific detection of bacteria which were previously detected by whole-microbial-community 16S ribosomal DNA (rDNA)-cloning analysis (Y. Sekiguchi, Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura, Microbiology 144:2655-2665, 1998) we designed probes specific for clonal 16S rDNAs related to unidentified green nonsulfur bacteria and clones related to Syntrophobacter species. The probe designed for the cluster closely related to Syntrophobacter species hybridized with coccoid cells in the inner layer of the mesophilic granule sections. The probe for the unidentified bacteria which were clustered with the green nonsulfur bacteria detected filamentous cells in the outermost layer of the thermophilic sludge granule sections. These results revealed the spatial organizations of methanogens and uncultivated bacteria and their in situ morphologies and metabolic functions in both mesophilic and thermophilic granular sludges.  相似文献   

4.
The thermophilic, anaerobic, propionate-oxidizing bacterial populations present in the methanogenic granular sludge in a thermophilic (55 degrees C) upflow anaerobic sludge blanket reactor were studied by cultivation and in situ hybridization analysis. For isolation of propionate-degrading microbes, primary enrichment was made with propionate as the sole energy source at 55 degrees C. After several attempts to purify the microbes, a thermophilic, syntrophic, propionate-oxidizing bacterium, designated strain SI, was isolated in both pure culture and coculture with Methanobacterium thermoautotrophicum. Under thermophilic (55 degrees C) conditions, strain SI oxidized propionate, ethanol, and lactate in coculture with M. thermoautotrophicum. In pure culture, the isolate was found to ferment pyruvate. 16S ribosomal DNA sequence analysis revealed that the strain was relatively close to members of the genus Desulfotomaculum, but it was only distantly related to any known species. To elucidate the abundance and spatial distribution of organisms of the strain SI type within the sludge granules, a 16S rRNA-targeted oligonucleotide probe specific for strain SI was developed and applied to thin sections of the granules. Fluorescence in situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells were present in the middle and inner layers of the thermophilic granule sections and that they formed close associations with hydrogenotrophic methanogens. They accounted for approximately 1.1% of the total cells in the sludge. These results demonstrated that strain SI was one of the significant populations in the granular sludge and that it was responsible for propionate oxidation in the methanogenic granular sludge in the reactor.  相似文献   

5.
The thermophilic, anaerobic, propionate-oxidizing bacterial populations present in the methanogenic granular sludge in a thermophilic (55°C) upflow anaerobic sludge blanket reactor were studied by cultivation and in situ hybridization analysis. For isolation of propionate-degrading microbes, primary enrichment was made with propionate as the sole energy source at 55°C. After several attempts to purify the microbes, a thermophilic, syntrophic, propionate-oxidizing bacterium, designated strain SI, was isolated in both pure culture and coculture with Methanobacterium thermoautotrophicum. Under thermophilic (55°C) conditions, strain SI oxidized propionate, ethanol, and lactate in coculture with M. thermoautotrophicum. In pure culture, the isolate was found to ferment pyruvate. 16S ribosomal DNA sequence analysis revealed that the strain was relatively close to members of the genus Desulfotomaculum, but it was only distantly related to any known species. To elucidate the abundance and spatial distribution of organisms of the strain SI type within the sludge granules, a 16S rRNA-targeted oligonucleotide probe specific for strain SI was developed and applied to thin sections of the granules. Fluorescence in situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells were present in the middle and inner layers of the thermophilic granule sections and that they formed close associations with hydrogenotrophic methanogens. They accounted for approximately 1.1% of the total cells in the sludge. These results demonstrated that strain SI was one of the significant populations in the granular sludge and that it was responsible for propionate oxidation in the methanogenic granular sludge in the reactor.  相似文献   

