首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The Contact Heat Evoked Potential Stimulator (CHEPS) utilises rapidly delivered heat pulses with adjustable peak temperatures to stimulate the differential warm/heat thresholds of receptors expressed by Aδ and C fibres. The resulting evoked potentials can be recorded and measured, providing a useful clinical tool for the study of thermal and nociceptive pathways. Concurrent recording of contact heat evoked potentials using electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) has not previously been reported with CHEPS. Developing simultaneous EEG and fMRI with CHEPS is highly desirable, as it provides an opportunity to exploit the high temporal resolution of EEG and the high spatial resolution of fMRI to study the reaction of the human brain to thermal and nociceptive stimuli.

Methods

In this study we have recorded evoked potentials stimulated by 51°C contact heat pulses from CHEPS using EEG, under normal conditions (baseline), and during continuous and simultaneous acquisition of fMRI images in ten healthy volunteers, during two sessions. The pain evoked by CHEPS was recorded on a Visual Analogue Scale (VAS).

Results

Analysis of EEG data revealed that the latencies and amplitudes of evoked potentials recorded during continuous fMRI did not differ significantly from baseline recordings. fMRI results were consistent with previous thermal pain studies, and showed Blood Oxygen Level Dependent (BOLD) changes in the insula, post-central gyrus, supplementary motor area (SMA), middle cingulate cortex and pre-central gyrus. There was a significant positive correlation between the evoked potential amplitude (EEG) and the psychophysical perception of pain on the VAS.

Conclusion

The results of this study demonstrate the feasibility of recording contact heat evoked potentials with EEG during continuous and simultaneous fMRI. The combined use of the two methods can lead to identification of distinct patterns of brain activity indicative of pain and pro-nociceptive sensitisation in healthy subjects and chronic pain patients. Further studies are required for the technique to progress as a useful tool in clinical trials of novel analgesics.  相似文献   

2.
The low-density lipoprotein receptor-related protein (LRP) is a large, endocytic receptor involved in intracellular signalling. LRP acts as a co-receptor with the PDGF-receptor (PDGF-r) for platelet-derived growth factor (PDGF). PDGF-r and Src-kinases induce tyrosine-phosphorylation of LRP. We used fluorescence lifetime imaging microscopy (FLIM) to specifically detect LRP phosphorylation, measure its extent and localization in intact cells, and assess its effects upon LRP-APP interaction. Robust phosphorylation of LRP throughout the cell was observed after overexpression of Src-kinase. This depended on LRP's distal NPXY domain. By contrast, activation of the PDGF-r resulted in phosphorylation of the subpopulation of LRP at or near the cell surface. PDGF activation triggered phosphorylation of endogenous LRP in primary neurons. LRP is also a trafficking receptor for the Alzheimer-related molecule amyloid-precursor-protein (APP). PDGF stimulation did not affect LRP-APP interactions. This approach allows exquisite subcellular resolution of specific LRP post-translational changes and protein-protein interactions of endogenous proteins in intact cells.  相似文献   

3.
Membrane receptor-ligand interactions mediate many cellular functions. Binding kinetics and downstream signaling triggered by these molecular interactions are likely affected by the mechanical environment in which binding and signaling take place. A recent study demonstrated that mechanical force can regulate antigen recognition by and triggering of the T-cell receptor (TCR). This was made possible by a new technology we developed and termed fluorescence biomembrane force probe (fBFP), which combines single-molecule force spectroscopy with fluorescence microscopy. Using an ultra-soft human red blood cell as the sensitive force sensor, a high-speed camera and real-time imaging tracking techniques, the fBFP is of ~1 pN (10-12 N), ~3 nm and ~0.5 msec in force, spatial and temporal resolution. With the fBFP, one can precisely measure single receptor-ligand binding kinetics under force regulation and simultaneously image binding-triggered intracellular calcium signaling on a single live cell. This new technology can be used to study other membrane receptor-ligand interaction and signaling in other cells under mechanical regulation.  相似文献   