6.
Micromanipulation was used to obtain an isolate (BEN 52) of Eikelboom Type 1851 from a bulking activated sludge plant. Its 16S rDNA sequence reveals its closest relative is 'Roseiflexus castenholzii', a member of the phylum 'Chloroflexi', class 'Chloroflexi', previously called the green non-sulfur bacteria. The 16S rRNA targeted oligonucleotide probe designed for fluorescence in situ hybridisation against this sequence successfully identified filamentous bacteria with the morphological features of Type 1851 in activated sludge samples from plants in several countries and different operational configurations.  相似文献   

7.
The bacterial community structure of the activated sludge from a 25 million-gal-per-day industrial wastewater treatment plant was investigated using rRNA analysis. 16S ribosomal DNA (rDNA) libraries were created from three sludge samples taken on different dates. Partial rRNA gene sequences were obtained for 46 rDNA clones, and nearly complete 16S rRNA sequences were obtained for 18 clones. Seventeen of these clones were members of the beta subdivision, and their sequences showed high homology to sequences of known bacterial species as well as published 16S rDNA sequences from other activated sludge sources. Sixteen clones belonged to the alpha subdivision, 7 of which showed similarity to Hyphomicrobium species. This cluster was chosen for further studies due to earlier work on Hyphomicrobium sp. strain M3 isolated from this treatment plant. A nearly full-length 16S rDNA sequence was obtained from Hyphomicrobium sp. strain M3. Phylogenetic analysis revealed that Hyphomicrobium sp. strain M3 was 99% similar to Hyphomicrobium denitrificans DSM 1869(T) in Hyphomicrobium cluster II. Three of the cloned sequences from the activated sludge samples also grouped with those of Hyphomicrobium cluster II, with a 96% sequence similarity to that of Hyphomicrobium sp. strain M3. The other four cloned sequences from the activated sludge sample were more closely related to those of the Hyphomicrobium cluster I organisms (95 to 97% similarity). Whole-cell fluorescence hybridization of microorganisms in the activated sludge with genus-specific Hyphomicrobium probe S-G-Hypho-1241-a-A-19 enhanced the visualization of Hyphomicrobium and revealed that Hyphomicrobium appears to be abundant both on the outside of flocs and within the floc structure. Dot blot hybridization of activated sludge samples from 1995 with probes designed for Hyphomicrobium cluster I and Hyphomicrobium cluster II indicated that Hyphomicrobium cluster II-positive 16S rRNA dominated over Hyphomicrobium cluster I-positive 16S rRNA by 3- to 12-fold. Hyphomicrobium 16S rRNA comprised approximately 5% of the 16S rRNA in the activated sludge.  相似文献   

8.
具细菌群体感应抑制活性海洋细菌的筛选鉴定   总被引:2,自引:0,他引:2  
袁茵  鲁欣 《生物技术》2006,16(4):30-33
目的:从海洋环境中筛选对细菌群体感应有抑制作用的活性菌株,为以致病菌群体感应系统为靶点的新型疗法提供新的药用资源。方法:从海水中分离纯化细菌菌株,采用根癌农杆菌平板筛选模型筛选细菌群体感应抑制活性细菌,对筛选出的海洋细菌进行生理生化和16S rDNA序列测定,根据《伯杰氏手册》进行菌种分类鉴定。结果:从217株海洋细菌中筛选出1株能显著抑制细菌群体感应效应的海洋细菌Y2,该海洋细菌具有蜡样芽孢杆菌(Bacillus cereus)的典型特征,其16S rDNA序列与GenBank中蜡样芽孢杆菌16S rDNA的部分序列有100%的同源性。结论:海洋环境中也存在具有抑制细菌群体感应活性的微生物。  相似文献   