4.
Spatiotemporal change of the cytosolic free Ca2+ concentration ([Ca2+]i) in response to a variety of secretagogues was examined in rat pancreatoma AR-42J and AR-IP cells by microspectroflurometry and digital imaging microscopy after loading with fura-2. In the presence of external Ca2+, carbachol, CCK-OP (cholecystokinin-octapeptide), gastrin, norepinephrine or high K+ evoked a large transient increase in [Ca2+]i in AR-42J cells which declined to a sustained level before slowly declining towards the resting level. In the absence of external Ca2+, a transient increase in [Ca2+]i were evoked by all the ligands except for high K+ stimulation, which declined rapidly towards the resting level. The [Ca2+]i increase caused by carbachol and high K+ treatment was inhibited by muscarinic receptor antagonist, atropine, and by L-type Ca2+ channel blocker, nifedipine, respectively. The transient [Ca2+]i increase induced by gastrin stimulation was not blocked by Ca2+ channel blocker, lanthanum. In the AR-IP cells, which are non-differentiated pancreatoma cell line, all stimulations including high K+ treatment have failed to evoke [Ca2+]i response. These intracellular Ca2+ mobilizations in response to ligands in AR-42J cells were displayed by digital imaging microscopy. From these results we conclude that AR-42J cells has an alpha-adrenergic receptor, in addition to muscarinic acetylcholine receptor, CCK-OP receptor, gastrin receptor and voltage dependent Ca2+ channel. In marked contrast, AR-IP cells have neither any hormone receptor for the above ligands nor voltage dependent Ca2+ channel.  相似文献   

5.
A better understanding of the mechanisms governing receptor trafficking between the plasma membrane (PM) and intracellular compartments requires an experimental approach with excellent spatial and temporal resolutions. Moreover, such an approach must also have the ability to distinguish receptors localized on the PM from those in intracellular compartments. Most importantly, detecting receptors in a single vesicle requires outstanding detection sensitivity, since each vesicle carries only a small number of receptors. Standard approaches for examining receptor trafficking include surface biotinylation followed by biochemical detection, which lacks both the necessary spatial and temporal resolutions; and fluorescence microscopy examination of immunolabeled surface receptors, which requires chemical fixation of cells and therefore lacks sufficient temporal resolution1-6 . To overcome these limitations, we and others have developed and employed a new strategy that enables visualization of the dynamic insertion of receptors into the PM with excellent spatial and temporal resolutions 7-17 . The approach includes tagging of a pH-sensitive GFP, the superecliptic pHluorin 18, to the N-terminal extracellular domain of the receptors. Superecliptic pHluorin has the unique property of being fluorescent at neutral pH and non-fluorescent at acidic pH (pH < 6.0). Therefore, the tagged receptors are non-fluorescent when within the acidic lumen of intracellular trafficking vesicles or endosomal compartments, and they become readily visualized only when exposed to the extracellular neutral pH environment, on the outer surface of the PM. Our strategy consequently allows us to distinguish PM surface receptors from those within intracellular trafficking vesicles. To attain sufficient spatial and temporal resolutions, as well as the sensitivity required to study dynamic trafficking of receptors, we employed total internal reflection fluorescent microscopy (TIRFM), which enabled us to achieve the optimal spatial resolution of optical imaging (~170 nm), the temporal resolution of video-rate microscopy (30 frames/sec), and the sensitivity to detect fluorescence of a single GFP molecule. By imaging pHluorin-tagged receptors under TIRFM, we were able to directly visualize individual receptor insertion events into the PM in cultured neurons. This imaging approach can potentially be applied to any membrane protein with an extracellular domain that could be labeled with superecliptic pHluorin, and will allow dissection of the key detailed mechanisms governing insertion of different membrane proteins (receptors, ion channels, transporters, etc.) to the PM.  相似文献   

6.
For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena—such as the presence of immune system cells, tumor angiogenesis, and metastasis—may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.  相似文献   

7.
Most molecular imaging technologies require exogenous probes and may have some influence on the intracellular dynamics of target molecules. In contrast, Raman scattering light measurement can identify biomolecules in their innate state without application of staining methods. Our aim was to analyze intracellular dynamics of topoisomerase I inhibitor, CPT-11, by using slit-scanning confocal Raman microscopy, which can take Raman images with high temporal and spatial resolution. We could acquire images of the intracellular distribution of CPT-11 and its metabolite SN-38 within several minutes without use of any exogenous tags. Change of subcellular drug localization after treatment could be assessed by Raman imaging. We also showed intracellular conversion from CPT-11 to SN-38 using Raman spectra. The study shows the feasibility of using slit-scanning confocal Raman microscopy for the non-labeling evaluation of the intracellular dynamics of CPT-11 with high temporal and spatial resolution. We conclude that Raman spectromicroscopic imaging is useful for pharmacokinetic studies of anticancer drugs in living cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Spatial resolution is one of the most critical measurement parameters in infrared microspectroscopy. Due to the distinct levels of morphologic heterogeneity in cells and tissues the spatial resolution in a given IR imaging setup strongly affects the character of the infrared spectral patterns obtained from the biomedical samples. This is particularly important when spectral data bases of reference microspectra from defined tissue structures are collected. In this paper we have also pointed out that the concept of spatial resolution in IR imaging is inseparable from the contrast. Based on infrared microspectroscopic transmittance data acquired from an USAF 1951 resolution target we have demonstrated how the spatial resolution can be determined experimentally and some numbers for the spatial resolution of popular IR imaging systems are provided. Finally, we have presented a new computational procedure which is suitable to improve the spatial resolution in IR imaging. A theoretical model of 3D-Fourier self-deconvolution (FSD) is given and advantages or pitfalls of this method are discussed. Based on synchrotron IR microspectroscopic data we have furthermore demonstrated that the technique of 3D-FSD can be successfully applied to increase the spatial resolution in a real IR imaging setup.  相似文献   

9.
Spatial resolution is one of the most critical measurement parameters in infrared microspectroscopy. Due to the distinct levels of morphologic heterogeneity in cells and tissues the spatial resolution in a given IR imaging setup strongly affects the character of the infrared spectral patterns obtained from the biomedical samples. This is particularly important when spectral data bases of reference microspectra from defined tissue structures are collected. In this paper we have also pointed out that the concept of spatial resolution in IR imaging is inseparable from the contrast. Based on infrared microspectroscopic transmittance data acquired from an USAF 1951 resolution target we have demonstrated how the spatial resolution can be determined experimentally and some numbers for the spatial resolution of popular IR imaging systems are provided. Finally, we have presented a new computational procedure which is suitable to improve the spatial resolution in IR imaging. A theoretical model of 3D-Fourier self-deconvolution (FSD) is given and advantages or pitfalls of this method are discussed. Based on synchrotron IR microspectroscopic data we have furthermore demonstrated that the technique of 3D-FSD can be successfully applied to increase the spatial resolution in a real IR imaging setup.  相似文献   

10.
Based on time-averaging fluctuation analysis of small fluorescent molecular ensembles in equilibrium, fluorescence correlation spectroscopy has recently been applied to investigate processes in the intracellular milieu. The exquisite sensitivity of fluorescence correlation spectroscopy provides access to a multitude of measurement parameters (rates of diffusion, local concentration, states of aggregation and molecular interactions) in real time with fast temporal and high spatial resolution. The introduction of dual-color cross-correlation, imaging, two-photon excitation, and coincidence analysis coupled with fluorescence correlation spectroscopy has expanded the utility of the technique to encompass a wide range of promising applications in living cells that may provide unprecedented insight into understanding the molecular mechanisms of intracellular neurobiological processes.  相似文献   