9.
A new thermophilic sulfate-reducing bacterium isolated from the high-temperature White Tiger oil field (Vietnam) is described. Cells of the bacterium are oval (0.4-0.6 by 0.6-1.8 microns), nonmotile, non-spore-forming, and gram-negative. Growth occurs at 45 to 65 degrees C (with an optimum at 60 degrees C) at NaCl concentrations of 0 to 50 g/l. In the course of sulfate reduction, the organism can utilize lactate, pyruvate, malate, fumarate, ethanol, salts of fatty acids (formate, acetate, propionate, butyrate, caproate, palmitate), yeast extract, alanine, serine, cysteine, and H2 + CO2 (autotrophically). In addition to sulfate, the bacterium can use sulfite, thiosulfate, and elemental sulfur as electron acceptors. In the absence of electron acceptors, the bacterium can ferment pyruvate and yeast extract (a yet unrecognized capacity of sulfate reducers) with the formation of acetate and H2. The G + C content of DNA is 60.8 mol %. The level of DNA-DNA hybridization of the isolate (strain 101T) and Desulfacinum infernum (strain B alpha G1T) is as low as 34%. Analysis of the nucleotide sequence of 16S rDNA places strain 101T in the phylogenetic cluster of the Desulfacinum species within the sulfate reducer subdivision of the delta subclass of Proteobacteria. All these results allowed the bacterium studied to be described as a new species, Desulfacinum subterraneum sp. nov., with strain 101 as the type strain.  相似文献   

10.
Chloroflexi are currently believed to serve as backbone forming agents in the activated sludge of wastewater treatment plants (WWTPs). In this study, we isolated and characterized filamentous bacteria in the class Caldilineae of the phylum Chloroflexi in municipal WWTPs. Diversity analysis using Chloroflexi-specific 16S rRNA gene clone libraries showed that 97% of the clones belonged to the subdivision Anaerolineae comprising the two classes Anaerolineae (95%) and Caldilineae (2%). Clones of Caldilineae were related to a thermophilic filament Caldilinea aerophila with 93% 16S rRNA gene sequence similarity. We obtained filamentous isolates classified into the class Caldilineae showing the best match to C. aerophila with 89% 16S rRNA gene sequence similarity. Isolates showed no ability to assimilate glucose or N-acetylglucosamine or to degrade biopolymers which were observed in filamentous Chloroflexi of WWTPs. The assessment of relative abundance based on quantitative PCR of the 16S rRNA gene indicated that members of the class Caldilineae comprised 12–19% of the Chloroflexi in the activated sludge. Additionally, fluorescence in situ hybridization experiments showed that diverse filamentous Caldilineae inhabit the activated sludge of municipal WWTPs. These findings yield insight into the role of filamentous mesophilic Caldilinea in stabilizing flocs of activated sludge in a wide range of WWTPs.  相似文献   

11.
Characterization of a hydrogen-producing granular sludge   总被引:17,自引:0,他引:17  
This study demonstrated that hydrogen-producing acidogenic sludge could agglutinate into granules in a well-mixed reactor treating a synthetic sucrose-containing wastewater at 26 degrees C, pH 5.5, with 6 h of hydraulic retention. A typical matured granule is 1.6 mm in diameter, 1.038 g/mL in density, 11% in ash content, and over 50 m/h in settling velocity. Treating a solution containing 12.15 g/L of sucrose at a volumetric loading rate of 48.6 g/(L x d), the reactor containing 20 g/L of granular sludge degraded 97% of sucrose. Effluent comprised 46% acetate and 49% butyrate and the methane-free biogas comprised 63% hydrogen, 35% carbon dioxide, and 2% nitrogen. Hydrogen production rate was 13.0 L/(L x d), and the yield was 0.28 L/g-sucrose. The granule had multiple cracks on the surface and comprised two morphological types of bacteria: fusiform bacilli and a spore-forming bacterium. Phylogenetic analysis showed that 69.1% of the clones were affiliated with four Clostridium species in the family Clostridiaceae, and 13.5% with Sporolactobacillus racemicus in the Bacillus/Staphylococcus group.  相似文献   

12.
An agar-degrading bacterium, strain SA7, was isolated from plant roots cultivated in soil. Analysis of the 16S rDNA sequence showed that strain SA7 is affiliated with the genus Asticcacaulis. Strain SA7 produced extracellular agarase, and grew utilizing agar in the culture medium as sole carbon source. Zymogram analysis showed that strain SA7 extracellularly secreted single agarase protein (about 70 kDa).  相似文献   

13.
The bacterial community structure of the activated sludge from a 25 million-gal-per-day industrial wastewater treatment plant was investigated using rRNA analysis. 16S ribosomal DNA (rDNA) libraries were created from three sludge samples taken on different dates. Partial rRNA gene sequences were obtained for 46 rDNA clones, and nearly complete 16S rRNA sequences were obtained for 18 clones. Seventeen of these clones were members of the beta subdivision, and their sequences showed high homology to sequences of known bacterial species as well as published 16S rDNA sequences from other activated sludge sources. Sixteen clones belonged to the alpha subdivision, 7 of which showed similarity to Hyphomicrobium species. This cluster was chosen for further studies due to earlier work on Hyphomicrobium sp. strain M3 isolated from this treatment plant. A nearly full-length 16S rDNA sequence was obtained from Hyphomicrobium sp. strain M3. Phylogenetic analysis revealed that Hyphomicrobium sp. strain M3 was 99% similar to Hyphomicrobium denitrificans DSM 1869T in Hyphomicrobium cluster II. Three of the cloned sequences from the activated sludge samples also grouped with those of Hyphomicrobium cluster II, with a 96% sequence similarity to that of Hyphomicrobium sp. strain M3. The other four cloned sequences from the activated sludge sample were more closely related to those of the Hyphomicrobium cluster I organisms (95 to 97% similarity). Whole-cell fluorescence hybridization of microorganisms in the activated sludge with genus-specific Hyphomicrobium probe S-G-Hypho-1241-a-A-19 enhanced the visualization of Hyphomicrobium and revealed that Hyphomicrobium appears to be abundant both on the outside of flocs and within the floc structure. Dot blot hybridization of activated sludge samples from 1995 with probes designed for Hyphomicrobium cluster I and Hyphomicrobium cluster II indicated that Hyphomicrobium cluster II-positive 16S rRNA dominated over Hyphomicrobium cluster I-positive 16S rRNA by 3- to 12-fold. Hyphomicrobium 16S rRNA comprised approximately 5% of the 16S rRNA in the activated sludge.  相似文献   

14.
An agar-degrading bacterium, strain SA7, was isolated from plant roots cultivated in soil. Analysis of the 16S rDNA sequence showed that strain SA7 is affiliated with the genus Asticcacaulis. Strain SA7 produced extracellular agarase, and grew utilizing agar in the culture medium as sole carbon source. Zymogram analysis showed that strain SA7 extracellularly secreted single agarase protein (about 70 kDa).  相似文献   

15.
Five isolates of a filamentous bacterial morphotype with the distinctive diagnostic microscopic features of Eikelboom Type 1863 were obtained from activated sludge sewage treatment plants in Victoria, Australia. On the basis of phenotypic evidence and 16S rDNA sequence data, these isolates proved to be polyphyletic. Two (Ben 06 and Ben 06C) are from the Chryseobacterium subgroup which is in the Cytophaga group, subdivision I of the Flexibacter – Cytophaga – Bacteroides phylum. Two (Ben 56 and Ben 59) belong to the genus Acinetobacter , and one (Ben 58) is a Moraxella sp., closest to Mor. osloensis . The significance of these findings to the reliance on microscopic features for identification of these filamentous bacteria in activated sludge is discussed.  相似文献   