11.
Chung E  Kim D  Cui Y  Kim YH  So PT 《Biophysical journal》2007,93(5):1747-1757
The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Lateral resolution improvement of up to a factor of 2 has been achieved using structured illumination. In a total internal reflection fluorescence microscope, an evanescence excitation field is formed as light is total internally reflected at an interface between a high and a low index medium. The <100 nm penetration depth of evanescence field ensures a thin excitation region resulting in low background fluorescence. We present even higher resolution wide-field biological imaging by use of standing wave total internal reflection fluorescence (SW-TIRF). Evanescent standing wave (SW) illumination is used to generate a sinusoidal high spatial frequency fringe pattern on specimen for lateral resolution enhancement. To prevent thermal drift of the SW, novel detection and estimation of the SW phase with real-time feedback control is devised for the stabilization and control of the fringe phase. SW-TIRF is a wide-field superresolution technique with resolution better than a fifth of emission wavelength or approximately 100 nm lateral resolution. We demonstrate the performance of the SW-TIRF microscopy using one- and two-directional SW illumination with a biological sample of cellular actin cytoskeleton of mouse fibroblast cells as well as single semiconductor nanocrystal molecules. The results confirm the superior resolution of SW-TIRF in addition to the merit of a high signal/background ratio from TIRF microscopy.  相似文献   

12.
The recognition that intracellular free calcium serves as a ubiquitous intracellular signal has motivated efforts to elucidate mechanisms by which cells regulate calcium influx. One route of entry that may offer both spatial and temporal fine resolution for altering calcium levels is that provided by cation-permeable, ligand-gated ion channels. Biophysical measurements as well as calcium imaging techniques demonstrate that neuronal nicotinic acetylcholine receptors as a class have a high relative permeability to calcium; some subtypes equal or exceed all other known receptors in this respect. Activation of nicotinic receptors on neurons can produce substantial increases in intracellular calcium levels by direct passage of calcium through the receptor channel. When multiple classes of nicotinic receptors are expressed by the same neuron, each appears capable of increasing calcium in the cell but may differ with respect to location, temporal response, agonist sensitivity, or regulation in achieving it. As a result, nicotinic receptors must be considered strong candidates for signaling molecules through which neurons regulate a diverse array of cellular events.  相似文献   

13.
Progress in optical microscopy, combined to the emergence of new fluorescent probes and advanced instrumentation, now permits the imaging of single molecules in fixed and live cells. This extreme detection sensitivity has opened new modalities in cellular imaging. On the one hand, optical images with an unprecedented resolution in the 10-50 nm range, well below the diffraction limit of light, can be recorded. These super-resolution images give new insights into the properties of cellular structures. On the other hand, proteins, either in the membrane or intracellular, can be tracked in live cells and in physiological conditions. Their individual trajectories provide invaluable information on the molecular interactions that control their dynamics and their spatial organization. Single molecule imaging is rapidly becoming a unique tool to understand the biochemical and biophysical processes that determine the properties of molecular assemblies in a cellular context.  相似文献   

14.
Insights into the three-dimensional (3D) organization and function of intracellular structures at nanometer resolution, holds the key to our understanding of the molecular underpinnings of cellular structure-function. Besides this fundamental understanding of the cell at the molecular level, such insights hold great promise in identifying the disease processes by their altered molecular profiles, and help determine precise therapeutic treatments. To achieve this objective, previous studies have employed electron microscopy (EM) tomography with reasonable success. However, a major hurdle in the use of EM tomography is the tedious procedures involved in fixing, high-pressure freezing, staining, serial sectioning, imaging, and finally compiling the EM images to obtain a 3D profile of sub-cellular structures. In contrast, the resolution limit of EM tomography is several nanometers, as compared to just a single or even sub-nanometer using the atomic force microscope (AFM). Although AFM has been hugely successful in 3D imaging studies at nanometer resolution and in real time involving isolated live cellular and isolated organelles, it has had limited success in similar studies involving 3D imaging at nm resolution of intracellular structure-function in situ. In the current study, using both AFM and EM on aldehyde-fixed and semi-dry mouse pancreatic acinar cells, new insights on a number of intracellular structure-function relationships and interactions were achieved. Golgi complexes, some exhibiting vesicles in the process of budding were observed, and small vesicles were caught in the act of fusing with larger vesicles, possibly representing either secretory vesicle biogenesis or vesicle refilling following discharge, or both. These results demonstrate the power and scope of the combined engagement of EM and AFM imaging of fixed semi-dry cells, capable of providing a wealth of new information on cellular structure-function and interactions.  相似文献   