16.
【目的】分离高效降解纤维素的嗜热厌氧菌,通过与嗜热产乙醇菌株联合培养的方式,为生产纤维素乙醇提供微生物资源。【方法】利用厌氧分离技术从降解纤维素的马粪富集物中分离到一株嗜热厌氧细菌HCp。采用形态学观察、生理生化鉴定、结合16S rDNA序列的系统发育学分析确定该菌株的分类地位,利用DNS酶活分析方法测定此分离菌株的酶学性质。【结果】分离菌株HCp革兰氏染色阴性,直杆,细胞单个或成对出现,菌体大小为(0.35-0.50)μm×(2.42-6.40)μm,严格厌氧,形成芽胞,能运动,对新霉素有一定的抗性。此菌能利用滤纸纤维素、纤维素粉、微晶纤维素、脱脂棉和水稻秸秆、明胶等,还可以利用葡萄糖、纤维二糖、木糖、木聚糖、果糖、蔗糖、核糖、半乳糖、麦芽糖、山梨糖、海藻糖、蜜二糖、甘露糖等。该菌株在pH6.5-8.5、温度35-70℃、盐浓度0%-1.0%范围内利用纤维素生长,最适pH为6.85,最适温度为60℃,最适NaCl浓度为0.2%,最佳生长条件下,在10 d内滤纸纤维素降解率可达90.40%。在HCp的纤维小体中,滤纸酶、羧甲基纤维素酶、β-葡萄糖苷酶、木聚糖酶的最适作用温度分别为70℃、70℃、70℃、60℃,并且羧甲基纤维素酶具有较高的热稳定性。部分长度的16S rDNA序列分析表明,分离菌株HCp与Acetivibrio cellulolyticus、A.cellulosolvens相似性为97.5%。【结论】分离菌株HCp是从马粪富集物中分离到的一株嗜热厌氧细菌,该菌具有较强的降解纤维素能力,生长温度范围广,酶的热稳定性好,纤维素底物利用广泛等特性,为纤维素降解产乙醇提供了良好的材料。  相似文献   

17.
A morphologically conspicuous bacterium that constituted a very small fraction (< 0.01%) of the total microbial community of activated sludge was enriched and analysed phylogenetically by a combination of cultivation-independent molecular and physical methods. The large, corkscrew-shaped, filamentous bacteria were first detected in municipal activated sludge by light microscopy owing to their unusual rotating gliding motility. Various attempts at microbiological enrichment and pure culture isolation with traditional techniques failed, as did attempts to retrieve the morphotype of interest by micromanipulation. In situ hybridization with the group-specific, rRNA-targeted oligonucleotide probe CF319a indicated a phylogenetic affiliation to the Cytophaga-Flexibacter group of the Cytophaga-Flavobacterium-Bacteroides phylum. Based on strong morphological resemblance to members of the genus Saprospira, additional 16S rRNA-targeted oligonucleotides with more narrow specificity were designed and evaluated for in situ hybridization to the morphotype of interest. Flow cytometric cell sorting based on the fluorescence conferred by probe SGR1425 and forward scatter enabled a physical enrichment of the helical coiled cells. Subsequent polymerase chain reaction (PCR) amplification of 16S rDNA fragments from whole fixed sorted cells with a primer pair based on probes CF319a and SGR1425 resulted in the retrieval of 12 almost identical partial 16S rDNA fragments with sequence similarities among each other of more than 99.2%. In situ hybridizations proved that the sequences that showed the highest similarity (88.4%) to the 16S rRNA of Saprospira grandis were indeed retrieved from the corkscrew-shaped filaments. The bacterium is likely to be a member of a genus of which no species has been cultured hitherto. It was consequently tentatively named 'Magnospira bakii' and has the taxonomic rank of Candidatus Magnospira bakii, as the ultimate taxonomic placement has to await its cultivation. In this study, it was demonstrated that even bacteria occurring at very low frequencies in highly complex environmental samples can be retrieved selectively without cultivation for further molecular analysis.  相似文献   

18.
A novel, extremely thermophilic bacterium was isolated from a shallow marine hydrothermal vent at depth of 22 m in Tachibana Bay, Nagasaki Prefecture, Japan. Cells were gram-negative, non-spore-forming, motile rods. Growth was observed between 52 and 78 degrees C (optimum 70 degrees C), pH 5 and 8 (optimum pH 7) and 0-4.5% NaCl (optimum 1.0%). The isolate was a strictly aerobic heterotroph utilizing yeast extract and trypticase peptone. The G+C content of the genomic DNA is 69 mol%. Analysis of 16S rDNA sequences indicated that strain Ts1a is closely related to Thermaerobacter marianensis. The differences in physiology and DNA-DNA similarity between strain Ts1a and T. marianensis showed that strain Ts1a represents a new species of Thermaerobacter. The type strain of T. nagasakiensis is strain Ts1a (=JCM11223, DSM 14512).  相似文献   

19.
The microbial populations responsible for anaerobic degradation of phthalate isomers were investigated by enrichment and isolation of those microbes from anaerobic sludge treating wastewater from the manufacturing of terephthalic acid. Primary enrichments were made with each of three phthalate isomers (ortho-, iso-, and terephthalate) as the sole energy source at 37 degrees C with two sources of anaerobic sludge (both had been used to treat wastewater containing high concentrations of phthalate isomers) as the inoculum. Six methanogenic enrichment cultures were obtained which not only degraded the isomer used for the enrichment but also had the potential to degrade part of other phthalate isomers as well as benzoate with concomitant production of methane, presumably involving strictly syntrophic substrate degradation. Our 16S rRNA gene-cloning analysis combined with fluorescence in situ hybridization revealed that the predominant bacteria in the enrichment cultures were affiliated with a recently recognized non-sulfate-reducing subcluster (subcluster Ih) in the group 'Desulfotomaculum lineage I' or a clone cluster (group TA) in the class delta-PROTEOBACTERIA: Several attempts were made to isolate these microbes, resulting in the isolation of a terephthalate-degrading bacterium, designated strain JT, in pure culture. A coculture of the strain with the hydrogenotrophic methanogen Methanospirillum hungatei converted terephthalate to acetate and methane within 3 months of incubation, whereas strain JT could not degrade terephthalate in pure culture. During the degradation of terephthalate, a small amount of benzoate was transiently accumulated as an intermediate, indicative of decarboxylation of terephthalate to benzoate as the initial step of the degradation. 16S rRNA gene sequence analysis revealed that the strain was a member of subcluster Ih of the group 'Desulfotomaculum lineage I', but it was only distantly related to other known species.  相似文献   

20.
A new thermophilic sulfate-reducing bacterium isolated from the high-temperature White Tiger oil field (Vietnam) is described. Cells of the bacterium are oval (0.4–0.6 by 0.6–1.8 m), nonmotile, non-spore-forming, and gram-negative. Growth occurs at 45 to 65°C (with an optimum at 60°C) at NaCl concentrations of 0 to 50 g/l. In the course of sulfate reduction, the organism can utilize lactate, pyruvate, malate, fumarate, ethanol, salts of fatty acids (formate, acetate, propionate, butyrate, caproate, palmitate), yeast extract, alanine, serine, cysteine, and H2+ CO2(autotrophically). In addition to sulfate, the bacterium can use sulfite, thiosulfate, and elemental sulfur as electron acceptors. In the absence of electron acceptors, the bacterium can ferment pyruvate and yeast extract (a yet unrecognized capacity of sulfate reducers) with the formation of acetate and H2. The G+C content of DNA is 60.8 mol %. The level of DNA–DNA hybridization of the isolate (strain 101T) and Desulfacinum infernum(strain BG1T) is as low as 34%. Analysis of the nucleotide sequence of 16S rDNA places strain 101Tin the phylogenetic cluster of the Desulfacinumspecies within the sulfate reducer subdivision of the delta subclass of Proteobacteria. All these results allowed the bacterium studied to be described as a new species, Desulfacinum subterraneumsp. nov., with strain 101 as the type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号