15.
A theoretical study of calcium microdomains in turtle hair cells.   总被引:4,自引:1,他引:3       下载免费PDF全文
Y C Wu  T Tucker    R Fettiplace 《Biophysical journal》1996,71(5):2256-2275
Confocal imaging has revealed microdomains of intracellular free Ca2+ in turtle hair cells evoked by depolarizing pulses and has delineated factors affecting the growth and dissipation of such domains. However, imaging experiments have limited spatial and temporal resolution. To extend the range of the results we have developed a three-dimensional model of Ca2+ diffusion in a cylindrical hair cell, allowing part of the Ca2+ influx to occur over a small circular region (radius 0.125-1.0 micron) representing a high-density array of voltage-dependent channels. The model incorporated experimental information about the number of channels, the fixed and mobile Ca2+ buffers, and the Ca2+ extrusion mechanism. A feature of the calculations was the use of a variable grid size depending on the proximity to the Ca2+ channel cluster. The results agreed qualitatively with experimental data on the localization of the Ca2+ transients, although the experimental responses were smaller and slower, which is most likely due to temporal and spatial averaging in the imaging. The model made predictions about 1) the optimal Ca2+ channel number and density within a cluster, 2) the conditions to ensure independence of neighboring clusters, and 3) the influence of the Ca2+ buffers on the kinetics and localization of the microdomains. We suggest that an increase in the mobile Ca2+ buffer concentration in high-frequency hair cells (which possess a larger number of release sites) would allow lower amplitude and faster Ca2+ responses and promote functional independence of the sites.  相似文献   

16.
17.
Several sphingolipid derivatives, including sphingosylphosphorylcholine (SPC), regulate a multitude of biological processes. In the present study we show that both human thyroid cancer cells (FRO cells) and normal human thyroid cells express G protein-coupled receptor 4 (GPR4) and ovarian cancer G protein-coupled receptor 1 (OGR1), putative SPC-specific receptors. In FRO cells SPC evoked a concentration-dependent increase in intracellular free calcium concentration ([Ca2+]i) in a calcium containing, but not in a calcium-free buffer. Sphingosine 1-phosphate (S1P) evoked an increase in [Ca2+]i in both a calcium containing and a calcium-free buffer. The phospholipase C (PLC) inhibitor U 73122 potently attenuated the effect of SPC, suggesting that effects of SPC were mediated by a G protein coupled receptor. Overnight pretreatment of the cells with pertussis toxin did not affect the SPC-evoked response. Interestingly, SPC did not evoke an increase in inositol phosphates, although S1P did so. Furthermore, in cells pretreated with thapsigargin to deplete intracellular calcium stores, SPC still evoked an increase in [Ca2+]i, suggesting that SPC mainly evoked entry of extracellular calcium. When the cells were pretreated with the protein kinase C (PKC) inhibitor GF 109203X, or when the cells were pretreated with PMA for 24 h, the SPC-evoked calcium entry was attenuated. Thus, the SPC-evoked calcium entry was apparently dependent on PKC. In sharp contrast, the increase in [Ca2+]i evoked by S1P was not sensitive to GF 109203X. Furthermore, the calcium entry evoked by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol was not inhibited by GF 109203X. In addition, SPC decreased the incorporation of 3H-thymidine in a concentration-dependent manner in FRO cells. Taken together, SPC may be an important factor regulating thyroid cancer cell function.  相似文献   

18.
A rise in cytosolic free Ca2+ is the immediate trigger for contraction in vascular smooth muscle (VSM). We employed the fluorescent Ca2(+)-indicator, Fura-2, and digital imaging microscopy to study the spatial distribution of intracellular Ca2+ in cultured A7r5 cells and the changes evoked by activation with 5-HT. Several methodological considerations that affect the temporal and spatial resolution of Ca2+ images have been addressed. These include: cytoplasmic distribution of Fura-2, wavelength selection for ratio imaging, signal:noise ratio measurement and the effect of [Ca2+] on the limits of detectability under conditions in which [Ca2+] is changing. The distribution of apparent free Ca2+, [Ca2+]App, in A7r5 cells was heterogeneous. This reflects, in part, different pools of intracellular Ca2+. [Ca2+]App was lowest in the nucleus (113 +/- 14 nM; n = 20 cells) and highest in the organelle-rich perinuclear region (228 +/- 12; n = 20), while the surrounding cytoplasmic area (containing relatively few organelles) had intermediate [Ca2+]app levels (150 +/- 13; n = 20). 5-HT (1 microM) evoked transient increases in [Ca2+]App that began within 11 s as relatively modest elevations of [Ca2+]App in the periphery, near the sarcolemma, and subsequently spread to the entire cell, reaching a peak within 18-24 s. At the peak of the Ca2+ transients, [Ca2+]App was highest in the perinuclear region where it sometimes exceeded the maximal detectable levels of the system (1.9 microM). The average peak Ca2+ transient amplitude in the non-nuclear cytoplasm was 1083 +/- 208 nM (1 microM 5-HT; n = 20 cells). Despite the continued presence of 5-HT following the Ca2+ transients, [Ca2+]App then returned to pre-stimulation levels within 5 min. These observations indicate that digital imaging microscopy enables the study of subcellular regulation of intracellular Ca2+ in VSM. The results provide new insights into the role of localized changes in Ca2+ in the regulation of VSM contractility.  相似文献   

19.
AimsPreviously we described the drop of the noxious heat threshold in response to mild heat injury or plantar incision. While mild heat injury elicits an immediate and short-lasting thermal hyperalgesia, surgical incision leads to a delayed and sustained heat hyperalgesia. Only very few peripheral mediators of these phenomena have been identified. Therefore the present study aimed at comparing the peripheral mediator background of heat hyperalgesia evoked by mild heat injury or surgical incision.Main methodsHeat hyperalgesia was assessed by measuring the behavioural noxious heat threshold in conscious rats employing an increasing-temperature water bath.Key findingsThe heat threshold drop evoked by a mild heat injury and measured 10 min afterwards was reduced by intraplantarly applied HOE 140, a bradykinin B2 receptor antagonist, NDGA, a non-selective lipoxygenase inhibitor, L-NOARG, a non-selective nitric oxide synthase inhibitor, TNP-ATP, a P2X purinoceptor antagonist and AMG9810, an antagonist of the transient receptor potential vanilloid type 1 (TRPV1) receptor. The heat threshold drop evoked by plantar incision and measured 18 h later was reduced by intraplantarly applied HOE 140, [des-Arg10]-HOE 140, a bradykinin B1 receptor antagonist, L-NOARG, TNP-ATP and the TRPV1 receptor antagonist SB-366791.SignificanceOnly small differences have been revealed between the examined peripheral mediators of the acute heat hyperalgesia evoked by mild heat injury and the sustained increase in heat responsiveness induced by surgical incision. The B2 and B1 bradykinin receptor, P2X purinoceptors, TRPV1 receptor, nitric oxide synthase and lipoxygenase(s) are involved in at least one of these hyperalgesia models.  相似文献   

20.
Visualization of specific molecules and their interactions in real time and space is essential to delineate how cellular dynamics and the signaling circuit are orchestrated. Spatial regulation of conformational dynamics and structural plasticity of protein interactions is required to rewire signaling circuitry in response to extracellular cues. We introduce a method for optically imaging intracellular protein interactions at nanometer spatial resolution in live cells, using photoactivatable complementary fluorescent (PACF) proteins. Subsets of complementary fluorescent protein molecules were activated, localized, and then bleached; this was followed by the assembly of superresolution images from aggregate position of sum interactive molecules. Using PACF, we obtained precise localization of dynamic microtubule plus-end hub protein EB1 dimers and their distinct distributions at the leading edges and in the cell bodies of migrating cells. We further delineated the structure–function relationship of EB1 by generating EB1-PACF dimers (EB1wt:EB1wt, EB1wt:EB1mt, and EB1mt:EB1mt) and imaging their precise localizations in culture cells. Surprisingly, our analyses revealed critical role of a previously uncharacterized EB1 linker region in tracking microtubule plus ends in live cells. Thus PACF provides a unique approach to delineating spatial dynamics of homo- or heterodimerized proteins at the nanometer scale and establishes a platform to report the precise regulation of protein interactions in space and time in live cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号